1
|
Zhang B, Baskota B, Anderson PSL. Being thin-skinned can still reduce damage from dynamic puncture. J R Soc Interface 2024; 21:20240311. [PMID: 39439314 PMCID: PMC11496953 DOI: 10.1098/rsif.2024.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 08/29/2024] [Indexed: 10/25/2024] Open
Abstract
The integumentary system in animals serves as an important line of defence against physiological and mechanical external forces. Over time, integuments have evolved layered structures (scales, cuticle and skin) with high toughness and strength to resist damage and prevent wound expansion. While previous studies have examined their defensive performance under low-rate conditions, the failure response and damage resistance of these thin layers under dynamic biological puncture remain underexplored. Here, we utilize a novel experimental framework to investigate the mechanics of dynamic puncture in both bilayer structures of synthetic tissue-mimicking composite materials and natural skin tissues. Our findings reveal the remarkable efficiency of a thin outer skin layer in reducing the overall extent of dynamic puncture damage. This enhanced damage resistance is governed by interlayer properties through puncture energetics and diminishes in strength at higher puncture rates due to rate-dependent effects in silicone tissue simulants. In addition, natural skin tissues exhibit unique material properties and failure behaviours, leading to superior damage reduction capability compared with synthetic counterparts. These findings contribute to a deeper understanding of the inherent biomechanical complexity of biological puncture systems with layered composite material structures. They lay the groundwork for future comparative studies and bio-inspired applications.
Collapse
Affiliation(s)
- Bingyang Zhang
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL61801, USA
| | - Bishal Baskota
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL61801, USA
| | - Philip S. L. Anderson
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL61801, USA
| |
Collapse
|
2
|
LeSueur J, Koser J, Hampton C, Kleinberger M, Pintar FA. Penetration Thresholds of Porcine Limbs for Low Sectional Density Projectiles in High-Rate Impact. Mil Med 2024; 189:517-524. [PMID: 39160835 DOI: 10.1093/milmed/usae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION With similar prevalence to injuries from fires, stings, and natural disasters, soft tissue injuries may occur from fireworks, industrial accidents, or other explosives. Surgeons are less familiar with treating high-velocity penetration from small debris, which may increase the chance of infection and subsequent fatality. Penetration risk curves have been developed to predict V50, the velocity with 50% probability of penetration, for various sized projectiles. However, there has been limited research using nonmetallic materials to achieve lower density projectiles less than 1 g cm-2, such as sand or rocks. MATERIAL AND METHODS To emulate the size and density of these energized particles, 14 ball bearings of stainless steel, silicon nitride, or Delrin acetal plastic ranging from 1.59 mm (1/16") to 9.53 mm (3/8") with sectional densities between 0.3 g cm-2 and 5 g cm-2 were launched toward porcine legs at a range of velocities to determine the penetration thresholds. High-speed videography was captured laterally at 40 kHz and impact velocity was captured using a physics-based tracking software. A generalized linear model with repeated measures and a logit link function was used to predict probability of penetration for each projectile. A total of 600 impacts were conducted to achieve at least 15 penetrating impacts for each projectile over a range of velocities. RESULTS Higher impact velocities were required to penetrate the skin as sectional density of the projectile decreased, and the relationship between velocity and sectional density exhibited an exponential relationship (V50, $ = 184.6*S{D^{ - 0.385}}$, R2 = 0.95) with substantial change for nonlinearity in sectional densities ranging from 0.3 g cm-2 to 1 g cm-2. Compared to previous studies, the empirical relationship was consistent in the linear region (2-5 g cm-2), and novel experimentation filled in the gaps for sectional densities less than 1 g cm-2, which expressed more nonlinearity than previously estimated. For low-density projectiles with diameters of 1.59 (1/16") or 3.18 (1/8"), 32 impacts were lodged into the epidermis but did not penetrate through the dermis; however, penetration was defined as displacement into or through the dermis. CONCLUSIONS These experimental results may be used to develop and validate finite element simulations of low-density projectile impacts to address complex, multivariate loading conditions for the development of protective clothing to reduce wounding and subsequent infection rates.
Collapse
Affiliation(s)
- Joseph LeSueur
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53223, USA
| | - Jared Koser
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | - Frank A Pintar
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53223, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
LeSueur J, Hampton C, Kleinberger M, Dzwierzynski W, Pintar FA. In vitro skin puncture methodology for material characterization. Med Eng Phys 2024; 130:104199. [PMID: 39160027 DOI: 10.1016/j.medengphy.2024.104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/28/2024] [Accepted: 06/25/2024] [Indexed: 08/21/2024]
Abstract
Quantifying the mechanical behavior of skin has been foundational in applications of cosmetics, surgical techniques, forensic science, and protective clothing development. However, previous puncture studies have lacked consistent and physiological boundary conditions of skin. To determine natural skin tension, excision of in situ porcine skin resulted in significantly different diameter reduction (shrinkage) in leg (19.5 %) and abdominal skin (38.4 %) compared to flank skin (28.5 %) (p = 0.047). To examine effects of initial tension and pre-conditioning, five conditions of initial tension (as percentage of diameter increase) and pre-conditioning were tested in quasistatic puncture with a 5 mm spherical impactor using an electrohydraulic load frame and custom clamping apparatus. Samples with less than 5 % initial tension resulted in significantly greater (p = 0.011) force at failure (279.2 N) compared to samples with greater than 25 % initial tension (195.1 N). Eight pre-conditioning cycles of 15 mm displacement reduced hysteresis by 45 %. The coefficient of variance was substantially reduced for force, force normalized by cutis thickness, displacement, stiffness, and strain energy up to 46 %. Pre-conditioned samples at physiological initial tension (14-25 %) resulted in significantly greater (p = 0.03) normalized forces at failure (278.3 N/mm) compared to non-conditioned samples of the same initial tension (234.4 N/mm). Pre-conditioned samples with 14-25 % initial tension, representing physiological boundary conditions, resulted in the most appropriate failure thresholds with the least variation. For in vitro puncture studies, the magnitude of applied initial tension should be defined based on anatomical location, through a shrinkage experimentation, to match natural tension of skin. Characterizing the biological behavior and tolerances of skin may be utilized in finite element models to aid in protective clothing development and forensic science analyses.
Collapse
Affiliation(s)
- Joseph LeSueur
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, WI, USA; Neroscience Research Labs, Zablocki Veterans Affairs Medical Center, WI, USA
| | - Carolyn Hampton
- US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, USA
| | | | - William Dzwierzynski
- Department of Surgery, Division of Plastic Surgery, Medical College of Wisconsin, WI, USA
| | - Frank A Pintar
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, WI, USA; Neroscience Research Labs, Zablocki Veterans Affairs Medical Center, WI, USA; Department of Neurosurgery, Medical College of Wisconsin, WI, USA.
| |
Collapse
|
4
|
Allen P, Cox SC, Jones S, Espino DM. A genetic algorithm optimization framework for the characterization of hyper-viscoelastic materials: application to human articular cartilage. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240383. [PMID: 39100168 PMCID: PMC11296198 DOI: 10.1098/rsos.240383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 08/06/2024]
Abstract
This study aims to develop an automated framework for the characterization of materials which are both hyper-elastic and viscoelastic. This has been evaluated using human articular cartilage (AC). AC (26 tissue samples from 5 femoral heads) underwent dynamic mechanical analysis with a frequency sweep from 1 to 90 Hz. The conversion from a frequency- to time-domain hyper-viscoelastic material model was approximated using a modular framework design where finite element analysis was automated, and a genetic algorithm and interior point technique were employed to solve and optimize the material approximations. Three orders of approximation for the Prony series were evaluated at N = 1, 3 and 5 for 20 and 50 iterations of a genetic cycle. This was repeated for 30 simulations of six combinations of the above all with randomly generated initialization points. There was a difference between N = 1 and N = 3/5 of approximately ~5% in terms of the error estimated. During unloading the opposite was seen with a 10% error difference between N = 5 and 1. A reduction of ~1% parameter error was found when the number of generations increased from 20 to 50. In conclusion, the framework has proved effective in characterizing human AC.
Collapse
Affiliation(s)
- Piers Allen
- Physical Sciences for Health CDT, Department of Chemistry, University of Birmingham, Birmingham, UK
| | - Sophie C. Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Simon Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Daniel M. Espino
- Department of Mechanical Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Oftadeh R, Azadi M, Donovan M, Langer J, Liao IC, Ortiz C, Grodzinsky AJ, Luengo GS. Poroelastic behavior and water permeability of human skin at the nanoscale. PNAS NEXUS 2023; 2:pgad240. [PMID: 37614672 PMCID: PMC10443659 DOI: 10.1093/pnasnexus/pgad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Topical skin care products and hydrating compositions (moisturizers or injectable fillers) have been used for years to improve the appearance of, for example facial wrinkles, or to increase "plumpness". Most of the studies have addressed these changes based on the overall mechanical changes associated with an increase in hydration state. However, little is known about the water mobility contribution to these changes as well as the consequences to the specific skin layers. This is important as the biophysical properties and the biochemical composition of normal stratum corneum, epithelium, and dermis vary tremendously from one another. Our current studies and results reported here have focused on a novel approach (dynamic atomic force microscopy-based nanoindentation) to quantify biophysical characteristics of individual layers of ex vivo human skin. We have discovered that our new methods are highly sensitive to the mechanical properties of individual skin layers, as well as their hydration properties. Furthermore, our methods can assess the ability of these individual layers to respond to both compressive and shear deformations. In addition, since human skin is mechanically loaded over a wide range of deformation rates (frequencies), we studied the biophysical properties of skin over a wide frequency range. The poroelasticity model used helps to quantify the hydraulic permeability of the skin layers, providing an innovative method to evaluate and interpret the impact of hydrating compositions on water mobility of these different skin layers.
Collapse
Affiliation(s)
- Ramin Oftadeh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mojtaba Azadi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- School of Engineering, San Francisco State University, San Francisco, CA 94132, USA
| | - Mark Donovan
- L’OREAL Research and Innovation, Aulnay sous Bois, 93106, France
| | | | - I-Chien Liao
- L'OREAL Research and Innovation, Clark, NJ 07066, USA
| | - Christine Ortiz
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gustavo S Luengo
- L’OREAL Research and Innovation, Aulnay sous Bois, 93106, France
| |
Collapse
|
6
|
Rosicka K, Hill M, Wdowski MM. Skin anisotropy: Finding the optimal incision line for volar forearm in males and females. J Mech Behav Biomed Mater 2021; 124:104805. [PMID: 34474321 DOI: 10.1016/j.jmbbm.2021.104805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Proper understanding of skin biomechanics, viscoelasticity and investigation of skin tension vectors is necessary to find optimal incision lines. Great tension across a healing wound after any surgical procedure might lead to forming hypertrophic scars. The aim of the study was to investigate tension lines in volar forearm skin in young males and females, in order to ensure best incision line. METHODS Five biomechanical and viscoelastic parameters were measured using a hand-held myotonometer: Oscillation Frequency [Hz], Dynamic Stiffness [N/m], Logarithmic Decrement of tissue's natural oscillation, Mechanical Stress Relaxation Time [ms], and Creep. Measurements were taken in four different directions; Along Forearm, Across Forearm, Along Langer's Line and Across Langer's Line. RESULTS Significant main effects for direction were found for Oscillation Frequency (p < 0.001, η2 = 0.371) [Hz], Dynamic Stiffness (p < 0.001, η2 = 0.522) [N/m], Logarithmic Decrement (p < 0.001, η2 = 0.083), Mechanical Stress Relaxation Time (p < 0.001, η2 = 0.494) [ms] and Creep (p < 0.001, η2 = 0.480). For each parameter except for logarithmic decrement results obtained Along Langers Line and Across Forearm were significantly different to Across Langers Line and Along Forearm (p < 0.001, d = -2.76 - 2.66). Significant main effects for sex were found for logarithmic decrement Along Forearm (p < 0.001, d = 1.698) and Across Langer's Line (p = 0.021, d = 1.697). CONCLUSIONS Our results suggested that optimal incision line for this age group in males and females could potentially be performed diagonally i.e. Across Langer's Line or parallel i.e. Along Forearm to forearm axis. These directions would provide the lowest tension across a healing wound and possibly minimalize the risk of hypertrophic scarring post incision.
Collapse
Affiliation(s)
- K Rosicka
- Department of Biological Sciences, Faculty of Physical Culture in Gorzów Wlkp., Poznań University of Physical Education, Gorzów Wlkp, Poland.
| | - M Hill
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, United Kingdom
| | - M M Wdowski
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, United Kingdom
| |
Collapse
|
7
|
Guissouma I, Hambli R, Rekik A, Hivet A. A multiscale four-layer finite element model to predict the effects of collagen fibers on skin behavior under tension. Proc Inst Mech Eng H 2021; 235:1274-1287. [PMID: 34278843 DOI: 10.1177/09544119211022059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human skin is a complex multilayered multiscale material that exhibits nonlinear and anisotropic mechanical behavior. It has been reported that its macroscopic behavior in terms of progression of wrinkles induced by aging is strongly dependent on its microscopic composition in terms of collagen fibers in the dermis layer. In the present work, a multiscale four-layer 2D finite element model of the skin was developed and implemented in Matlab code. The focus here was to investigate the effects of dermal collagen on the macroscopic mechanical behavior of the skin. The skin was modeled by a continuum model composed of four layers: the Stratum Corneum, the epidermis, the dermis, and the hypodermis. The geometry of the different layers of the skin was represented in a 2D model with their respective thicknesses and material properties taken from literature data. The macroscopic behavior of the dermis was modeled with a nonlinear multiscale approach based on a multiscale elastic model of collagen structure going from cross-linked molecules to the collagen fiber, combined with a Mori-Tanaka homogenization scheme. The model includes the nonlinear elasticity of the collagen fiber density, the fiber radius, the undulation, and the fiber orientation. An axial tension was applied incrementally to the lateral surfaces of the skin model. A parametric study was performed in order to investigate the effect of the collagen constituents on the macroscopic skin mechanical behavior in terms of the predicted macroscopic stress-strain curve of the skin. The results of the FE computations under uniaxial tension showed that the different layers undergo different strains, leading to a difference in the transversal deformation at the top surface. In addition, the parametric study revealed a strong correlation between macroscopic skin elasticity and its collagen structure.
Collapse
Affiliation(s)
- Ines Guissouma
- INSA CVL, LaMé, Univ. Orleans, Univ. Tours, Orléans, France
| | - Ridha Hambli
- INSA CVL, LaMé, Univ. Orleans, Univ. Tours, Orléans, France
| | - Amna Rekik
- INSA CVL, LaMé, Univ. Orleans, Univ. Tours, Orléans, France
| | - Audrey Hivet
- INSA CVL, LaMé, Univ. Orleans, Univ. Tours, Orléans, France
| |
Collapse
|
8
|
Skin under Strain: From Epithelial Model Tissues to Adult Epithelia. Cells 2021; 10:cells10071834. [PMID: 34360001 PMCID: PMC8304960 DOI: 10.3390/cells10071834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/14/2023] Open
Abstract
Formation of a barrier capable of protecting tissue from external damage, chemical factors, and pathogens is one of the main functions of the epidermis. Furthermore, upon development and during aging, mechanoprotective epidermal functions change dramatically. However, comparative studies between embryonic and adult skin in comparison to skin equivalents are still scarce which is especially due to the lack of appropriate measurement systems with sufficient accuracy and long-term tissue compatibility. Our studies fill this gap by developing a combined bioreactor and tensile testing machine for biomechanical analysis of living epithelia. Based on this tissue stretcher, our data clearly show that viscoelastic and plastic deformation behavior of embryonic and adult skin differ significantly. Tissue responses to static strain compared to cyclic strain also show a clear dependence on differentiation stage. Multilayered unkeratinized epidermis equivalents, on the other hand, respond very similar to mechanical stretch as adult tissue. This mechanical similarity is even more evident after a single cycle of mechanical preconditioning. Our studies therefore suggest that skin equivalents are well suited model systems to analyze cellular interactions of epidermal cells in natural tissues.
Collapse
|
9
|
Witte M, Rübhausen M, Jaspers S, Wenck H, Fischer F. A method to analyze the influence of mechanical strain on dermal collagen morphologies. Sci Rep 2021; 11:7565. [PMID: 33828115 PMCID: PMC8027212 DOI: 10.1038/s41598-021-86907-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
Collagen fibers and their orientation play a major role in the mechanical behavior of soft biological tissue such as skin. Here, we present a proof-of-principle study correlating mechanical properties with collagen fiber network morphologies. A dedicated multiphoton stretching device allows for mechanical deformations in combination with a simultaneous analysis of its collagen fiber network by second harmonic generation imaging (SHG). The recently introduced Fiber Image Network Evaluation (FINE) algorithm is used to obtain detailed information about the morphology with regard to fiber families in collagen network images. To demonstrate the potential of our method, we investigate an isotropic and an anisotropic ex-vivo dorsal pig skin sample under quasi-static cyclic stretching and relaxation sequences. Families of collagen fibers are found to form a partially aligned collagen network under strain. We find that the relative force uptake is accomplished in two steps. Firstly, fibers align within their fiber families and, secondly, fiber families orient in the direction of force. The maximum alignment of the collagen fiber network is found to be determined by the largest strain. Isotropic and anisotropic samples reveal a different micro structural behavior under repeated deformation leading to a similar force uptake after two stretching cycles. Our method correlates mechanical properties with morphologies in collagen fiber networks.
Collapse
Affiliation(s)
- Maximilian Witte
- Center for Free-Electron Laser Science (CFEL), University of Hamburg, Hamburg, 22607, Germany.,Beiersdorf AG, Hamburg, 20245, Germany
| | - Michael Rübhausen
- Center for Free-Electron Laser Science (CFEL), University of Hamburg, Hamburg, 22607, Germany
| | | | | | | |
Collapse
|
10
|
Zhang J, Keith AN, Sheiko SS, Wang X, Wang Z. To Mimic Mechanical Properties of the Skin by Inducing Oriented Nanofiber Microstructures in Bottlebrush Cellulose- graft-diblock Copolymer Elastomers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3278-3286. [PMID: 33416300 DOI: 10.1021/acsami.0c21494] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Skin is a vital biological defense system that protects the body from physical harm with its unique mechanical properties attributed to the hierarchical organization of the protein scaffold. Developing a synthetic skinlike material has aroused great interest; however, replication of the skin's mechanical response, including anisotropic softness and strain-stiffening, is difficult to achieve. Here, to mimic the mechanical behaviors of skin, a reprocessable bottlebrush copolymer elastomer was designed with renewable and rigid cellulose as backbones; meanwhile, poly(n-butyl acrylate)-b-poly(methyl methacrylate) (PBA-b-PMMA) diblocks were designed as the grafted side chains. The so-made elastomers were subjected to a step-cyclic tensile deformation, by which the internal structures became oriented nanofibers and endowed stress-strain behaviors pretty much similar to those of the real skin. Overall, our research work currently undertaken would be of great importance in the development of a series of biomimetic skinlike polymer materials.
Collapse
Affiliation(s)
- Juan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Andrew N Keith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sergei S Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xuehui Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhigang Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
11
|
Dwivedi KK, Lakhani P, Kumar S, Kumar N. Frequency dependent inelastic response of collagen architecture of pig dermis under cyclic tensile loading: An experimental study. J Mech Behav Biomed Mater 2020; 112:104030. [PMID: 32858398 DOI: 10.1016/j.jmbbm.2020.104030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 08/07/2020] [Indexed: 01/20/2023]
Abstract
The evaluation of collagen architecture of the dermis in response to mechanical stimulation is important as it affects the macroscopic mechanical properties of the dermis. A detailed understanding of the processes involved in the alteration of the collagen structure is required to correlate the mechanical stimulation with tissue remodeling. This study investigated the effect of cyclic frequencies i.e. low (0.1 Hz), medium (2.0 Hz), and high (5.0 Hz) (physiological range) in the alteration of pig dermis collagen structure and its correlation with the macroscopic mechanical response of the dermis. The assessment of the collagen structure of virgin and mechanical tested specimens at tropocollagen, collagen fibril, and fiber level was performed using Fourier-transform infrared-attenuated total reflection (FTIR-ATR), atomic force microscopy (AFM), and scanning electron microscopy (SEM) respectively. After 103 cycles, a significantly higher alteration in collagen structure with discrete plastic-type damage was found for low frequency. This frequency dependent alteration of the collagen structure was found in correlation with the dermis macroscopic response. The value of inelastic strain, stress softening, damage parameter (reduction in elastic modulus), and reduction in energy dissipation were observed significantly large for slow frequency. A power-law based empirical relations, as a function of frequency and number of cycles, were proposed to predict the value of inelastic strain and damage parameter. This study also suggests that hierarchical structural response against the mechanical stimulation is time-dependent rather than cycle-dependent, may affect the tissue remodeling.
Collapse
Affiliation(s)
| | | | - Sachin Kumar
- Department of Mechanical Engineering, IIT, Ropar, India.
| | - Navin Kumar
- Center for Biomedical Engineering Department, IIT, Ropar, India; Department of Mechanical Engineering, IIT, Ropar, India.
| |
Collapse
|
12
|
Modeling of the human mandibular periosteum material properties and comparison with the calvarial periosteum. Biomech Model Mechanobiol 2019; 19:461-470. [PMID: 31512012 DOI: 10.1007/s10237-019-01221-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
Knowledge of mandibular periosteum mechanical properties is fundamental for understanding its role in craniofacial growth, in trauma and bone regeneration. There is a lack in the literature regarding mechanical behavior of the human periosteum, including both experimental and modeling aspects. The proposed study involves tensile tests of periosteum samples from different locations including two locations of human mandibular periosteum: lingual and vestibular, compared with samples from various locations of the calvarial periosteum. We propose to analyze the tensile response of the mandibular periosteum using a model, initially applied on the skin, and based on a structural approach involving the mechanical properties of the corrugation of the collagen. Two different approaches for the model parameters' identification are proposed: (1) identification from experimental curve fitting and (2) identification from histological study. This approach allows us to compare parameters extracted from the traction test fitting to structural parameters measured on periosteum histological slices. Concerning experimental aspects, we showed significant differences, in terms of stiffness, between calvarial and mandibular periostea. (The mean final stiffness is [Formula: see text] for the mandible versus [Formula: see text] for the calvaria.) About modeling, we succeed to capture the correct mechanical behavior for the periosteum, and the statistical analysis showed that certain parameters from the geometric data and traction data are significantly comparable (e.g., [Formula: see text] for [Formula: see text]). However, we also observed a discrepancy between these two approaches for the elongation at which the fibril has become straight ([Formula: see text]).
Collapse
|
13
|
|
14
|
Wahlsten A, Pensalfini M, Stracuzzi A, Restivo G, Hopf R, Mazza E. On the compressibility and poroelasticity of human and murine skin. Biomech Model Mechanobiol 2019; 18:1079-1093. [PMID: 30806838 DOI: 10.1007/s10237-019-01129-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/09/2019] [Indexed: 01/09/2023]
Abstract
A total of 37 human and 33 murine skin samples were subjected to uniaxial monotonic, cyclic, and relaxation experiments. Detailed analysis of the three-dimensional kinematic response showed that skin volume is significantly reduced as a consequence of a tensile elongation. This behavior is most pronounced in monotonic but persists in cyclic tests. The dehydration associated with volume loss depends on the osmolarity of the environment, so that tension relaxation changes as a consequence of modifying the ionic strength of the environmental bath. Similar to ex vivo observations, complementary in vivo stretching experiments on human volar forearms showed strong in-plane lateral contraction. A biphasic homogenized model is proposed which allows representing all relevant features of the observed mechanical response.
Collapse
Affiliation(s)
- Adam Wahlsten
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092, Zurich, Switzerland.
| | - Marco Pensalfini
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Alberto Stracuzzi
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Raoul Hopf
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092, Zurich, Switzerland.,Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Edoardo Mazza
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092, Zurich, Switzerland. .,Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.
| |
Collapse
|
15
|
Liu W, Yang Z, Li P, Zhang J, Jiang S. Mechanics of tissue rupture during needle insertion in transverse isotropic soft tissue. Med Biol Eng Comput 2019; 57:1353-1366. [DOI: 10.1007/s11517-019-01955-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/24/2019] [Indexed: 11/29/2022]
|
16
|
A Comparative Analysis of the Reinforcing Efficiency of Silsesquioxane Nanoparticles versus Apatite Nanoparticles in Chitosan Biocomposite Fibres. JOURNAL OF COMPOSITES SCIENCE 2017. [DOI: 10.3390/jcs1010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Limbert G. Mathematical and computational modelling of skin biophysics: a review. Proc Math Phys Eng Sci 2017; 473:20170257. [PMID: 28804267 PMCID: PMC5549575 DOI: 10.1098/rspa.2017.0257] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/21/2017] [Indexed: 01/05/2023] Open
Abstract
The objective of this paper is to provide a review on some aspects of the mathematical and computational modelling of skin biophysics, with special focus on constitutive theories based on nonlinear continuum mechanics from elasticity, through anelasticity, including growth, to thermoelasticity. Microstructural and phenomenological approaches combining imaging techniques are also discussed. Finally, recent research applications on skin wrinkles will be presented to highlight the potential of physics-based modelling of skin in tackling global challenges such as ageing of the population and the associated skin degradation, diseases and traumas.
Collapse
Affiliation(s)
- Georges Limbert
- National Centre for Advanced Tribology at Southampton (nCATS), Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK
- Biomechanics and Mechanobiology Laboratory, Biomedical Engineering Division, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| |
Collapse
|
18
|
Goh KL, Holmes DF. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue. Int J Mol Sci 2017; 18:ijms18050901. [PMID: 28441344 PMCID: PMC5454814 DOI: 10.3390/ijms18050901] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action-the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced composites to a wide variety of collagen reinforcing (non-mutable) connective tissue, has allowed us to draw general conclusions concerning the mechanical response of the MCT at specific mechanical states, namely the stiff and complaint states. The intent of this review is to provide the latest insights, as well as identify technical challenges and opportunities, that may be useful for developing methods for effective mechanical support when adapting decellularised connective tissues from the sea urchin for tissue engineering or for the design of a synthetic analogue.
Collapse
Affiliation(s)
- Kheng Lim Goh
- Newcastle University Singapore, SIT Building at Nanyang Polytechnic, 172A Ang Mo Kio Avenue 8 #05-01, Singapore 567739, Singapore.
- Newcastle University, School of Mechanical & Systems Engineering, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK.
| | - David F Holmes
- Manchester University, Wellcome Trust Centre for Cell Matrix Research, B.3016 Michael Smith Building, Faculty of Life Sciences, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|