1
|
Peyraut A, Genet M. A model of mechanical loading of the lungs including gravity and a balancing heterogeneous pleural pressure. Biomech Model Mechanobiol 2024; 23:1933-1962. [PMID: 39368052 DOI: 10.1007/s10237-024-01876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/12/2024] [Indexed: 10/07/2024]
Abstract
Recent years have seen the development of multiple in silico lung models, notably with the aim of improving patient care for pulmonary diseases. These models vary in complexity and typically only consider the implementation of pleural pressure, a depression that keeps the lungs inflated. Gravity, often considered negligible compared to pleural pressure, has been largely overlooked, also due to the complexity of formulating physiological boundary conditions to counterbalance it. However, gravity is known to affect pulmonary functions, such as ventilation. In this study, we incorporated gravity into a recent lung poromechanical model. To do so, in addition to the gravitational body force, we proposed novel boundary conditions consisting in a heterogeneous pleural pressure field constrained to counterbalance gravity to reach global equilibrium of applied forces. We assessed the impact of gravity on the global and local behavior of the model, including the pressure-volume response and porosity field. Our findings reveal that gravity, despite being small, influences lung response. Specifically, the inclusion of gravity in our model led to the emergence of heterogeneities in deformation and stress distribution, compatible with in vivo imaging data. This could provide valuable insights for predicting the progression of certain pulmonary diseases by correlating areas subjected to higher deformation and stresses with disease evolution patterns.
Collapse
Affiliation(s)
- Alice Peyraut
- Solid Mechanics Laboratory, École Polytechnique/IPP/CNRS, Palaiseau, France
- MΞDISIM Team, INRIA, Palaiseau, France
| | - Martin Genet
- Solid Mechanics Laboratory, École Polytechnique/IPP/CNRS, Palaiseau, France.
- MΞDISIM Team, INRIA, Palaiseau, France.
| |
Collapse
|
2
|
Singh D, Slutsky AS, Cronin DS. Alveolar wall hyperelastic material properties determined using alveolar cluster model with experimental stress-stretch and pressure-volume data. J Mech Behav Biomed Mater 2024; 159:106685. [PMID: 39173497 DOI: 10.1016/j.jmbbm.2024.106685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/13/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Micro-scale models of lung tissue have been employed by researchers to investigate alveolar mechanics; however, they have been limited by the lack of biofidelic material properties for the alveolar wall. To address this challenge, a finite element model of an alveolar cluster was developed comprising a tetrakaidecahedron array with the nominal characteristics of human alveolar structure. Lung expansion was simulated in the model by prescribing a pressure and monitoring the volume, to produce a pressure-volume (PV) response that could be compared to experimental PV data. The alveolar wall properties in the model were optimized to match experimental PV response of lungs filled with saline, to eliminate surface tension effects and isolate the alveolar wall tissue response. When simulated in uniaxial tension, the model was in agreement with reported experimental properties of uniaxial tension on excised lung tissue. The work presented herein was able to link micro-scale alveolar response to two disparate macroscopic experimental datasets (stress-stretch and PV response of lung) and presents hyperelastic properties of the alveolar wall for use in alveolar scale finite element models and multi-scale models. Future research will incorporate surface tension effects, and investigate alveolar injury mechanisms.
Collapse
Affiliation(s)
- Dilaver Singh
- University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | | | - Duane S Cronin
- University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
3
|
Villa B, Erranz B, Cruces P, Retamal J, Hurtado DE. Mechanical and morphological characterization of the emphysematous lung tissue. Acta Biomater 2024; 181:282-296. [PMID: 38705223 DOI: 10.1016/j.actbio.2024.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Irreversible alveolar airspace enlargement is the main characteristic of pulmonary emphysema, which has been extensively studied using animal models. While the alterations in lung mechanics associated with these morphological changes have been documented in the literature, the study of the mechanical behavior of parenchymal tissue from emphysematous lungs has been poorly investigated. In this work, we characterize the mechanical and morphological properties of lung tissue in elastase-induced emphysema rat models under varying severity conditions. We analyze the non-linear tissue behavior using suitable hyperelastic constitutive models that enable to compare different non-linear responses in terms of hyperelastic material parameters. We further analyze the effect of the elastase dose on alveolar morphology and tissue material parameters and study their connection with respiratory-system mechanical parameters. Our results show that while the lung mechanical function is not significantly influenced by the elastase treatment, the tissue mechanical behavior and alveolar morphology are markedly affected by it. We further show a strong association between alveolar enlargement and tissue softening, not evidenced by respiratory-system compliance. Our findings highlight the importance of understanding tissue mechanics in emphysematous lungs, as changes in tissue properties could detect the early stages of emphysema remodeling. STATEMENT OF SIGNIFICANCE: Gas exchange is vital for life and strongly relies on the mechanical function of the lungs. Pulmonary emphysema is a prevalent respiratory disease where alveolar walls are damaged, causing alveolar enlargement that induces harmful changes in the mechanical response of the lungs. In this work, we study how the mechanical properties of lung tissue change during emphysema. Our results from animal models show that tissue properties are more sensitive to alveolar enlargement due to emphysema than other mechanical properties that describe the function of the whole respiratory system.
Collapse
Affiliation(s)
- Benjamín Villa
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Vicuña Mackenna 4860, Santiago, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Benjamín Erranz
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Pablo Cruces
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile. Avenida Repblica 440, Santiago, Chile
| | - Jaime Retamal
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile, Santiago, Chile
| | - Daniel E Hurtado
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Vicuña Mackenna 4860, Santiago, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02140, USA.
| |
Collapse
|
4
|
Cho Y, Fakhouri F, Ballinger MN, Englert JA, Hayes D, Kolipaka A, Ghadiali SN. Magnetic Resonance Elastography and Computational Modeling Identify Heterogeneous Lung Biomechanical Properties during Cystic Fibrosis. RESEARCH SQUARE 2024:rs.3.rs-4125891. [PMID: 38562870 PMCID: PMC10984019 DOI: 10.21203/rs.3.rs-4125891/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The lung is a dynamic mechanical organ and several pulmonary disorders are characterized by heterogeneous changes in the lung's local mechanical properties (i.e. stiffness). These alterations lead to abnormal lung tissue deformation (i.e. strain) which have been shown to promote disease progression. Although heterogenous mechanical properties may be important biomarkers of disease, there is currently no non-invasive way to measure these properties for clinical diagnostic purposes. In this study, we use a magnetic resonance elastography technique to measure heterogenous distributions of the lung's shear stiffness in healthy adults and in people with Cystic Fibrosis. Additionally, computational finite element models which directly incorporate the measured heterogenous mechanical properties were developed to assess the effects on lung tissue deformation. Results indicate that consolidated lung regions in people with Cystic Fibrosis exhibited increased shear stiffness and reduced spatial heterogeneity compared to surrounding non-consolidated regions. Accounting for heterogenous lung stiffness in healthy adults did not change the globally averaged strain magnitude obtained in computational models. However, computational models that used heterogenous stiffness measurements predicted significantly more variability in local strain and higher spatial strain gradients. Finally, computational models predicted lower strain variability and spatial strain gradients in consolidated lung regions compared to non-consolidated regions. These results indicate that spatial variability in shear stiffness alters local strain and strain gradient magnitudes in people with Cystic Fibrosis. This imaged-based modeling technique therefore represents a clinically viable way to non-invasively assess lung mechanics during both health and disease.
Collapse
Affiliation(s)
| | | | | | | | - Don Hayes
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine
| | | | | |
Collapse
|
5
|
Barahona J, Sahli Costabal F, Hurtado DE. Machine learning modeling of lung mechanics: Assessing the variability and propagation of uncertainty in respiratory-system compliance and airway resistance. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107888. [PMID: 37948910 DOI: 10.1016/j.cmpb.2023.107888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Traditional assessment of patient response in mechanical ventilation relies on respiratory-system compliance and airway resistance. Clinical evidence has shown high variability in these parameters, highlighting the difficulty of predicting them before the start of ventilation therapy. This motivates the creation of computational models that can connect structural and tissue features with lung mechanics. In this work, we leverage machine learning (ML) techniques to construct predictive lung function models informed by non-linear finite element simulations, and use them to investigate the propagation of uncertainty in the lung mechanical response. METHODS We revisit a continuum poromechanical formulation of the lungs suitable for determining patient response. Based on this framework, we create high-fidelity finite element models of human lungs from medical images. We also develop a low-fidelity model based on an idealized sphere geometry. We then use these models to train and validate three ML architectures: single-fidelity and multi-fidelity Gaussian process regression, and artificial neural networks. We use the best predictive ML model to further study the sensitivity of lung response to variations in tissue structural parameters and boundary conditions via sensitivity analysis and forward uncertainty quantification. Codes are available for download at https://github.com/comp-medicine-uc/ML-lung-mechanics-UQ RESULTS: The low-fidelity model delivers a lung response very close to that predicted by high-fidelity simulations and at a fraction of the computational time. Regarding the trained ML models, the multi-fidelity GP model consistently delivers better accuracy than the single-fidelity GP and neural network models in estimating respiratory-system compliance and resistance (R2∼0.99). In terms of computational efficiency, our ML model delivers a massive speed-up of ∼970,000× with respect to high-fidelity simulations. Regarding lung function, we observed an almost matched and non-linear behavior between specific structural parameters and chest wall stiffness with compliance. Also, we observed a strong modulation of airways resistance with tissue permeability. CONCLUSIONS Our findings unveil the relevance of specific lung tissue parameters and boundary conditions in the respiratory-system response. Furthermore, we highlight the advantages of adopting a multi-fidelity ML approach that combines data from different levels to yield accurate and efficient estimates of clinical mechanical markers. We envision that the methods presented here can open the way to the development of predictive ML models of the lung response that can inform clinical decisions.
Collapse
Affiliation(s)
- José Barahona
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Francisco Sahli Costabal
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile; Department of Mechanical and Metallurgical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Daniel E Hurtado
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02140, USA.
| |
Collapse
|
6
|
Ortiz-Puerta D, Diaz O, Retamal J, Hurtado DE. Morphometric analysis of airways in pre-COPD and mild COPD lungs using continuous surface representations of the bronchial lumen. Front Bioeng Biotechnol 2023; 11:1271760. [PMID: 38192638 PMCID: PMC10773673 DOI: 10.3389/fbioe.2023.1271760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction: Chronic Obstructive Pulmonary Disease (COPD) is a prevalent respiratory disease that presents a high rate of underdiagnosis during onset and early stages. Studies have shown that in mild COPD patients, remodeling of the small airways occurs concurrently with morphological changes in the proximal airways. Despite this evidence, the geometrical study of the airway tree from computed tomography (CT) lung images remains underexplored due to poor representations and limited tools to characterize the airway structure. Methods: We perform a comprehensive morphometric study of the proximal airways based on geometrical measures associated with the different airway generations. To this end, we leverage the geometric flexibility of the Snakes IsoGeometric Analysis method to accurately represent and characterize the airway luminal surface and volume informed by CT images of the respiratory tree. Based on this framework, we study the airway geometry of smoking pre-COPD and mild COPD individuals. Results: Our results show a significant difference between groups in airway volume, length, luminal eccentricity, minimum radius, and surface-area-to-volume ratio in the most distal airways. Discussion: Our findings suggest a higher degree of airway narrowing and collapse in COPD patients when compared to pre-COPD patients. We envision that our work has the potential to deliver a comprehensive tool for assessing morphological changes in airway geometry that take place in the early stages of COPD.
Collapse
Affiliation(s)
- David Ortiz-Puerta
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Orlando Diaz
- Department of Intensive Care Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Retamal
- Department of Intensive Care Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel E. Hurtado
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Nelson TM, Quiros KAM, Dominguez EC, Ulu A, Nordgren TM, Eskandari M. Diseased and healthy murine local lung strains evaluated using digital image correlation. Sci Rep 2023; 13:4564. [PMID: 36941463 PMCID: PMC10026788 DOI: 10.1038/s41598-023-31345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/09/2023] [Indexed: 03/22/2023] Open
Abstract
Tissue remodeling in pulmonary disease irreversibly alters lung functionality and impacts quality of life. Mechanical ventilation is amongst the few pulmonary interventions to aid respiration, but can be harmful or fatal, inducing excessive regional (i.e., local) lung strains. Previous studies have advanced understanding of diseased global-level lung response under ventilation, but do not adequately capture the critical local-level response. Here, we pair a custom-designed pressure-volume ventilator with new applications of digital image correlation, to directly assess regional strains in the fibrosis-induced ex-vivo mouse lung, analyzed via regions of interest. We discuss differences between diseased and healthy lung mechanics, such as distensibility, heterogeneity, anisotropy, alveolar recruitment, and rate dependencies. Notably, we compare local and global compliance between diseased and healthy states by assessing the evolution of pressure-strain and pressure-volume curves resulting from various ventilation volumes and rates. We find fibrotic lungs are less-distensible, with altered recruitment behaviors and regional strains, and exhibit disparate behaviors between local and global compliance. Moreover, these diseased characteristics show volume-dependence and rate trends. Ultimately, we demonstrate how fibrotic lungs may be particularly susceptible to damage when contrasted to the strain patterns of healthy counterparts, helping to advance understanding of how ventilator induced lung injury develops.
Collapse
Affiliation(s)
- T M Nelson
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | - K A M Quiros
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | - E C Dominguez
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, Riverside, CA, USA
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, USA
| | - A Ulu
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, Riverside, CA, USA
| | - T M Nordgren
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, Riverside, CA, USA
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, USA
- BREATHE Center, School of Medicine, University of California, Riverside, CA, USA
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - M Eskandari
- Department of Mechanical Engineering, University of California, Riverside, CA, USA.
- BREATHE Center, School of Medicine, University of California, Riverside, CA, USA.
- Department of Bioengineering, University of California, Riverside, CA, USA.
| |
Collapse
|
8
|
Bhana RH, Magan AB. Lung Mechanics: A Review of Solid Mechanical Elasticity in Lung Parenchyma. JOURNAL OF ELASTICITY 2023; 153:53-117. [PMID: 36619653 PMCID: PMC9808719 DOI: 10.1007/s10659-022-09973-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The lung is the main organ of the respiratory system. Its purpose is to facilitate gas exchange (breathing). Mechanically, breathing may be described as the cyclic application of stresses acting upon the lung surface. These forces are offset by prominent stress-bearing components of lung tissue. These components result from the mechanical elastic properties of lung parenchyma. Various studies have been dedicated to understanding the macroscopic behaviour of parenchyma. This has been achieved through pressure-volume analysis, numerical methods, the development of constitutive equations or strain-energy functions, finite element methods, image processing and elastography. Constitutive equations can describe the elastic behaviour exhibited by lung parenchyma through the relationship between the macroscopic stress and strain. The research conducted within lung mechanics around the elastic and resistive properties of the lung has allowed scientists to develop new methods and equipment for evaluating and treating pulmonary pathogens. This paper establishes a review of mathematical studies conducted within lung mechanics, centering on the development and implementation of solid mechanics to the understanding of the mechanical properties of the lung. Under the classical theory of elasticity, the lung is said to behave as an isotropic elastic continuum undergoing small deformations. However, the lung has also been known to display heterogeneous anisotropic behaviour associated with large deformations. Therefore, focus is placed on the assumptions and development of the various models, their mechanical influence on lung physiology, and the development of constitutive equations through the classical and non-classical theory of elasticity. Lastly, we also look at lung blast mechanics. No explicit emphasis is placed on lung pathology.
Collapse
Affiliation(s)
- R. H. Bhana
- School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Wits, 2050 South Africa
| | - A. B. Magan
- School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Wits, 2050 South Africa
| |
Collapse
|
9
|
Avilés-Rojas N, Hurtado DE. Whole-lung finite-element models for mechanical ventilation and respiratory research applications. Front Physiol 2022; 13:984286. [PMID: 36267590 PMCID: PMC9577367 DOI: 10.3389/fphys.2022.984286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Mechanical ventilation has been a vital treatment for Covid-19 patients with respiratory failure. Lungs assisted with mechanical ventilators present a wide variability in their response that strongly depends on air-tissue interactions, which motivates the creation of simulation tools to enhance the design of ventilatory protocols. In this work, we aim to create anatomical computational models of the lungs that predict clinically-relevant respiratory variables. To this end, we formulate a continuum poromechanical framework that seamlessly accounts for the air-tissue interaction in the lung parenchyma. Based on this formulation, we construct anatomical finite-element models of the human lungs from computed-tomography images. We simulate the 3D response of lungs connected to mechanical ventilation, from which we recover physiological parameters of high clinical relevance. In particular, we provide a framework to estimate respiratory-system compliance and resistance from continuum lung dynamic simulations. We further study our computational framework in the simulation of the supersyringe method to construct pressure-volume curves. In addition, we run these simulations using several state-of-the-art lung tissue models to understand how the choice of constitutive models impacts the whole-organ mechanical response. We show that the proposed lung model predicts physiological variables, such as airway pressure, flow and volume, that capture many distinctive features observed in mechanical ventilation and the supersyringe method. We further conclude that some constitutive lung tissue models may not adequately capture the physiological behavior of lungs, as measured in terms of lung respiratory-system compliance. Our findings constitute a proof of concept that finite-element poromechanical models of the lungs can be predictive of clinically-relevant variables in respiratory medicine.
Collapse
Affiliation(s)
- Nibaldo Avilés-Rojas
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel E. Hurtado
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Daniel E. Hurtado,
| |
Collapse
|
10
|
Thakran S, Cohen E, Jahani N, Weinstein SP, Pantalone L, Hylton N, Newitt D, DeMichele A, Davatzikos C, Kontos D. Impact of deformable registration methods for prediction of recurrence free survival response to neoadjuvant chemotherapy in breast cancer: Results from the ISPY 1/ACRIN 6657 trial. Transl Oncol 2022; 20:101411. [PMID: 35395604 PMCID: PMC8990167 DOI: 10.1016/j.tranon.2022.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/09/2022] [Accepted: 03/27/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Image registration plays a vital role in spatially aligning multiple MRI scans for better longitudinal assessment of tumor morphological features. The objective was to evaluate the effect of registration accuracy of six established deformable registration methods(ANTs, DRAMMS, ART, NiftyReg, SSD-FFD, and NMI-FFD) on the predictive value of extracted radiomic features when modeling recurrence-free-survival(RFS) for women after neoadjuvant chemotherapy(NAC) for locally advanced breast cancer. METHODS 130 women had DCE-MRI scans available from the first two visits in the ISPY1/ACRIN-6657 cohort. We calculated the transformation field from each of the different deformable registration methods, and used it to compute voxel-wise parametric-response-maps(PRM) for established four kinetic features.104-radiomic features were computed from each PRM map to characterize intra-tumor heterogeneity. We evaluated performance for RFS using Cox-regression, C-statistic, and Kaplan-Meier(KM) plots. RESULTS A baseline model(F1:Age, Race, and Hormone-receptor-status) had a 0.54 C-statistic, and model F2(baseline + functional-tumor-volume at early treatment visit(FTV2)) had 0.63. The F2+ANTs had the highest C-statistic(0.72) with the smallest landmark differences(5.40±4.40mm) as compared to other models. The KM curve for model F2 gave p=0.004 for separation between women above and below the median hazard compared to the model F1(p=0.31). A models augmented with radiomic features, also achieved significant KM curve separation(p<0.001) except the F2+ART model. CONCLUSION Incorporating image registration in quantifying changes in tumor heterogeneity during NAC can improve prediction of RFS. Radiomic features of PRM maps derived from warping the DCE-MRI kinetic maps using ANTs registration method further improved the early prediction of RFS as compared to other methods.
Collapse
Affiliation(s)
- Snekha Thakran
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - Eric Cohen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - Nariman Jahani
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - Susan P Weinstein
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - Lauren Pantalone
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - Nola Hylton
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94115 United States
| | - David Newitt
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94115 United States
| | - Angela DeMichele
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - Despina Kontos
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States.
| |
Collapse
|
11
|
Araos J, Cruces P, Martin-Flores M, Donati P, Gleed RD, Boullhesen-Williams T, Perez A, Staffieri F, Retamal J, Vidal Melo MF, Hurtado DE. Distribution and Magnitude of Regional Volumetric Lung Strain and Its Modification by PEEP in Healthy Anesthetized and Mechanically Ventilated Dogs. Front Vet Sci 2022; 9:839406. [PMID: 35359684 PMCID: PMC8964072 DOI: 10.3389/fvets.2022.839406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
The present study describes the magnitude and spatial distribution of lung strain in healthy anesthetized, mechanically ventilated dogs with and without positive end-expiratory pressure (PEEP). Total lung strain (LSTOTAL) has a dynamic (LSDYNAMIC) and a static (LSSTATIC) component. Due to lung heterogeneity, global lung strain may not accurately represent regional total tissue lung strain (TSTOTAL), which may also be described by a regional dynamic (TSDYNAMIC) and static (TSSTATIC) component. Six healthy anesthetized beagles (12.4 ± 1.4 kg body weight) were placed in dorsal recumbency and ventilated with a tidal volume of 15 ml/kg, respiratory rate of 15 bpm, and zero end-expiratory pressure (ZEEP). Respiratory system mechanics and full thoracic end-expiratory and end-inspiratory CT scan images were obtained at ZEEP. Thereafter, a PEEP of 5 cmH2O was set and respiratory system mechanics measurements and end-expiratory and end-inspiratory images were repeated. Computed lung volumes from CT scans were used to evaluate the global LSTOTAL, LSDYNAMIC, and LSSTATIC during PEEP. During ZEEP, LSSTATIC was assumed zero; therefore, LSTOTAL was the same as LSDYNAMIC. Image segmentation was applied to CT images to obtain maps of regional TSTOTAL, TSDYNAMIC, and TSSTATIC during PEEP, and TSDYNAMIC during ZEEP. Compliance increased (p = 0.013) and driving pressure decreased (p = 0.043) during PEEP. PEEP increased the end-expiratory lung volume (p < 0.001) and significantly reduced global LSDYNAMIC (33.4 ± 6.4% during ZEEP, 24.0 ± 4.6% during PEEP, p = 0.032). LSSTATIC by PEEP was larger than the reduction in LSDYNAMIC; therefore, LSTOTAL at PEEP was larger than LSDYNAMIC at ZEEP (p = 0.005). There was marked topographic heterogeneity of regional strains. PEEP induced a significant reduction in TSDYNAMIC in all lung regions (p < 0.05). Similar to global findings, PEEP-induced TSSTATIC was larger than the reduction in TSDYNAMIC; therefore, PEEP-induced TSTOTAL was larger than TSDYNAMIC at ZEEP. In conclusion, PEEP reduced both global and regional estimates of dynamic strain, but induced a large static strain. Given that lung injury has been mostly associated with tidal deformation, limiting dynamic strain may be an important clinical target in healthy and diseased lungs, but this requires further study.
Collapse
Affiliation(s)
- Joaquin Araos
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- *Correspondence: Joaquin Araos
| | - Pablo Cruces
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Pediatric Intensive Care Unit, Hospital El Carmen de Maipu, Santiago, Chile
| | - Manuel Martin-Flores
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Pablo Donati
- Department of Anesthesiology and Pain Management, Faculty of Veterinary Sciences, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Robin D. Gleed
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Tomas Boullhesen-Williams
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Agustin Perez
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francesco Staffieri
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, University of Bari, Bari, Italy
| | - Jaime Retamal
- Department of Intensive Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcos F. Vidal Melo
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Daniel E. Hurtado
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Daniel E. Hurtado
| |
Collapse
|
12
|
A quasi-static poromechanical model of the lungs. Biomech Model Mechanobiol 2022; 21:527-551. [DOI: 10.1007/s10237-021-01547-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/09/2021] [Indexed: 11/02/2022]
|
13
|
Suárez-Sipmann F, Villar J, Ferrando C, Sánchez-Giralt JA, Tusman G. Monitoring Expired CO 2 Kinetics to Individualize Lung-Protective Ventilation in Patients With the Acute Respiratory Distress Syndrome. Front Physiol 2022; 12:785014. [PMID: 34992549 PMCID: PMC8724128 DOI: 10.3389/fphys.2021.785014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Mechanical ventilation (MV) is a lifesaving supportive intervention in the management of acute respiratory distress syndrome (ARDS), buying time while the primary precipitating cause is being corrected. However, MV can contribute to a worsening of the primary lung injury, known as ventilation-induced lung injury (VILI), which could have an important impact on outcome. The ARDS lung is characterized by diffuse and heterogeneous lung damage and is particularly prone to suffer the consequences of an excessive mechanical stress imposed by higher airway pressures and volumes during MV. Of major concern is cyclic overdistension, affecting those lung segments receiving a proportionally higher tidal volume in an overall reduced lung volume. Theoretically, healthier lung regions are submitted to a larger stress and cyclic deformation and thus at high risk for developing VILI. Clinicians have difficulties in detecting VILI, particularly cyclic overdistension at the bedside, since routine monitoring of gas exchange and lung mechanics are relatively insensitive to this mechanism of VILI. Expired CO2 kinetics integrates relevant pathophysiological information of high interest for monitoring. CO2 is produced by cell metabolism in large daily quantities. After diffusing to tissue capillaries, CO2 is transported first by the venous and then by pulmonary circulation to the lung. Thereafter diffusing from capillaries to lung alveoli, it is finally convectively transported by lung ventilation for its elimination to the atmosphere. Modern readily clinically available sensor technology integrates information related to pulmonary ventilation, perfusion, and gas exchange from the single analysis of expired CO2 kinetics measured at the airway opening. Current volumetric capnography (VCap), the representation of the volume of expired CO2 in one single breath, informs about pulmonary perfusion, end-expiratory lung volume, dead space, and pulmonary ventilation inhomogeneities, all intimately related to cyclic overdistension during MV. Additionally, the recently described capnodynamic method provides the possibility to continuously measure the end-expiratory lung volume and effective pulmonary blood flow. All this information is accessed non-invasively and breath-by-breath helping clinicians to personalize ventilatory settings at the bedside and minimize overdistension and cyclic deformation of lung tissue.
Collapse
Affiliation(s)
- Fernando Suárez-Sipmann
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Intensive Care Unit, Hospital Universitario La Princesa, Madrid, Spain.,Department of Surgical Sciences, Anesthesiology & Critical Care, Hedenstierna Laboratory, Uppsala University Hospital, Uppsala, Sweden
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Multidisciplinary Organ Dysfunction Evaluation Research Network (MODERN), Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain.,Keenan Research Center at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Carlos Ferrando
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Department of Anesthesiology and Critical Care, Hospital Clinic, Barcelona, Spain.,Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Gerardo Tusman
- Department of Anesthesiology, Hospital Privado de Comunidad, Mar del Plata, Argentina
| |
Collapse
|
14
|
COVID-19 ARDS: Points to Be Considered in Mechanical Ventilation and Weaning. J Pers Med 2021; 11:jpm11111109. [PMID: 34834461 PMCID: PMC8618434 DOI: 10.3390/jpm11111109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
The COVID-19 disease can cause hypoxemic respiratory failure due to ARDS, requiring invasive mechanical ventilation. Although early studies reported that COVID-19-associated ARDS has distinctive features from ARDS of other causes, recent observational studies have demonstrated that ARDS related to COVID-19 shares common clinical characteristics and respiratory system mechanics with ARDS of other origins. Therefore, mechanical ventilation in these patients should be based on strategies aiming to mitigate ventilator-induced lung injury. Assisted mechanical ventilation should be applied early in the course of mechanical ventilation by considering evaluation and minimizing factors associated with patient-inflicted lung injury. Extracorporeal membrane oxygenation should be considered in selected patients with refractory hypoxia not responding to conventional ventilation strategies. This review highlights the current and evolving practice in managing mechanically ventilated patients with ARDS related to COVID-19.
Collapse
|
15
|
Dynamic relative regional strain visualized by electrical impedance tomography in patients suffering from COVID-19. J Clin Monit Comput 2021; 36:975-985. [PMID: 34386896 PMCID: PMC8363090 DOI: 10.1007/s10877-021-00748-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023]
Abstract
Respiratory failure due to SARS-CoV-2 may progress rapidly. During the course of COVID-19, patients develop an increased respiratory drive, which may induce high mechanical strain a known risk factor for Patient Self-Inflicted Lung Injury (P-SILI). We developed a novel Electrical Impedance Tomography-based approach to visualize the Dynamic Relative Regional Strain (DRRS) in SARS-CoV-2 positive patients and compared these findings with measurements in lung healthy volunteers. DRRS was defined as the ratio of tidal impedance changes and end-expiratory lung impedance within each pixel of the lung region. DRRS values of the ten patients were considerably higher than those of the ten healthy volunteers. On repeated examination, patterns, magnitude and frequency distribution of DRRS were reproducible and in line with the clinical course of the patients. Lung ultrasound scores correlated with the number of pixels showing DRRS values above the derived threshold. Using Electrical Impedance Tomography we were able to generate, for the first time, images of DRRS which might indicate P-SILI in patients suffering from COVID-19. Trial Registration This observational study was registered 06.04.2020 in German Clinical Trials Register (DRKS00021276).
Collapse
|
16
|
Cornejo R, Iturrieta P, Olegário TMM, Kajiyama C, Arellano D, Guiñez D, Cerda MA, Brito R, Gajardo AIJ, Lazo M, López L, Morais CCA, González S, Zavala M, Rojas V, Medel JN, Hurtado DE, Bruhn A, Ramos C, Estuardo N. Estimation of changes in cyclic lung strain by electrical impedance tomography: Proof-of-concept study. Acta Anaesthesiol Scand 2021; 65:228-235. [PMID: 33037607 DOI: 10.1111/aas.13723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE Cyclic strain may be a determinant of ventilator-induced lung injury. The standard for strain assessment is the computed tomography (CT), which does not allow continuous monitoring and exposes to radiation. Electrical impedance tomography (EIT) is able to monitor changes in regional lung ventilation. In addition, there is a correlation between mechanical deformation of materials and detectable changes in its electrical impedance, making EIT a potential surrogate for cyclic lung strain measured by CT (StrainCT ). OBJECTIVES To compare the global StrainCT with the change in electrical impedance (ΔZ). METHODS Acute respiratory distress syndrome patients under mechanical ventilation (VT 6 mL/kg ideal body weight with positive end-expiratory pressure 5 [PEEP 5] and best PEEP according to EIT) underwent whole-lung CT at end-inspiration and end-expiration. Biomechanical analysis was used to construct 3D maps and determine StrainCT at different levels of PEEP. CT and EIT acquisitions were performed simultaneously. Multilevel analysis was employed to determine the causal association between StrainCT and ΔZ. Linear regression models were used to predict the change in lung StrainCT between different PEEP levels based on the change in ΔZ. MAIN RESULTS StrainCT was positively and independently associated with ΔZ at global level (P < .01). Furthermore, the change in StrainCT (between PEEP 5 and Best PEEP) was accurately predicted by the change in ΔZ (R2 0.855, P < .001 at global level) with a high agreement between predicted and measured StrainCT . CONCLUSIONS The change in electrical impedance may provide a noninvasive assessment of global cyclic strain, without radiation at bedside.
Collapse
Affiliation(s)
- Rodrigo Cornejo
- Unidad de Pacientes Críticos Departamento de Medicina Hospital Clínico Universidad de Chile Santiago Chile
- Center of Acute Respiratory Critical Illness (ARCI) Santiago Chile
| | - Pablo Iturrieta
- Department of Structural and Geotechnical Engineering School of Engineering Pontificia Universidad Católica de Chile Santiago Chile
| | | | | | - Daniel Arellano
- Unidad de Pacientes Críticos Departamento de Medicina Hospital Clínico Universidad de Chile Santiago Chile
- Departamento de kinesiología Facultad de Medicina Universidad de Chile Santiago Chile
| | - Dannette Guiñez
- Unidad de Pacientes Críticos Departamento de Medicina Hospital Clínico Universidad de Chile Santiago Chile
| | - María A. Cerda
- Unidad de Pacientes Críticos Departamento de Medicina Hospital Clínico Universidad de Chile Santiago Chile
| | - Roberto Brito
- Unidad de Pacientes Críticos Departamento de Medicina Hospital Clínico Universidad de Chile Santiago Chile
| | - Abraham I. J. Gajardo
- Unidad de Pacientes Críticos Departamento de Medicina Hospital Clínico Universidad de Chile Santiago Chile
| | - Marioli Lazo
- Unidad de Pacientes Críticos Departamento de Medicina Hospital Clínico Universidad de Chile Santiago Chile
| | - Lorena López
- Departamento de Radiología Hospital Clínico Universidad de Chile Santiago Chile
| | - Caio C. A. Morais
- Divisao de Pneumologia Faculdade de Medicina Instituto do Coracao Hospital das Clinicas HCFMUSP Universidade de Sao Paulo Sao Paulo Brazil
| | - Sedric González
- Unidad de Pacientes Críticos Departamento de Medicina Hospital Clínico Universidad de Chile Santiago Chile
| | - Miguel Zavala
- Unidad de Pacientes Críticos Departamento de Medicina Hospital Clínico Universidad de Chile Santiago Chile
| | - Verónica Rojas
- Unidad de Pacientes Críticos Departamento de Medicina Hospital Clínico Universidad de Chile Santiago Chile
| | - Juan N. Medel
- Unidad de Pacientes Críticos Departamento de Medicina Hospital Clínico Universidad de Chile Santiago Chile
| | - Daniel E. Hurtado
- Department of Structural and Geotechnical Engineering School of Engineering Pontificia Universidad Católica de Chile Santiago Chile
- Institute for Biological and Medical Engineering School of Engineering Pontificia Universidad Católica de Chile Santiago Chile
| | - Alejandro Bruhn
- Center of Acute Respiratory Critical Illness (ARCI) Santiago Chile
- Departamento de Medicina Intensiva Facultad de Medicina Pontificia Universidad Católica de Chile Santiago Chile
| | - Cristobal Ramos
- Departamento de Radiología Hospital Clínico Universidad de Chile Santiago Chile
| | - Nivia Estuardo
- Unidad de Pacientes Críticos Departamento de Medicina Hospital Clínico Universidad de Chile Santiago Chile
| |
Collapse
|
17
|
Cruces P, Retamal J, Hurtado DE, Erranz B, Iturrieta P, González C, Díaz F. A physiological approach to understand the role of respiratory effort in the progression of lung injury in SARS-CoV-2 infection. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:494. [PMID: 32778136 PMCID: PMC7416996 DOI: 10.1186/s13054-020-03197-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
Deterioration of lung function during the first week of COVID-19 has been observed when patients remain with insufficient respiratory support. Patient self-inflicted lung injury (P-SILI) is theorized as the responsible, but there is not robust experimental and clinical data to support it. Given the limited understanding of P-SILI, we describe the physiological basis of P-SILI and we show experimental data to comprehend the role of regional strain and heterogeneity in lung injury due to increased work of breathing. In addition, we discuss the current approach to respiratory support for COVID-19 under this point of view.
Collapse
Affiliation(s)
- Pablo Cruces
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Unidad de Paciente Crítico Pediátrico, Hospital El Carmen de Maipú, Santiago, Chile
| | - Jaime Retamal
- Departamento de Medicina Intensiva, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel E Hurtado
- Department of Structural and Geotechnical Engineering, School of Engineering Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile
| | - Benjamín Erranz
- Centro de Medicina Regenerativa, Facultad de Medicina, Universidad del Desarrollo, Santiago, Chile
| | - Pablo Iturrieta
- Department of Structural and Geotechnical Engineering, School of Engineering Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos González
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Franco Díaz
- Unidad de Paciente Crítico Pediátrico, Hospital El Carmen de Maipú, Santiago, Chile. .,Unidad de Paciente Crítico Pediátrico, Hospital Clínico La Florida Dra. Eloísa Díaz Insunza, Santiago, Chile. .,Instituto de Ciencias e Innovacion en Medicina (ICIM), Universidad del Desarrollo, Santiago, Chile.
| |
Collapse
|
18
|
Hurtado DE, Erranz B, Lillo F, Sarabia-Vallejos M, Iturrieta P, Morales F, Blaha K, Medina T, Diaz F, Cruces P. Progression of regional lung strain and heterogeneity in lung injury: assessing the evolution under spontaneous breathing and mechanical ventilation. Ann Intensive Care 2020; 10:107. [PMID: 32761387 PMCID: PMC7407426 DOI: 10.1186/s13613-020-00725-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Protective mechanical ventilation (MV) aims at limiting global lung deformation and has been associated with better clinical outcomes in acute respiratory distress syndrome (ARDS) patients. In ARDS lungs without MV support, the mechanisms and evolution of lung tissue deformation remain understudied. In this work, we quantify the progression and heterogeneity of regional strain in injured lungs under spontaneous breathing and under MV. METHODS Lung injury was induced by lung lavage in murine subjects, followed by 3 h of spontaneous breathing (SB-group) or 3 h of low Vt mechanical ventilation (MV-group). Micro-CT images were acquired in all subjects at the beginning and at the end of the ventilation stage following induction of lung injury. Regional strain, strain progression and strain heterogeneity were computed from image-based biomechanical analysis. Three-dimensional regional strain maps were constructed, from which a region-of-interest (ROI) analysis was performed for the regional strain, the strain progression, and the strain heterogeneity. RESULTS After 3 h of ventilation, regional strain levels were significantly higher in 43.7% of the ROIs in the SB-group. Significant increase in regional strain was found in 1.2% of the ROIs in the MV-group. Progression of regional strain was found in 100% of the ROIs in the SB-group, whereas the MV-group displayed strain progression in 1.2% of the ROIs. Progression in regional strain heterogeneity was found in 23.4% of the ROIs in the SB-group, while the MV-group resulted in 4.7% of the ROIs showing significant changes. Deformation progression is concurrent with an increase of non-aerated compartment in SB-group (from 13.3% ± 1.6% to 37.5% ± 3.1%), being higher in ventral regions of the lung. CONCLUSIONS Spontaneous breathing in lung injury promotes regional strain and strain heterogeneity progression. In contrast, low Vt MV prevents regional strain and heterogeneity progression in injured lungs.
Collapse
Affiliation(s)
- Daniel E Hurtado
- Department of Structural and Geotechnical Engineering, School of Engineering Pontificia, Universidad Católica de Chile, Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile
| | - Benjamín Erranz
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Felipe Lillo
- Centro de Investigación de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Mauricio Sarabia-Vallejos
- Department of Structural and Geotechnical Engineering, School of Engineering Pontificia, Universidad Católica de Chile, Santiago, Chile
| | - Pablo Iturrieta
- Department of Structural and Geotechnical Engineering, School of Engineering Pontificia, Universidad Católica de Chile, Santiago, Chile
| | - Felipe Morales
- Centro de Investigación de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Katherine Blaha
- Pediatric Critical Care Unit, Clínica Alemana de Santiago, Santiago, Chile
| | - Tania Medina
- Pediatric Intensive Care Unit, Hospital El Carmen de Maipú, Santiago, Chile
| | - Franco Diaz
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile.,Pediatric Critical Care Unit, Clínica Alemana de Santiago, Santiago, Chile
| | - Pablo Cruces
- Centro de Investigación de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile. .,Pediatric Intensive Care Unit, Hospital El Carmen de Maipú, Santiago, Chile.
| |
Collapse
|
19
|
Zhu Z, Park HS, McAlpine MC. 3D printed deformable sensors. SCIENCE ADVANCES 2020; 6:eaba5575. [PMID: 32596461 PMCID: PMC7299613 DOI: 10.1126/sciadv.aba5575] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/06/2020] [Indexed: 05/18/2023]
Abstract
The ability to directly print compliant biomedical devices on live human organs could benefit patient monitoring and wound treatment, which requires the 3D printer to adapt to the various deformations of the biological surface. We developed an in situ 3D printing system that estimates the motion and deformation of the target surface to adapt the toolpath in real time. With this printing system, a hydrogel-based sensor was printed on a porcine lung under respiration-induced deformation. The sensor was compliant to the tissue surface and provided continuous spatial mapping of deformation via electrical impedance tomography. This adaptive 3D printing approach may enhance robot-assisted medical treatments with additive manufacturing capabilities, enabling autonomous and direct printing of wearable electronics and biological materials on and inside the human body.
Collapse
Affiliation(s)
- Zhijie Zhu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hyun Soo Park
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael C. McAlpine
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
20
|
Cronin JN, Borges JB, Crockett DC, Farmery AD, Hedenstierna G, Larsson A, Tran MC, Camporota L, Formenti F. Dynamic single-slice CT estimates whole-lung dual-energy CT variables in pigs with and without experimental lung injury. Intensive Care Med Exp 2019; 7:59. [PMID: 31676929 PMCID: PMC6825104 DOI: 10.1186/s40635-019-0273-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 11/23/2022] Open
Abstract
Background Dynamic single-slice CT (dCT) is increasingly used to examine the intra-tidal, physiological variation in aeration and lung density in experimental lung injury. The ability of dCT to predict whole-lung values is unclear, especially for dual-energy CT (DECT) variables. Additionally, the effect of inspiration-related lung movement on CT variables has not yet been quantified. Methods Eight domestic pigs were studied under general anaesthesia, including four following saline-lavage surfactant depletion (lung injury model). DECT, dCT and whole-lung images were collected at 12 ventilatory settings. Whole-lung single energy scans images were collected during expiratory and inspiratory apnoeas at positive end-expiratory pressures from 0 to 20 cmH2O. Means and distributions of CT variables were calculated for both dCT and whole-lung images. The cranio-caudal displacement of the anatomical slice was measured from whole-lung images. Results Mean CT density and volume fractions of soft tissue, gas, iodinated blood, atelectasis, poor aeration, normal aeration and overdistension correlated between dCT and the whole lung (r2 0.75–0.94) with agreement between CT density distributions (r 0.89–0.97). Inspiration increased the matching between dCT and whole-lung values and was associated with a movement of 32% (SD 15%) of the imaged slice out of the scanner field-of-view. This effect introduced an artefactual increase in dCT mean CT density during inspiration, opposite to that caused by the underlying physiology. Conclusions Overall, dCT closely approximates whole-lung aeration and density. This approximation is improved by inspiration where a decrease in CT density and atelectasis can be interpreted as physiological rather than artefactual.
Collapse
Affiliation(s)
- John N Cronin
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - João Batista Borges
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | | | - Andrew D Farmery
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK
| | - Göran Hedenstierna
- Hedenstierna Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Minh C Tran
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK
| | - Luigi Camporota
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK.,Department of Adult Critical Care, St. Thomas' Hospital, Guy's and St. Thomas' NHS Foundation Trust, King's Health Partners, London, UK
| | - Federico Formenti
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK. .,Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Cruces P, Erranz B, Lillo F, Sarabia-Vallejos MA, Iturrieta P, Morales F, Blaha K, Medina T, Diaz F, Hurtado DE. Mapping regional strain in anesthetised healthy subjects during spontaneous ventilation. BMJ Open Respir Res 2019; 6:e000423. [PMID: 31749967 PMCID: PMC6830454 DOI: 10.1136/bmjresp-2019-000423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/17/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
Introduction Breathing produces a phenomenon of cyclic deformation throughout life. Biomechanically, deformation of the lung is measured as strain. Regional strain recently started to be recognised as a tool in the study of lung pathophysiology, but regional lung strain has not been studied in healthy subjects breathing spontaneously without voluntary or pharmacological control of ventilation. Our aim is to generate three-dimensional (3D) regional strain and heterogeneity maps of healthy rat lungs and describe their changes over time. Methods Micro-CT and image-based biomechanical analysis by finite element approach were carried out in six anaesthetised rats under spontaneous breathing in two different states, at the beginning of the experiment and after 3 hours of observation. 3D regional strain maps were constructed and divided into 10 isovolumetric region-of-interest (ROI) in three directions (apex to base, dorsal to ventral and costal to mediastinal), allowing to regionally analyse the volumetric strain, the strain progression and the strain heterogeneity. To describe in depth these parameters, and systematise their report, we defined regional strain heterogeneity index [1+strain SD ROI(x)]/[1+strain mean ROI(x)] and regional strain progression index [ROI(x)-mean of final strain/ROI(x)-mean of initial strain]. Results We were able to generate 3D regional strain maps of the lung in subjects without respiratory support, showing significant differences among the three analysed axes. We observed a significantly lower regional volumetric strain in the apex sector compared with the base, with no significant anatomical systematic differences in the other directions. This heterogeneity could not be identified with physiological or standard CT methods. There was no progression of the analysed regional volumetric strain when the two time-points were compared. Discussion It is possible to map the regional volumetric strain in the lung for healthy subjects during spontaneous breathing. Regional strain heterogeneity and changes over time can be measured using a CT image-based numerical analysis applying a finite element approach. These results support that healthy lung might have significant regional strain and its spatial distribution is highly heterogeneous. This protocol for CT image acquisition and analysis could be a useful tool for helping to understand the mechanobiology of the lung in many diseases.
Collapse
Affiliation(s)
- Pablo Cruces
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Pediatric Intensive Care Unit, Hospital El Carmen de Maipú, Santiago, Chile
| | - Benjamin Erranz
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Felipe Lillo
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | | | - Pablo Iturrieta
- Pediatric Intensive Care Unit, Hospital Padre Hurtado, Santiago, Chile
| | - Felipe Morales
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Katherine Blaha
- Pediatric Intensive Care Unit, Hospital Clínico La Florida Dra. Eloisa Diaz Insunza, Santiago, Chile
| | - Tania Medina
- Pediatric Intensive Care Unit, Hospital El Carmen de Maipú, Santiago, Chile
| | - Franco Diaz
- Pediatric Intensive Care Unit, Hospital El Carmen de Maipú, Santiago, Chile.,Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile
| | - Daniel E Hurtado
- Pediatric Intensive Care Unit, Hospital Padre Hurtado, Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
22
|
Eskandari M, Nordgren TM, O'Connell GD. Mechanics of pulmonary airways: Linking structure to function through constitutive modeling, biochemistry, and histology. Acta Biomater 2019; 97:513-523. [PMID: 31330329 DOI: 10.1016/j.actbio.2019.07.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022]
Abstract
Breathing involves fluid-solid interactions in the lung; however, the lack of experimental data inhibits combining the mechanics of air flow to airway deformation, challenging the understanding of how biomaterial constituents contribute to tissue response. As such, lung mechanics research is increasingly focused on exploring the relationship between structure and function. To address these needs, we characterize mechanical properties of porcine airways using uniaxial tensile experiments, accounting for bronchial orientation- and location- dependency. Structurally-reinforced constitutive models are developed to incorporate the role of collagen and elastin fibers embedded within the extrafibrillar matrix. The strain-energy function combines a matrix description (evaluating six models: compressible NeoHookean, unconstrained Ogden, uncoupled Mooney-Rivlin, incompressible Ogden, incompressible Demiray and incompressible NeoHookean), superimposed with non-linear fibers (evaluating two models: exponential and polynomial). The best constitutive formulation representative of all bronchial regions is determined based on curve-fit results to experimental data, accounting for uniqueness and sensitivity. Glycosaminoglycan and collagen composition, alongside tissue architecture, indicate fiber form to be primarily responsible for observed airway anisotropy and heterogeneous mechanical behavior. To the authors' best knowledge, this study is the first to formulate a structurally-motivated constitutive model, augmented with biochemical analysis and microstructural observations, to investigate the mechanical function of proximal and distal bronchi. Our systematic pulmonary tissue characterization provides a necessary foundation for understanding pulmonary mechanics; furthermore, these results enable clinical translation through simulations of airway obstruction in disease, fluid-structure interaction insights during breathing, and potentially, predictive capabilities for medical interventions. STATEMENT OF SIGNIFICANCE: The advancement of pulmonary research relies on investigating the biomechanical response of the bronchial tree. Experiments demonstrating the non-linear, heterogeneous, and anisotropic material behavior of porcine airways are used to develop a structural constitutive model representative of proximal and distal bronchial behavior. Calibrated material parameters exhibit regional variation in biomaterial properties, initially hypothesized to originate from tissue constituents. Further exploration through biochemical and histological analysis indicates mechanical function is primarily governed by microstructural form. The results of this study can be directly used in finite element and fluid-structure interaction models to enable physiologically relevant and more accurate computational simulations aimed to help diagnose and monitor pulmonary disease.
Collapse
Affiliation(s)
- Mona Eskandari
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA 92521, USA; Department of Bioengineering, University of California at Riverside, Riverside, CA 92521, USA; BREATHE Center School of Medicine, University of California at Riverside, Riverside, CA 92521, USA; Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Tara M Nordgren
- Division of Biomedical Sciences, University of California at Riverside, Riverside, CA 92521, USA; BREATHE Center School of Medicine, University of California at Riverside, Riverside, CA 92521, USA
| | - Grace D O'Connell
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
23
|
Jahani N, Cohen E, Hsieh MK, Weinstein SP, Pantalone L, Hylton N, Newitt D, Davatzikos C, Kontos D. Prediction of Treatment Response to Neoadjuvant Chemotherapy for Breast Cancer via Early Changes in Tumor Heterogeneity Captured by DCE-MRI Registration. Sci Rep 2019; 9:12114. [PMID: 31431633 PMCID: PMC6702160 DOI: 10.1038/s41598-019-48465-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
We analyzed DCE-MR images from 132 women with locally advanced breast cancer from the I-SPY1 trial to evaluate changes of intra-tumor heterogeneity for augmenting early prediction of pathologic complete response (pCR) and recurrence-free survival (RFS) after neoadjuvant chemotherapy (NAC). Utilizing image registration, voxel-wise changes including tumor deformations and changes in DCE-MRI kinetic features were computed to characterize heterogeneous changes within the tumor. Using five-fold cross-validation, logistic regression and Cox regression were performed to model pCR and RFS, respectively. The extracted imaging features were evaluated in augmenting established predictors, including functional tumor volume (FTV) and histopathologic and demographic factors, using the area under the curve (AUC) and the C-statistic as performance measures. The extracted voxel-wise features were also compared to analogous conventional aggregated features to evaluate the potential advantage of voxel-wise analysis. Voxel-wise features improved prediction of pCR (AUC = 0.78 (±0.03) vs 0.71 (±0.04), p < 0.05 and RFS (C-statistic = 0.76 ( ± 0.05), vs 0.63 ( ± 0.01)), p < 0.05, while models based on analogous aggregate imaging features did not show appreciable performance changes (p > 0.05). Furthermore, all selected voxel-wise features demonstrated significant association with outcome (p < 0.05). Thus, precise measures of voxel-wise changes in tumor heterogeneity extracted from registered DCE-MRI scans can improve early prediction of neoadjuvant treatment outcomes in locally advanced breast cancer.
Collapse
Affiliation(s)
- Nariman Jahani
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eric Cohen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Meng-Kang Hsieh
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Susan P Weinstein
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren Pantalone
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nola Hylton
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94115, USA
| | - David Newitt
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Despina Kontos
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Sarabia-Vallejos MA, Zuñiga M, Hurtado DE. The role of three-dimensionality and alveolar pressure in the distribution and amplification of alveolar stresses. Sci Rep 2019; 9:8783. [PMID: 31217511 PMCID: PMC6584652 DOI: 10.1038/s41598-019-45343-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/04/2019] [Indexed: 12/30/2022] Open
Abstract
Alveolar stresses are fundamental to enable the respiration process in mammalians and have recently gained increasing attention due to their mechanobiological role in the pathogenesis and development of respiratory diseases. Despite the fundamental physiological role of stresses in the alveolar wall, the determination of alveolar stresses remains challenging, and our current knowledge is largely drawn from 2D studies that idealize the alveolar septal wall as a spring or a planar continuum. Here we study the 3D stress distribution in alveolar walls of normal lungs by combining ex-vivo micro-computed tomography and 3D finite-element analysis. Our results show that alveolar walls are subject to a fully 3D state of stresses rather than to a pure axial stress state. To understand the contributions of the different components and deformation modes, we decompose the stress tensor field into hydrostatic and deviatoric components, which are associated with isotropic and distortional stresses, respectively. Stress concentrations arise in localized regions of the alveolar microstructure, with magnitudes that can be up to 27 times the applied alveolar pressure. Interestingly, we show that the stress amplification factor strongly depends on the level of alveolar pressure, i.e, stresses do not scale proportional to the applied alveolar pressure. In addition, we show that 2D techniques to assess alveolar stresses consistently overestimate the stress magnitude in alveolar walls, particularly for lungs under high transpulmonary pressure. These findings take particular relevance in the study of stress-induced remodeling of the emphysematous lung and in ventilator-induced lung injury, where the relation between transpulmonary pressure and alveolar wall stress is key to understand mechanotransduction processes in pneumocytes.
Collapse
Affiliation(s)
- Mauricio A Sarabia-Vallejos
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Matias Zuñiga
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Daniel E Hurtado
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile.
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile.
| |
Collapse
|