1
|
Reza Sayah M, Ebrahimi S, Mirafzal I, Shamloo A. Investigation of the size and shape of nano-microcarriers for targeted drug delivery to atherosclerotic plaque in ischemic stroke prevention. Int J Pharm 2024; 662:124469. [PMID: 39004292 DOI: 10.1016/j.ijpharm.2024.124469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Recognizing the significance of drug carriers in the treatment of atherosclerotic plaque is crucial in light of the worldwide repercussions of ischemic stroke. Conservative methodologies, specifically targeted drug delivery, present encouraging substitutes that mitigate the hazards linked to invasive procedures. With the intention of illuminating their considerable significance and prospective benefits, this study examines the impact of the geometry and dimensions of drug-loaded nano-microcarriers on atherosclerotic plaque. The research utilizes a finite element approach to simulate the motion and fluid dynamics of nano-microcarriers loaded with drugs within the carotid arteries. Carriers are available in a variety of shapes and sizes to accommodate patient-specific geometries, pulsatile fluid flow, and non-Newtonian blood properties. Optimization of drug delivery is achieved through the examination of carrier interaction with the inner wall. The results demonstrated that the interaction data between particles and the inner wall of atherosclerotic plaques exhibits micro- and nanoscale patterns that are distinct. Symmetric plaques demonstrate that nanoparticles with a 0.4 shape factor and diameters below 200 nm show the highest interaction rate. Conversely, larger particles (200 and 500 nm) with shape factors of 1 demonstrate comparatively elevated interaction rates. The optimal shape factor for drug-loaded microparticles has been determined to be one, and the number of interactions increases as the diameter of the nanoparticles increases, with a significant increase observed at a shape factor of one. Asymmetric plaques exhibit the maximum interaction rates among particles that have a shape factor of 0.4 and have diameters smaller than 500 µm. The findings establish a foundation for novel therapeutic strategies, establishing nano-microparticles as auspicious contenders for accurate and efficacious drug delivery systems that inhibit plaque proliferation.
Collapse
Affiliation(s)
- Mohammad Reza Sayah
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Iman Mirafzal
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
2
|
Abbasi Z, Bozorgmehry Boozarjomehry R. Various reduced-order surrogate models for fluid flow and mass transfer in human bronchial tree. Biomech Model Mechanobiol 2021; 20:2203-2226. [PMID: 34424420 DOI: 10.1007/s10237-021-01502-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
The bronchial tree plays a main role in the human respiratory system because the air distribution throughout the lungs and gas exchange with blood occur in the airways whose dimensions vary from several centimeters to micrometers. Organization of about 60,000 conducting airways and 33 million respiratory airways in a limited space results in a complex structure. Due to this inherent complexity and a high number of airways, using target-oriented dimensional reduction is inevitable. In addition, there is no general reduced-order model for various types of problems. This necessitates coming up with an appropriate model from a variety of different reduced-order models to solve the desired problem. Lumped formulation, trumpet, or typical path model of whole or parts of bronchial tree are frequently used reduced-order models. On the other hand, using any of these models results in underestimation of flow heterogeneity leading to inaccurate prediction of the systems whose mechanisms depend on the fluid heterogeneity. In this study, a simple robust model combining mechanistic and non-mechanistic modeling approaches of the bronchial tree is proposed which overcomes the limitations of the previous reduced-order models and gives the same results of a detailed mechanistic model for the first time. This model starts from an accurate multi-branching model of conducting and respiratory airways (i.e., the base model) and suggests a proxy model of conducting airway and reduced-order model of respiratory airways based on the base model to significantly reduce computational cost while retaining the accuracy. The combination of these models suggests various reduced-order surrogate models of the human bronchial tree for different problems. The applications and limitations of each reduced-order model are also discussed. The accuracy of the proposed model in the prediction of fluid heterogeneity has been examined by the simulation of multi-breath inert gas washout because the alveolar slope is the reflection of fluid heterogeneity where the computational time decreases from 121 h (using the base model) to 4.8 s (using the reduced-order model). A parallel strategy for solving the equations is also proposed which decreases run time by 0.18 s making the model suitable for real-time applications. Furthermore, the ability of the model has been evaluated in the modeling of asthmatic lung as an instance of abnormal lungs, and in the modeling of O2-CO2 exchange as an instance of nonlinear reacting systems. The results indicate that the proposed model outperforms previous models based on accuracy, robustness, and run time.
Collapse
Affiliation(s)
- Zeinab Abbasi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P. O. Box 11365-9465, Tehran, Iran
| | | |
Collapse
|
3
|
Saadat M, Manshadi MKD, Mohammadi M, Zare MJ, Zarei M, Kamali R, Sanati-Nezhad A. Magnetic particle targeting for diagnosis and therapy of lung cancers. J Control Release 2020; 328:776-791. [PMID: 32920079 PMCID: PMC7484624 DOI: 10.1016/j.jconrel.2020.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Over the past decade, the growing interest in targeted lung cancer therapy has guided researchers toward the cutting edge of controlled drug delivery, particularly magnetic particle targeting. Targeting of tissues by magnetic particles has tackled several limitations of traditional drug delivery methods for both cancer detection (e.g., using magnetic resonance imaging) and therapy. Delivery of magnetic particles offers the key advantage of high efficiency in the local deposition of drugs in the target tissue with the least harmful effect on other healthy tissues. This review first overviews clinical aspects of lung morphology and pathogenesis as well as clinical features of lung cancer. It is followed by reviewing the advances in using magnetic particles for diagnosis and therapy of lung cancers: (i) a combination of magnetic particle targeting with MRI imaging for diagnosis and screening of lung cancers, (ii) magnetic drug targeting (MDT) through either intravenous injection and pulmonary delivery for lung cancer therapy, and (iii) computational simulations that models new and effective approaches for magnetic particle drug delivery to the lung, all supporting improved lung cancer treatment. The review further discusses future opportunities to improve the clinical performance of MDT for diagnosis and treatment of lung cancer and highlights clinical therapy application of the MDT as a new horizon to cure with minimal side effects a wide variety of lung diseases and possibly other acute respiratory syndromes (COVID-19, MERS, and SARS).
Collapse
Affiliation(s)
- Mahsa Saadat
- Department of Chemical Engineering, College of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad K D Manshadi
- Department of Chemical Engineering, College of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran; Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Mehdi Mohammadi
- Department of Chemical Engineering, College of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran; Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Center for Bioengineering Research and Education, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Department of Biological Science, University of Calgary, Alberta T2N 1N4, Canada
| | | | - Mohammad Zarei
- Mitochondrial and Epigenomic Medicine, and Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Reza Kamali
- Department of Mechanical Engineering, Shiraz University, 71345 Shiraz, Iran
| | - Amir Sanati-Nezhad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Center for Bioengineering Research and Education, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
4
|
Fernández-Tena A, Barrio-Perotti R, Blanco-Marigorta E, Pandal-Blanco A. In silico prototype of a human lung with a single airway to predict particle deposition. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3339. [PMID: 32237044 DOI: 10.1002/cnm.3339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/13/2020] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Experimental analyses of the flow of drug particles inside the human lung usually require that the patient be exposed to radiation and also of expensive equipment that often lack of enough accuracy. Numerical calculations based on CFD (computational fluid dynamics) have been proven to be a valuable tool to analyze flows in diverse applications. METHODS The complexity of the human lung disallows running calculations on complete lung models due to the large number of cells that would be required. In this work, using a proprietary methodology, particle deposition in the lung is simulated by reducing its multiple branches to a single path. RESULTS The tested flow rates were 18, 30, and 75 L min-1 , which are equivalent to different respiratory rates varying from light activity to heavy exercise. Most of the particles are accumulated in the upper airways, mainly at the mouth and also at the confluence of the larynx and the trachea (epiglottis), while the remaining particles travel across the lung. The reported procedure allowed simulating the operation of the entire lung by means of a single individual path. CONCLUSIONS The obtained calculations are in good agreement with the experimental results found in the technical literature, thus showing that the model can provide a realistic description of the lung operation, while avoiding high computational costs. Moreover, the calculations suggest that particle sizes above 15 μm and inspiratory flows higher than 30 L min-1 must be avoided in order to allow drug particles to reach the lower airways.
Collapse
Affiliation(s)
- Ana Fernández-Tena
- Facultad de Enfermería, Universidad de Oviedo. Instituto Nacional de Silicosis and GRUBIPU-ISPA, Asturias, Spain
| | - Raúl Barrio-Perotti
- Departamento de Energía, Universidad de Oviedo and GRUBIPU-ISPA, Asturias, Spain
| | | | - Adrián Pandal-Blanco
- Departamento de Energía, Universidad de Oviedo and GRUBIPU-ISPA, Asturias, Spain
| |
Collapse
|
5
|
Magalhães J, Pinheiro M, Drasler B, Septiadi D, Petri-Fink A, Santos SG, Rothen-Rutishauser B, Reis S. Lipid nanoparticles biocompatibility and cellular uptake in a 3D human lung model. Nanomedicine (Lond) 2020; 15:259-271. [DOI: 10.2217/nnm-2019-0256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: Design nanostructured lipid carriers (NLC) to facilitate drug delivery to tuberculosis-infected areas, exploiting macrophage mannose receptors and assess their uptake in a 3D human lung model. Materials & methods: NLCs and mannosylated-NLCs were synthetized and characterized. Their uptake and biocompatibility were tested in a 3D human lung model. Results: The formulations have appropriate size (170–202 nm) and morphology for lung deposition. Cell membrane integrity was maintained and no significant pro-inflammatory cytokine (IL-1β, IL-8 and TNF-α) secretion or morphological changes were observed 24 h post nanoparticles exposure. NLCs and mannosylated NLCs were distributed in the apical side of the lung tissue, both in macrophages and in epithelial cells. Conclusion: NLCs are biocompatible carriers and can be used for pulmonary drug delivery.
Collapse
Affiliation(s)
- Joana Magalhães
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Portugal
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Susana G Santos
- Instituto de Investigação e Inovação em Saúde, INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| |
Collapse
|
6
|
Integrated EIT system for functional lung ventilation imaging. Biomed Eng Online 2019; 18:83. [PMID: 31345220 PMCID: PMC6659234 DOI: 10.1186/s12938-019-0701-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background Electrical impedance tomography (EIT) has been used for functional lung imaging of regional air distributions during mechanical ventilation in intensive care units (ICU). From numerous clinical and animal studies focusing on specific lung functions, a consensus about how to use the EIT technique has been formed lately. We present an integrated EIT system implementing the functions proposed in the consensus. The integrated EIT system could improve the usefulness when monitoring of mechanical ventilation for lung protection so that it could facilitate the clinical acceptance of this new technique. Methods Using a custom-designed 16-channel EIT system with 50 frames/s temporal resolution, the integrated EIT system software was developed to implement five functional images and six EIT measures that can be observed in real-time screen view and analysis screen view mode, respectively. We evaluated the performance of the integrated EIT system with ten mechanically ventilated porcine subjects in normal and disease models. Results Quantitative and simultaneous imaging of tidal volume (TV), end-expiratory lung volume change (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\triangle$$\end{document}▵EELV), compliance, ventilation delay, and overdistension/collapse images were performed. Clinically useful parameters were successfully extracted including anterior/posterior ventilation ratio (A/P ratio), center of ventilation (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{CoV}}_{{x}}$$\end{document}CoVx, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{CoV}}_{{y}}$$\end{document}CoVy), global inhomogeneity (GI), coefficient of variation (CV), ventilation delay and percentile of overdistension/collapse. The integrated EIT system was demonstrated to suggest an optimal positive end-expiratory pressure (PEEP) for lung protective ventilation in normal and in the disease model of an acute injury. Optimal PEEP for normal and disease model was 2.3 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$7.9 \, {\mathrm{cmH}}_{2}\mathrm{O}$$\end{document}7.9cmH2O, respectively. Conclusions The proposed integrated approach for functional lung ventilation imaging could facilitate clinical acceptance of the bedside EIT imaging method in ICU. Future clinical studies of applying the proposed methods to human subjects are needed to show the clinical significance of the method for lung protective mechanical ventilation and mechanical ventilator weaning in ICU.
Collapse
|