1
|
Böl M, Leichsenring K, Kohn S, Ehret AE. The anisotropic and region-dependent mechanical response of wrap-around tendons under tensile, compressive and combined multiaxial loads. Acta Biomater 2024; 183:157-172. [PMID: 38838908 DOI: 10.1016/j.actbio.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The present work reports on the multiaxial region and orientation-dependent mechanical properties of two porcine wrap-around tendons under tensile, compressive and combined loads based on an extensive study with n=175 samples. The results provide a detailed dataset of the anisotropic tensile and compressive longitudinal properties and document a pronounced tension-compression asymmetry. Motivated by the physiological loading conditions of these tendons, which include transversal compression at bony abutments in addition to longitudinal tension, we systematically investigated the change in axial tension when the tendon is compressed transversally along one or both perpendicular directions. The results reveal that the transversal compression can increase axial tension (proximal-distal direction) in both cases to orders of 30%, yet by a larger amount in the first case (transversal compression in anterior-posterior direction), which seems to be more relevant for wrap-around tendons in-vivo. These quantitative measurements are in line with earlier findings on auxetic properties of tendon tissue, but show for the first time the influence of this property on the stress response of the tendon, and may thus reveal an important functional principle within these essential elements of force transmission in the body. STATEMENT OF SIGNIFICANCE: The work reports for the first time on multiaxial region and orientation-dependent mechanical properties of wrap-around tendons under various loads. The results indicate that differences in the mechanical properties exist between zones that are predominantly in a uniaxial tensile state and those that experience complex load states. The observed counterintuitive increase of the axial tension upon lateral compression points at auxetic properties of the tendon tissue which may be pivotal for the function of the tendon as an element of the musculoskeletal system. It suggests that the tendon's performance in transmitting forces is not diminished but enhanced when the action line is deflected by a bony pulley around which the tendon wraps, representing an important functional principle of tendon tissue.
Collapse
Affiliation(s)
- Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany.
| | - Kay Leichsenring
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Stephan Kohn
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Alexander E Ehret
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland; Institute for Mechanical Systems, ETH Zurich, Zürich, CH-8092, Switzerland
| |
Collapse
|
2
|
Blank JL, Roth JD. An Apparatus for Measuring Combined Shear-Tensile Loading in Fibrous Tissues Ex Vivo. J Biomech Eng 2024; 146:074501. [PMID: 38183226 DOI: 10.1115/1.4064437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Soft tissues such as tendon and ligament undergo a combination of shear and tensile loading in vivo due to their boundary conditions at muscle and/or bone. Current experimental protocols are limited to pure tensile loading, biaxial loading, or simple shear, and thus may not fully characterize the mechanics of these tissues under physiological loading scenarios. Our objective was to create an experimental protocol to determine the shear modulus of fibrous tissues at different tensile loads. We assembled a four-actuator experimental system that facilitated shear deformation to be superimposed on a tissue subjected to an axial preload. We measured shear modulus in axially loaded electrospun nanofiber scaffolds with either randomly oriented or aligned fibers. We found that shear modulus in the nanofiber phantoms was shear-strain stiffening and dependent on both the axial load (p < 0.001) and fiber alignment (p < 0.001) of the scaffold. The proposed system can enhance our understanding of microstructure and functional mechanics in soft tissues, while also providing a platform to investigate the behavior of electrospun scaffolds for tissue regeneration. Our experimental protocol for determining loaded shear modulus would be further useful as a method to gauge tissue mechanics under loading conditions that are more representative of physiological loads applied to tendon and ligament.
Collapse
Affiliation(s)
- Jonathon L Blank
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Avenue Room 3046, Madison, WI 53706
| | - Joshua D Roth
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53705; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue Room 5037, Madison, WI 53705
| |
Collapse
|
3
|
Kalemba M, Ekiert-Radecka M, Wajdzik M, Mlyniec A. An in-House System for the Precise Measurement of Electrical Potentials and Mechanical Properties of Soft Tissues: Design and Validation Using Adult Mammalian Tendon Fascicle Bundles. MATERIALS 2022; 15:ma15134444. [PMID: 35806569 PMCID: PMC9267749 DOI: 10.3390/ma15134444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023]
Abstract
Tissues, such as skin, bones, and tendons, exhibit a piezoelectric effect, which may be an important phenomenon in terms of tissue renewal and regeneration as well as the possibility of modifying their mechanical behavior. In this article, we present the design and development of an in-house system for the precise measurement of electrical potentials and mechanical properties of tendons. The system was validated using tendon fascicle bundles derived from positional as well as energy-storing tendons from various adult mammals (porcine, bovine, and deer samples). The presented system is able to capture changes in elastic and viscoelastic properties of tissue as well as its time–voltage response and, thus, may be used in a broad spectrum of future studies to uncover factors influencing piezoelectric phenomena in tendons. This, in turn, will help to optimize current methods used in physiotherapy and postoperative treatment for effective tendon recovery.
Collapse
Affiliation(s)
- Marek Kalemba
- Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland; (M.K.); (M.E.-R.)
| | - Martyna Ekiert-Radecka
- Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland; (M.K.); (M.E.-R.)
| | - Marek Wajdzik
- Faculty of Forestry, University of Agriculture, Al. 29-listopada 46, 31-425 Krakow, Poland;
| | - Andrzej Mlyniec
- Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland; (M.K.); (M.E.-R.)
- Correspondence:
| |
Collapse
|
4
|
Eisner LE, Rosario R, Andarawis-Puri N, Arruda EM. The Role of the Non-Collagenous Extracellular Matrix in Tendon and Ligament Mechanical Behavior: A Review. J Biomech Eng 2022; 144:1128818. [PMID: 34802057 PMCID: PMC8719050 DOI: 10.1115/1.4053086] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 12/26/2022]
Abstract
Tendon is a connective tissue that transmits loads from muscle to bone, while ligament is a similar tissue that stabilizes joint articulation by connecting bone to bone. The 70-90% of tendon and ligament's extracellular matrix (ECM) is composed of a hierarchical collagen structure that provides resistance to deformation primarily in the fiber direction, and the remaining fraction consists of a variety of non-collagenous proteins, proteoglycans, and glycosaminoglycans (GAGs) whose mechanical roles are not well characterized. ECM constituents such as elastin, the proteoglycans decorin, biglycan, lumican, fibromodulin, lubricin, and aggrecan and their associated GAGs, and cartilage oligomeric matrix protein (COMP) have been suggested to contribute to tendon and ligament's characteristic quasi-static and viscoelastic mechanical behavior in tension, shear, and compression. The purpose of this review is to summarize existing literature regarding the contribution of the non-collagenous ECM to tendon and ligament mechanics, and to highlight key gaps in knowledge that future studies may address. Using insights from theoretical mechanics and biology, we discuss the role of the non-collagenous ECM in quasi-static and viscoelastic tensile, compressive, and shear behavior in the fiber direction and orthogonal to the fiber direction. We also address the efficacy of tools that are commonly used to assess these relationships, including enzymatic degradation, mouse knockout models, and computational models. Further work in this field will foster a better understanding of tendon and ligament damage and healing as well as inform strategies for tissue repair and regeneration.
Collapse
Affiliation(s)
- Lainie E Eisner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Ryan Rosario
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853
| | - Ellen M Arruda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109; Professor Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109; Professor Program in Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
5
|
Sahani R, Wallace CH, Jones BK, Blemker SS. Diaphragm muscle fibrosis involves changes in collagen organization with mechanical implications in Duchenne muscular dystrophy. J Appl Physiol (1985) 2022; 132:653-672. [PMID: 35050792 PMCID: PMC9076426 DOI: 10.1152/japplphysiol.00248.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), diaphragm muscle dysfunction results in respiratory insufficiency, a leading cause of death in patients. Increased muscle stiffness occurs with buildup of fibrotic tissue, characterized by excessive accumulation of extracellular matrix (ECM) components such as collagen, and prevents the diaphragm from achieving the excursion lengths required for respiration. However, changes in mechanical properties are not explained by collagen amount alone and we must consider the complex structure and mechanics of fibrotic tissue. The goals of our study were to 1) determine if and how collagen organization changes with the progression of DMD in diaphragm muscle tissue and 2) predict how collagen organization influences the mechanical properties of the ECM. We first visualized collagen structure with scanning electron microscopy (SEM) images and then developed an analysis framework to quantify collagen organization and generate image-based finite-element models. Image analysis revealed increased collagen fiber straightness and alignment in mdx over wild type (WT) at 3 mo (straightness: mdx = 0.976 ± 0.0108, WT = 0.887 ± 0.0309, alignment: mdx = 0.876 ± 0.0333, WT = 0.759 ± 0.0416) and 6 mo (straightness: mdx = 0.942 ± 0.0182, WT = 0.881 ± 0.0163, alignment: mdx = 0.840 ± 0.0315, WT = 0.759 ± 0.0368). Collagen fibers retained a transverse orientation relative to muscle fibers (70°-90°) in all groups. Mechanical models predicted an increase in the transverse relative to longitudinal (muscle fiber direction) stiffness, with stiffness ratio (transverse/longitudinal) increased in mdx over WT at 3 mo (mdx = 5.45 ± 2.04, WT = 1.97 ± 0.670) and 6 mo (mdx = 4.05 ± 0.985, WT = 1.96 ± 0.506). This study revealed changes in diaphragm ECM structure and mechanics during disease progression in the mdx muscular dystrophy mouse phenotype, highlighting the need to consider the role of collagen organization on diaphragm muscle function.NEW & NOTEWORTHY Scanning electron microscopy images of decellularized diaphragm muscle from WT and mdx, Duchenne muscular dystrophy model, mice revealed that collagen fibers in the epimysium are oriented transverse to muscle fibers, with age- and disease-dependent changes in collagen arrangement. Finite-element models generated from these images predicted that changes in collagen arrangement during disease progression influence the mechanical properties of the extracellular matrix. Thus, changes in collagen fiber-level structure are implicated on tissue-level properties during fibrosis.
Collapse
Affiliation(s)
- Ridhi Sahani
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - C. Hunter Wallace
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Brian K. Jones
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Silvia S. Blemker
- 1Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia,2Department of Orthopedic Surgery, University of Virginia, Charlottesville, Virginia,3Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
6
|
Bloom ET, Lee AH, Elliott DM. Tendon Multiscale Structure, Mechanics, and Damage Are Affected by Osmolarity of Bath Solution. Ann Biomed Eng 2021; 49:1058-1068. [PMID: 33128181 PMCID: PMC7954897 DOI: 10.1007/s10439-020-02649-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 10/03/2020] [Indexed: 11/29/2022]
Abstract
One of the most common bath solutions used in musculoskeletal mechanical testing is phosphate buffered saline (PBS). In tendon, swelling induced by physiological PBS results in decreased tendon modulus and induces microstructural changes. It is critical to evaluate the multiscale mechanical behavior of tendon under swelling to interpret prior work and provide information to design future studies. We compared the effects of physiological PBS and 8% polyethylene glycol and saline bathing solutions on tendon multiscale tendon mechanics and damage as well as microstructure with TEM in order to understand the effect of swelling on tendon. At the tissue level, tendons in PBS had a lower modulus than SPEG samples. PBS samples also showed an increased amount of non-recoverable sliding, which is an analog for microscale damage. SPEG had a higher microscale to tissue-scale strain ratio, showing the fibrils experienced less strain attenuation. From the TEM data, we showed the fibril spacing of SPEG samples was more similar to fresh control than PBS. We concluded that swelling alters multiscale mechanics and damage in addition to tendon microstructure. Future mechanical testing should consider using SPEG as a bath solution with an osmotic pressure which preserves fresh tissue water content.
Collapse
Affiliation(s)
- Ellen T Bloom
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, 150 Academy Street, Newark, DE, 19716, USA
| | - Andrea H Lee
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, 150 Academy Street, Newark, DE, 19716, USA
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, 150 Academy Street, Newark, DE, 19716, USA.
| |
Collapse
|
7
|
Ebrahimi A, Loegering IF, Martin JA, Pomeroy RL, Roth JD, Thelen DG. Achilles tendon loading is lower in older adults than young adults across a broad range of walking speeds. Exp Gerontol 2020; 137:110966. [PMID: 32360339 PMCID: PMC7328904 DOI: 10.1016/j.exger.2020.110966] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to investigate age-related differences in Achilles tendon loading during gait. Fourteen young (7F/7M, 26 ± 5 years) and older (7F/7M, 67 ± 5 years) adults without current neurological or orthopaedic impairment participated. Shear wave tensiometry was used to measure tendon stress by tracking Achilles tendon wave speed. The wave speed-stress relationship was calibrated using simultaneously collected tensiometer and force plate measures during a standing sway task. Tendon stress was computed from the force plate measures using subject-specific ultrasound measures of tendon moment arm and cross-sectional area. All subjects exhibited a highly linear relationship between wave speed squared and tendon stress (mean R2 > 0.9), with no significant age-group differences in tensiometer calibration parameters. Tendon wave speed was monitored during treadmill walking at four speeds (0.75, 1.00, 1.25, and 1.50 m/s) and used to compute the stress experienced by the tendon. Relative to young adults, older adults exhibited 22% lower peak tendon wave speeds. Peak tendon stress during push-off in older adults (24.8 MPa) was 32% less than that in the young adults (36.7 MPa) (p = 0.01). There was a moderate increase (+11%) in peak tendon stress across both groups when increasing speed from 0.75 to 1.50 m/s (main effect of speed, p = 0.01). Peak tendon loading during late swing did not differ between age groups (mean 3.8 MPa in young and 4.2 MPa in older adults). These age-related alterations in tendon tissue loading may affect the mechanobiological stimuli underlying tissue remodeling and thereby alter the propensity for tendon injury and disease.
Collapse
Affiliation(s)
- Anahid Ebrahimi
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Isaac F Loegering
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jack A Martin
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robin L Pomeroy
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua D Roth
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Darryl G Thelen
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Gains CC, Correia JC, Baan GC, Noort W, Screen HRC, Maas H. Force Transmission Between the Gastrocnemius and Soleus Sub-Tendons of the Achilles Tendon in Rat. Front Bioeng Biotechnol 2020; 8:700. [PMID: 32766214 PMCID: PMC7379440 DOI: 10.3389/fbioe.2020.00700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/04/2020] [Indexed: 01/19/2023] Open
Abstract
The Achilles tendon (AT) is comprised of three distinct sub-tendons bound together by the inter-subtendon matrix (ISTM). The interactions between sub-tendons will have important implications for AT function. The aim of this study was to investigate the extent to which the ISTM facilitates relative sliding between sub-tendons, and serves as a pathway for force transmission between the gastrocnemius (GAS) and soleus (SOL) sub-tendons of the rat AT. In this study, ATs were harvested from Wistar rats, and the mechanical behavior and composition of the ISTM were explored. To determine force transmission between sub-tendons, the proximal and distal ends of the GAS and SOL sub-tendons were secured, and the forces at each of these locations were measured during proximal loading of the GAS. To determine the ISTM mechanical behavior, only the proximal GAS and distal SOL were secured, and the ISTM was loaded in shear. Finally, for compositional analysis, histological examination assessed the distribution of matrix proteins throughout sub-tendons and the ISTM. The results revealed distinct differences between the forces at the proximal and distal ends of both sub-tendons when proximal loading was applied to the GAS, indicating force transmission between GAS and SOL sub-tendons. Inter-subtendon matrix tests demonstrated an extended initial low stiffness toe region to enable some sub-tendon sliding, coupled with high stiffness linear region such that force transmission between sub-tendons is ensured. Histological data demonstrate an enrichment of collagen III, elastin, lubricin and hyaluronic acid in the ISTM. We conclude that ISTM composition and mechanical behavior are specialized to allow some independent sub-tendon movement, whilst still ensuring capacity for force transmission between the sub-tendons of the AT.
Collapse
Affiliation(s)
- Connor C Gains
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Janaina C Correia
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Guus C Baan
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Wendy Noort
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Hazel R C Screen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
9
|
Dabrowska S, Ekiert M, Wojcik K, Kalemba M, Mlyniec A. A 3D Scanning System for Inverse Analysis of Moist Biological Samples: Design and Validation Using Tendon Fascicle Bundles. SENSORS 2020; 20:s20143847. [PMID: 32664202 PMCID: PMC7412083 DOI: 10.3390/s20143847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 11/28/2022]
Abstract
In this article, we present the design and validation of a non-contact scanning system for the development of a three-dimensional (3D) model of moist biological samples. Due to the irregular shapes and low stiffness of soft tissue samples, the use of a non-contact, reliable geometry scanning system with good accuracy and repeatability is required. We propose a reliable 3D scanning system consisting of a blue light profile sensor, stationary and rotating frames with stepper motors, gears and a five-phase stepping motor unit, single-axis robot, control system, and replaceable sample grips, which once mounted onto the sample, are used for both scanning and mechanical tests. The proposed system was validated by comparison of the cross-sectional areas calculated based on 3D models, digital caliper, and vision-based methods. Validation was done on regularly-shaped samples, a wooden twig, as well as tendon fascicle bundles. The 3D profiles were used for the development of the 3D computational model of the sample, including surface concavities. Our system allowed for 3D model development of samples with a relative error of less than 1.2% and high repeatability in approximately three minutes. This was crucial for the extraction of the mechanical properties and subsequent inverse analysis, enabling the calibration of complex material models.
Collapse
|