1
|
Rolf-Pissarczyk M, Schussnig R, Fries TP, Fleischmann D, Elefteriades JA, Humphrey JD, Holzapfel GA. Mechanisms of aortic dissection: From pathological changes to experimental and in silico models. PROGRESS IN MATERIALS SCIENCE 2025; 150:101363. [PMID: 39830801 PMCID: PMC11737592 DOI: 10.1016/j.pmatsci.2024.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aortic dissection continues to be responsible for significant morbidity and mortality, although recent advances in medical data assimilation and in experimental and in silico models have improved our understanding of the initiation and progression of the accumulation of blood within the aortic wall. Hence, there remains a pressing necessity for innovative and enhanced models to more accurately characterize the associated pathological changes. Early on, experimental models were employed to uncover mechanisms in aortic dissection, such as hemodynamic changes and alterations in wall microstructure, and to assess the efficacy of medical implants. While experimental models were once the only option available, more recently they are also being used to validate in silico models. Based on an improved understanding of the deteriorated microstructure of the aortic wall, numerous multiscale material models have been proposed in recent decades to study the state of stress in dissected aortas, including the changes associated with damage and failure. Furthermore, when integrated with accessible patient-derived medical data, in silico models prove to be an invaluable tool for identifying correlations between hemodynamics, wall stresses, or thrombus formation in the deteriorated aortic wall. They are also advantageous for model-guided design of medical implants with the aim of evaluating the deployment and migration of implants in patients. Nonetheless, the utility of in silico models depends largely on patient-derived medical data, such as chosen boundary conditions or tissue properties. In this review article, our objective is to provide a thorough summary of medical data elucidating the pathological alterations associated with this disease. Concurrently, we aim to assess experimental models, as well as multiscale material and patient data-informed in silico models, that investigate various aspects of aortic dissection. In conclusion, we present a discourse on future perspectives, encompassing aspects of disease modeling, numerical challenges, and clinical applications, with a particular focus on aortic dissection. The aspiration is to inspire future studies, deepen our comprehension of the disease, and ultimately shape clinical care and treatment decisions.
Collapse
Affiliation(s)
| | - Richard Schussnig
- High-Performance Scientific Computing, University of Augsburg, Germany
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Thomas-Peter Fries
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Dominik Fleischmann
- 3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, USA
| | | | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
2
|
Cheng K, Akhtar S, Lee KY, Lee SW. Characteristics of transition to turbulence in a healthy thoracic aorta using large eddy simulation. Sci Rep 2025; 15:3236. [PMID: 39863653 PMCID: PMC11762701 DOI: 10.1038/s41598-025-86983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results. Main hemodynamic parameters, such as velocity fields, turbulence intensity turbulent kinetic energy (TKE), oscillatory shear index (OSI) and wall shear stress (WSS), were analyzed throughout the circulatory system. Through 3D computational fluid dynamics (CFD) visualization, we explained the transition from laminar to turbulent flow and its development throughout the cardiac cycle. The results demonstrated that turbulence originates in the aortic arch following the peak systole phase and further develops in the aortic arch and descending aorta during the mid-deceleration and end-systole phases, with the maximum turbulence intensity exceeding 25%. WSS reached up to 30 Pa during the peak systole, with an average WSS of 6.5 Pa across the cardiac cycle. Low and oscillatory WSS were observed during diastole which can potentially contribute to the development of vascular diseases including, aortic dissection and atherosclerosis.
Collapse
Affiliation(s)
- Kuiyu Cheng
- School of Mechanical Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Shehnaz Akhtar
- School of Mechanical Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Kwan Yong Lee
- Cardiovascular Center and Cardiology Division, Seoul St. Mary's Hospital, Seoul, Republic of Korea
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Wook Lee
- School of Mechanical Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
3
|
Silva MLFD, Costa MCB, Gonçalves SDF, Huebner R, Navarro TP. Numerical analysis of blood flow in a branched modular stent-graft for aneurysms covering all zones of the aortic arch. Biomech Model Mechanobiol 2024; 23:2177-2191. [PMID: 39304550 DOI: 10.1007/s10237-024-01887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Due to the anatomical complexity of the aortic arch for the development of stent-grafts for total repair, this region remains without a validated and routinely used endovascular option. In this work, a modular stent-graft for aneurysms that covers all aortic arch zones, proposed by us and previously structurally evaluated, was evaluated from the point of view of haemodynamics using fluid-structural numerical simulations. Blood was assumed to be non-Newtonian shear-thinning using the Carreau model, and the arterial wall was assumed to be anisotropic hyperelastic using the Holzapfel model. Nitinol and expanded polytetrafluoroethylene (PTFE-e) were used as materials for the stents and the graft, respectively. Nitinol was modelled as a superelastic material with shape memory by the Auricchio model, and PTFE-e was modelled as an isotropic linear elastic material. To validate the numerical model, a silicone model representative of the aneurysmal aorta was subjected to tests on an experimental bench representative of the circulatory system. The numerical results showed that the stent-graft restored flow behaviour, making it less oscillatory, but increasing the strain rate, turbulence kinetic energy, and viscosity compared to the pathological case. Taking the mean of the entire cycle, the increase in turbulence kinetic energy was 198.82% in the brachiocephalic trunk, 144.63% in the left common carotid artery and 284.03% in the left subclavian artery after stent-graft implantation. Based on wall shear stress parameters, it was possible to identify that the internal branches of the stent-graft and the stent-graft fixation sites in the artery were the most favourable regions for the deposition and accumulation of thrombus. In these regions, the oscillating shear index reached the maximum value of 0.5 and the time-averaged wall shear stress was close to zero, which led the relative residence time to reach values above 15 Pa-1. The stent-graft was able to preserve flow in the supra-aortic branches.
Collapse
Affiliation(s)
- Mário Luis Ferreira da Silva
- Department of Mechanical Engineering, Graduate Program in Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Matheus Carvalho Barbosa Costa
- Department of Mechanical Engineering, Graduate Program in Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Saulo de Freitas Gonçalves
- Department of Mechanical Engineering, Graduate Program in Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Rudolf Huebner
- Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Túlio Pinho Navarro
- Department of Surgery, Faculty of Medicine, Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| |
Collapse
|
4
|
Özcan C, Kocatürk Ö, Işlak C, Öztürk C. Integrated particle image velocimetry and fluid-structure interaction analysis for patient-specific abdominal aortic aneurysm studies. Biomed Eng Online 2023; 22:113. [PMID: 38044423 PMCID: PMC10693692 DOI: 10.1186/s12938-023-01179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Understanding the hemodynamics of an abdominal aortic aneurysm (AAA) is crucial for risk assessment and treatment planning. This study introduces a low-cost, patient-specific in vitro AAA model to investigate hemodynamics using particle image velocimetry (PIV) and flow-simulating circuit, validated through fluid-structure interaction (FSI) simulations. METHODS In this study, 3D printing was employed to manufacture a flexible patient-specific AAA phantom using a lost-core casting technique. A pulsatile flow circuit was constructed using off-the-shelf components. A particle image velocimetry (PIV) setup was built using an affordable laser source and global shutter camera, and finally, the flow field inside the AAA was analyzed using open-source software. Fluid-structure interaction (FSI) simulations were performed to enhance our understanding of the flow field, and the results were validated by PIV analysis. Both steady-state and transient flow conditions were investigated. RESULTS Our experimental setup replicated physiological conditions, analyzing arterial wall deformations and flow characteristics within the aneurysm. Under constant flow, peak wall deformations and flow velocities showed deviations within - 12% to + 27% and - 7% to + 5%, respectively, compared to FSI simulations. Pulsatile flow conditions further demonstrated a strong correlation (Pearson coefficient 0.85) in flow velocities and vectors throughout the cardiac cycle. Transient phenomena, particularly the formation and progression of vortex structures during systole, were consistently depicted between experimental and numerical models. CONCLUSIONS By bridging high-fidelity experimental observations with comprehensive computational analyses, this study underscores the potential of integrated methodologies in enhancing our understanding of AAA pathophysiology. The convergence of realistic AAA phantoms, precise PIV measurements at affordable cost point, and validated FSI models heralds a new paradigm in vascular research, with significant implications for personalized medicine and bioengineering innovations.
Collapse
Affiliation(s)
- Can Özcan
- Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Feza Gürsey Bld., Çengelköy, 34685, Istanbul, Turkey.
| | - Özgür Kocatürk
- Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Feza Gürsey Bld., Çengelköy, 34685, Istanbul, Turkey
| | - Civan Işlak
- Department of Radiology, Division of Neuroradiology, Cerrahpaşa Medical Faculty, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Cengizhan Öztürk
- Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Feza Gürsey Bld., Çengelköy, 34685, Istanbul, Turkey
| |
Collapse
|