1
|
Ren J, Cheng S, Ren F, Gu H, Wu D, Yao X, Tan M, Huang A, Chen J. Epigenetic regulation and its therapeutic potential in hepatitis B virus covalently closed circular DNA. Genes Dis 2025; 12:101215. [PMID: 39534573 PMCID: PMC11555349 DOI: 10.1016/j.gendis.2024.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 11/16/2024] Open
Abstract
Human hepatitis B virus (HBV) infection is the major cause of acute and chronic hepatitis B, liver cirrhosis, and hepatocellular carcinoma. Although the application of prophylactic vaccination programs has successfully prevented the trend of increasing HBV infection prevalence, the number of HBV-infected people remains very high. Approved therapeutic management efficiently suppresses viral replication; however, HBV infection is rarely completely resolved. The major reason for therapeutic failure is the persistence of covalently closed circular DNA (cccDNA), which forms viral minichromosomes by combining with histone and nonhistone proteins in the nucleus. Increasing evidence indicates that chromatin-modifying enzymes, viral proteins, and noncoding RNAs are essential for modulating the function of cccDNA. Therefore, a deeper understanding of the regulatory mechanism underlying cccDNA transcription will contribute to the development of a cure for chronic hepatitis B. This review summarizes the current knowledge of cccDNA biology, the regulatory mechanisms underlying cccDNA transcription, and novel anti-HBV approaches for eliminating cccDNA transcription.
Collapse
Affiliation(s)
- Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400000, China
| | - Huiying Gu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Daiqing Wu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Xinyan Yao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Ailong Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| |
Collapse
|
2
|
DNA Methyltransferases: From Evolution to Clinical Applications. Int J Mol Sci 2022; 23:ijms23168994. [PMID: 36012258 PMCID: PMC9409253 DOI: 10.3390/ijms23168994] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is an epigenetic mark that living beings have used in different environments. The MTases family catalyzes DNA methylation. This process is conserved from archaea to eukaryotes, from fertilization to every stage of development, and from the early stages of cancer to metastasis. The family of DNMTs has been classified into DNMT1, DNMT2, and DNMT3. Each DNMT has been duplicated or deleted, having consequences on DNMT structure and cellular function, resulting in a conserved evolutionary reaction of DNA methylation. DNMTs are conserved in the five kingdoms of life: bacteria, protists, fungi, plants, and animals. The importance of DNMTs in whether methylate or not has a historical adaptation that in mammals has been discovered in complex regulatory mechanisms to develop another padlock to genomic insurance stability. The regulatory mechanisms that control DNMTs expression are involved in a diversity of cell phenotypes and are associated with pathologies transcription deregulation. This work focused on DNA methyltransferases, their biology, functions, and new inhibitory mechanisms reported. We also discuss different approaches to inhibit DNMTs, the use of non-coding RNAs and nucleoside chemical compounds in recent studies, and their importance in biological, clinical, and industry research.
Collapse
|
3
|
Pietropaolo V, Prezioso C, Moens U. Role of Virus-Induced Host Cell Epigenetic Changes in Cancer. Int J Mol Sci 2021; 22:ijms22158346. [PMID: 34361112 PMCID: PMC8346956 DOI: 10.3390/ijms22158346] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor viruses human T-lymphotropic virus 1 (HTLV-1), hepatitis C virus (HCV), Merkel cell polyomavirus (MCPyV), high-risk human papillomaviruses (HR-HPVs), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV) and hepatitis B virus (HBV) account for approximately 15% of all human cancers. Although the oncoproteins of these tumor viruses display no sequence similarity to one another, they use the same mechanisms to convey cancer hallmarks on the infected cell. Perturbed gene expression is one of the underlying mechanisms to induce cancer hallmarks. Epigenetic processes, including DNA methylation, histone modification and chromatin remodeling, microRNA, long noncoding RNA, and circular RNA affect gene expression without introducing changes in the DNA sequence. Increasing evidence demonstrates that oncoviruses cause epigenetic modifications, which play a pivotal role in carcinogenesis. In this review, recent advances in the role of host cell epigenetic changes in virus-induced cancers are summarized.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- Correspondence: (V.P.); (U.M.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00161 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
- Correspondence: (V.P.); (U.M.)
| |
Collapse
|
4
|
Analysis of pathological changes and related factors in liver tissue of HBeAg-negative patients with low HBsAg levels. Clin Exp Med 2020; 20:577-586. [PMID: 32656675 DOI: 10.1007/s10238-020-00645-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/04/2020] [Indexed: 10/23/2022]
Abstract
The relationship between pathological changes in liver tissue and the level of hepatitis B surface antigen (HBsAg) remains unclear. This study aimed to analyze the pathological changes in liver tissue and its related factors in patients with low-level HBsAg in order to provide a basis for judging the condition of these patients. A retrospective study was performed on 96 chronic hepatitis B patients with HBsAg levels < 1400 IU/ml and > 0.05 IU/ml. The histopathological examination of these patients was conducted. Univariate and multivariate analyses were used to determine risk factors for pathological changes. Among the 96 patients, 57.3% (55) had inflammatory events ≥ G2 and 33.4% (33) had fibrosis ≥ S2. HBV infection duration (p = 0.001) and splenic vein diameter (p = 0.001) were independent risk factors of liver inflammation (≥ G2) in patients with low-level HBsAg, while AST (p = 0.006) and PLT (p = 0.005) were independent risk factors of liver fibrosis (≥ S2). Moreover, HBV infection duration (p < 0.001) and spleen vein (p = 0.001) were independent factors of potential antiviral treatment. Liver inflammation and fibrosis are still common in patients with low-level HBsAg; thus, the monitoring and appropriate antiviral treatment cannot be ignored.
Collapse
|
5
|
Aghamiri S, Jafarpour A, Gomari MM, Ghorbani J, Rajabibazl M, Payandeh Z. siRNA nanotherapeutics: a promising strategy for anti‐HBV therapy. IET Nanobiotechnol 2019; 13:457-463. [PMCID: PMC8676379 DOI: 10.1049/iet-nbt.2018.5286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/18/2018] [Accepted: 01/28/2019] [Indexed: 07/31/2023] Open
Abstract
Chronic hepatitis B (CHB) is the most common cause of hepatocellular carcinoma (HCC) and liver cirrhosis worldwide. In spite of the numerous advances in the treatment of CHB, drugs and vaccines have failed because of many factors like complexity, resistance, toxicity, and heavy cost. New RNA interference (RNAi)‐based technologies have developed innovative strategies to target Achilles' heel of the several hazardous diseases involving cancer, some genetic disease, autoimmune illnesses, and viral disorders particularly hepatitis B virus (HBV) infections. Naked siRNA delivery has serious challenges including failure to cross the cell membrane, susceptibility to the enzymatic digestion, and excretion by renal filtration, which ideally can be addressed by nanoparticle‐mediated delivery systems. cccDNA formation is a significant problem in obtaining HBV infections complete cure because of strength, durability, and lack of proper immune response. Nano‐siRNA drugs have a great potential to address this problem by silencing specific genes which are involved in cccDNA formation. In this article, the authors describe siRNA nanocarrier‐mediated delivery systems as a promising new strategy for HBV infections therapy. Simultaneously, the authors completely represent the clinical trials which use these strategies for treatment of the HBV infections.
Collapse
Affiliation(s)
- Shahin Aghamiri
- Student research committeeDepartment of Medical BiotechnologySchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Ali Jafarpour
- Students' Scientific Research CenterVirology DivisionDepartment of PathobiologySchool of Public HealthTehran University of Medical SciencesTehranIran
| | | | - Jaber Ghorbani
- Department of Medical BiotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Masoumeh Rajabibazl
- Department of Clinical BiochemistryFaculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Zahra Payandeh
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
6
|
Qin X, Li C, Guo T, Chen J, Wang HT, Wang YT, Xiao YS, Li J, Liu P, Liu ZS, Liu QY. Upregulation of DARS2 by HBV promotes hepatocarcinogenesis through the miR-30e-5p/MAPK/NFAT5 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:148. [PMID: 29052520 PMCID: PMC5649064 DOI: 10.1186/s13046-017-0618-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/09/2017] [Indexed: 01/17/2023]
Abstract
Background Infection with the hepatitis B virus (HBV) is closely associated with the development of hepatocellular carcinoma (HCC). The osmoregulatory transcription factor nuclear factor of activated T-cells 5 (NFAT5) has been shown to play an important role in the development of many types of human cancers. The role of NFAT5 in HBV-associated HCC has never previously been investigated. Methods We compared expression profiles of NFAT5, DARS2 and miR-30e-5p in HCC samples, adjacent nontumor tissues and different hepatoma cell lines by quantitative real-time polymerase chain reaction and /or Western blot. Clinical data of HCC patients for up to 80 months were analyzed. The regulatory mechanisms upstream and convergent downstream pathways of NFAT5 in HBV-associated HCC were investigated by ChIP-seq, MSP, luciferase report assay and bioinformation anaylsis. Results We first found that higher levels of NFAT5 expression predict a good prognosis, suggesting that NFAT5 is a potential tumor-suppressing gene, and verified that NFAT5 promotes hepatoma cell apoptosis and inhibits cell growth in vitro. Second, our results showed that HBV could suppress NFAT5 expression by inducing hypermethylation of the AP1-binding site in the NFAT5 promoter in hepatoma cells. In addition, HBV also inhibited NFAT5 through miR-30e-5p targeted MAP4K4, and miR-30e-5p in turn inhibited HBV replication. Finally, we demonstrated that NFAT5 suppressed DARS2 by directly binding to its promoter. DARS2 was identified as an HCC oncogene that promotes HCC cell cycle progression and inhibits HCC cell apoptosis. Conclusion HBV suppresses NFAT5 through the miR-30e-5p/mitogen-activated protein kinase (MAPK) signaling pathway upstream of NFAT5 and inhibits the NFAT5 to enhance HCC tumorigenesis via the downstream target genes of DARS2. Electronic supplementary material The online version of this article (10.1186/s13046-017-0618-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xian Qin
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Changsheng Li
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Tao Guo
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Jing Chen
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Hai-Tao Wang
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Yi-Tao Wang
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Yu-Sha Xiao
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Jun Li
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Pengpeng Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Zhi-Su Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China.
| | - Quan-Yan Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China.
| |
Collapse
|