1
|
Ma Y, Ji J, Liu X, Zheng X, Xu L, Zhou Q, Li Z, Yang L. Integrative Analysis by Mendelian Randomization and Large-Scale Single-Cell Transcriptomics Reveals Causal Links between B Cell Subtypes and Diabetic Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:327-345. [PMID: 39430286 PMCID: PMC11488840 DOI: 10.1159/000539689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/03/2024] [Indexed: 10/22/2024]
Abstract
Introduction The increasing incidence of diabetic kidney disease (DKD) and the challenges in its management highlight the necessity for a deeper understanding of its pathogenesis. While recent studies have underscored the substantial impact of circulating immunity on the development of diabetic microvascular complications such as retinopathy and neuropathy, research on circulating immunity in DKD remains limited. Methods This study utilized Mendelian randomization analysis to explore the potential independent causal relationships between circulating immune cells and DKD pathogenesis. Additionally, a combination of single-cell disease relevance score (scDRS) and immune cell infiltration analysis was employed to map the circulating immunity landscape in DKD patients. Results Ten immune traits, including 5 of B cells, 2 of T cells, 2 of granulocytes, and one of monocytes, were defined to be associated with the pathogenesis of DKD. Notably, IgD - CD27 - B cell Absolute Count (IVW: OR, 1.102 [1.023-1.189], p = 0.011) and IgD - CD24 - B cell Absolute Count (IVW: OR, 1.106 [1.030-1.188], p = 0.005) were associated with promoting DKD pathogenesis, while CD24 + CD27 + B cell %B cell (IVW: OR, 0.943 [0.898-0.989], p = 0.016) demonstrated a protective effect against DKD onset. The presence of B cell-activating factor receptor (BAFF-R) on CD20 - CD38 - B cell (IVW: OR, 0.946 [0.904-0.989], p = 0.015) and BAFF-R on IgD - CD38 + B cell (IVW: OR, 0.902 [0.834-0.975], p = 0.009) also indicated a potential role in preventing DKD. scDRS analysis revealed that two main subsets of B cells, naïve B and memory B cells, had a higher proportion of DKD-related cells or a higher scDRS score of DKD phenotype, indicating their strong association with DKD. Furthermore, immune infiltrate deconvolution analysis showed a notable decrease in the circulating memory B cells and class-switched memory B cells in DKD patients compared to those of DM patients without DKD. Conclusion Our study revealed the causal relations between circulating immunity and DKD susceptibility, particularly highlighted the potential roles of B cell subtypes in DKD development. Further studies addressing the related mechanisms would broaden the current understanding of DKD pathogenesis.
Collapse
Affiliation(s)
- Yuan Ma
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Ji
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xintong Liu
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xizi Zheng
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingyi Xu
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingqing Zhou
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Zehua Li
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Yang
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Yang YQ, Liu YJ, Qiao WX, Jin W, Zhu SW, Yan YX, Luo Q, Xu Q. Iguratimod suppresses plasma cell differentiation and ameliorates experimental Sjögren's syndrome in mice by promoting TEC kinase degradation. Acta Pharmacol Sin 2024; 45:1926-1936. [PMID: 38744938 PMCID: PMC11336088 DOI: 10.1038/s41401-024-01288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic inflammatory autoimmune disease with an unclear pathogenesis, and there is currently no approved drug for the treatment of this disease. Iguratimod, as a novel clinical anti-rheumatic drug in China and Japan, has shown remarkable efficacy in improving the symptoms of patients with pSS in clinical studies. In this study we investigated the mechanisms underlying the therapeutic effect of iguratimod in the treatment of pSS. Experimental Sjögren's syndrome (ESS) model was established in female mice by immunizing with salivary gland protein. After immunization, ESS mice were orally treated with iguratimod (10, 30, 100 mg·kg-1·d-1) or hydroxychloroquine (50 mg·kg-1·d-1) for 70 days. We showed that iguratimod administration dose-dependently increased saliva secretion, and ameliorated ESS development by predominantly inhibiting B cells activation and plasma cell differentiation. Iguratimod (30 and 100 mg·kg-1·d-1) was more effective than hydroxychloroquine (50 mg·kg-1·d-1). When the potential target of iguratimod was searched, we found that iguratimod bound to TEC kinase and promoted its degradation through the autophagy-lysosome pathway in BAFF-activated B cells, thereby directly inhibiting TEC-regulated B cells function, suggesting that the action mode of iguratimod on TEC was different from that of conventional kinase inhibitors. In addition, we found a crucial role of TEC overexpression in plasma cells of patients with pSS. Together, we demonstrate that iguratimod effectively ameliorates ESS via its unique suppression of TEC function, which will be helpful for its clinical application. Targeting TEC kinase, a new regulatory factor for B cells, may be a promising therapeutic option.
Collapse
Affiliation(s)
- Ya-Qi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yi-Jun Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wen-Xuan Qiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wei Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shun-Wei Zhu
- Jiangsu Simcere Pharmaceutical Co., Ltd, Nanjing, 210042, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210042, China
| | - Yu-Xi Yan
- Jiangsu Simcere Pharmaceutical Co., Ltd, Nanjing, 210042, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210042, China
| | - Qiong Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Byrne L, McCarthy C, Fabre A, Gupta N. Pulmonary Manifestations of Sjögren's Disease. Semin Respir Crit Care Med 2024; 45:397-410. [PMID: 38621712 DOI: 10.1055/s-0044-1785675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Sjögren's disease (SjD) is a chronic, progressive autoimmune condition of exocrine and extraglandular tissues. It can present with isolated disease characterized by lymphocytic infiltration of salivary or lacrimal glands, but in approximately one-third of the patients, lymphocytic infiltration extends beyond exocrine glands to involve extraglandular organs such as the lungs. Pulmonary complications have been reported to occur between 9 and 27% of patients with SjD across studies. Respiratory manifestations occur on a spectrum of severity and include airways disease, interstitial lung disease, cystic lung disease, and lymphoma. Lung involvement can greatly affect patients' quality of life, has a major impact on the overall prognosis, and frequently leads to alteration in the treatment plans, highlighting the importance of maintaining a high index of clinical suspicion and taking appropriate steps to facilitate early recognition and intervention.
Collapse
Affiliation(s)
- Louise Byrne
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland
| | - Cormac McCarthy
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Aurelie Fabre
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Histopathology, St. Vincent's University Hospital, Dublin, Ireland
| | - Nishant Gupta
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
4
|
Stern ME, Theofilopoulos AN, Steven P, Niederkorn JY, Fox R, Calonge M, Scheid C, Pflugfelder SC. Immunologic basis for development of keratoconjunctivitis sicca in systemic autoimmune diseases: Role of innate immune sensors. Ocul Surf 2024; 32:130-138. [PMID: 38395195 DOI: 10.1016/j.jtos.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The literature is filled with citations reporting an increased incidence of chronic dry eye disease, also known as keratoconjunctivitis sicca, in patients with systemic autoimmune diseases such as rheumatoid arthritis, Sjögren's Syndrome, systemic sclerosis and lupus. As the most environmentally exposed mucosal surface of the body, the conjunctiva constantly responds to environmental challenges which are typically self limited, but when persistent and unresolved may provoke pathogenic innate and adaptive immune reactions. Our understanding of the pathophysiological mechanisms by which systemic autoimmune diseases cause dry eye inducing ocular surface inflammation continues to evolve. Conjunctival immune tone responds to self or foreign danger signals (including desiccating stress) on the ocular surface with an initial non-specific innate inflammatory response. If unchecked, this can lead to activation of dendritic cells that present antigen and prime T and B cells resulting in an adaptive immune reaction. These reactions generally resolve, but dysfunctional, hyper-responsive immune cells found in systemic autoimmune diseases that are recruited to the ocular surface can amplify inflammatory stress responses in the ocular surface and glandular tissues and result in autoimmune reactions that disrupt tear stability and lead to chronic dry eye disease. We here propose that unique features of the ocular surface immune system and the impact of systemic immune dysregulation in autoimmune diseases, can predispose to development of dry eye disease, and exacerbate severity of existing dry eye.
Collapse
Affiliation(s)
- Michael E Stern
- University of Cologne, Department of Ophthalmology, Cologne, Germany; IOBA, Department of Ophthalmology, University of Valladolid, Valladolid, Spain.
| | | | - Philipp Steven
- University of Cologne, Department of Ophthalmology, Cologne, Germany; University of Cologne, Department of Internal Medicine - 1, Cologne, Germany
| | - Jerry Y Niederkorn
- Southwestern School of Medicine, Department of Ophthalmology, Dallas, TX, USA
| | - Robert Fox
- Scripps Hospital, Department of Rheumatology, La Jolla, CA, USA
| | - Margarita Calonge
- IOBA, Department of Ophthalmology, University of Valladolid, Valladolid, Spain
| | - Christof Scheid
- University of Cologne, Department of Internal Medicine - 1, Cologne, Germany
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Yang H, Sun C, Wang X, Wang T, Xie C, Li Z. Elevated expression of Toll-like receptor 7 and its correlation with clinical features in patients with primary Sjögren's syndrome. Adv Rheumatol 2024; 64:17. [PMID: 38439071 DOI: 10.1186/s42358-024-00360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The labial salivary glands (LSGs) are important for the diagnosis, evaluation of therapeutic efficacy, and genetic analyses of primary Sjögren's syndrome (pSS). In autoimmune diseases, the recognition of self nucleic acids and viral RNA and DNA through endogenous Toll-like receptor(TLR) triggers the production of type I IFN and pro-inflammatory cytokines, leading to the occurrence and progression of the disease. Here, we detected the expression of TLR7 in LSGs and analyse its correlation with clinical features and serum cytokines in pSS patients. METHODS LSGs and serum samples were obtained from 56 pSS patients and 19 non-SS patients (non-pSS patients). The expression of TLR7 in the LSGs was evaluated with immunohistochemistry. The serum levels of interferon-α (IFN-α) and interleukin-6 (IL-6) were quantified by ELISA. Laboratory parameters were measured by clinical standard laboratory techniques. RESULTS TLR7-positive cells in pSS were localized in the ductal epithelial cells and lymphocytes of LSGs. The expression of TLR7 was upregulated in pSS patients compared with controls. Patients with anti-Ro52 antibody positivity showed higher TLR7 levels than those who were negative but not those with anti-Ro60 and anti-SSB. TLR7 levels were positively associated with the levels of IgG, IgA, ANA, IL-6, IFN-α and serum globulin but were not associated with IgM, C3, C4, or rheumatoid factor (RF) in serum. CONCLUSION TLR7 may be involved in the inflammatory response and the production of antibodies in pSS and plays an important role in local and systemic pSS manifestations. This research showed that TLR7 is involved in pSS pathogenesis.
Collapse
Affiliation(s)
- Huimin Yang
- Jinan University, Guangzhou, China
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Bengbu Medical College, Anhui, China
- Key Laboratory of Infection and Immunity of Anhui Higher Education Institutes, Bengbu Medical College, Anhui, China
| | - Chao Sun
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, 233004, Bengbu, Anhui, China
| | - Xin Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, 233004, Bengbu, Anhui, China
| | - Tao Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, 233004, Bengbu, Anhui, China
| | - Changhao Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, 233004, Bengbu, Anhui, China
| | - Zhijun Li
- Jinan University, Guangzhou, China.
- Key Laboratory of Infection and Immunity of Anhui Higher Education Institutes, Bengbu Medical College, Anhui, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, 233004, Bengbu, Anhui, China.
| |
Collapse
|
6
|
Zervou MI, Tarlatzis BC, Grimbizis GF, Spandidos DA, Niewold TB, Goulielmos GN. Association of endometriosis with Sjögren's syndrome: Genetic insights (Review). Int J Mol Med 2024; 53:20. [PMID: 38186322 PMCID: PMC10781419 DOI: 10.3892/ijmm.2024.5344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024] Open
Abstract
Patients with a history of endometriosis have an increased risk of developing various autoimmune diseases such as rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis and celiac disease. There is a potential association between endometriosis and an increased susceptibility for Sjögren's syndrome (SS). SS is a common chronic, inflammatory, systemic, autoimmune, multifactorial disease of complex pathology, with genetic, epigenetic and environmental factors contributing to the development of this condition. It occurs in 0.5‑1% of the population, is characterized by the presence of ocular dryness, lymphocytic infiltrations and contributes to neurological, gastrointestinal, vascular and dermatological manifestations. Endometriosis is an inflammatory, estrogen‑dependent, multifactorial, heterogeneous gynecological disease, affecting ≤10% of reproductive‑age women. It is characterized by the occurrence of endometrial tissue outside the uterine cavity, mainly in the pelvic cavity, and is associated with pelvic pain, dysmenorrhea, deep dyspareunia and either subfertility or infertility. It is still unclear whether SS appears as a secondary response to endometriosis, or it is developed due to any potential shared mechanisms of these conditions. The aim of the present review was to explore further the biological basis only of the co‑occurrence of these disorders but not their association at clinical basis, focusing on the analysis of the partially shared genetic background between endometriosis and SS, and the clarification of the possible similarities in the underlying pathogenetic mechanisms and the relevant molecular pathways.
Collapse
Affiliation(s)
- Maria I. Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Basil C. Tarlatzis
- First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Grigoris F. Grimbizis
- Unit for Human Reproduction, First Department of Obstetrics and Gynecology, 'Papageorgiou' General Hospital, Aristotle University Medical School, 56403 Thessaloniki, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Timothy B. Niewold
- Barbara Volcker Center for Women and Rheumatic Disease, New York, NY 10021, USA
- Hospital for Special Surgery, New York, NY 10021, USA
| | - George N. Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
- Department of Internal Medicine, University Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
7
|
Tang Y, Zhou Y, Wang X, Che N, Tian J, Man K, Rui K, Peng N, Lu L. The role of epithelial cells in the immunopathogenesis of Sjögren's syndrome. J Leukoc Biol 2024; 115:57-67. [PMID: 37134025 DOI: 10.1093/jleuko/qiad049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Sjögren's syndrome is a systemic autoimmune disease characterized by dysfunction of the affected exocrine glands. Lymphocytic infiltration within the inflamed glands and aberrant B-cell hyperactivation are the two salient pathologic features in Sjögren's syndrome. Increasing evidence indicates that salivary gland epithelial cells act as a key regulator in the pathogenesis of Sjögren's syndrome, as revealed by the dysregulated innate immune signaling pathways in salivary gland epithelium and increased expression of various proinflammatory molecules as well as their interaction with immune cells. In addition, salivary gland epithelial cells can regulate adaptive immune responses as nonprofessional antigen-presenting cells and promote the activation and differentiation of infiltrated immune cells. Moreover, the local inflammatory milieu can modulate the survival of salivary gland epithelial cells, leading to enhanced apoptosis and pyroptosis with the release of intracellular autoantigens, which further contributes to SG autoimmune inflammation and tissue destruction in Sjögren's syndrome. Herein, we reviewed recent advances in elucidating the role of salivary gland epithelial cells in the pathogenesis of Sjögren's syndrome, which may provide rationales for potential therapeutic targeting of salivary gland epithelial cells to alleviate salivary gland dysfunction alongside treatments with immunosuppressive reagents in Sjögren's syndrome.
Collapse
Affiliation(s)
- Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Yingbo Zhou
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Xiaoran Wang
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Nan Che
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Gulou District, Nanjing, China
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Sha Tin, New Territories, Hong Kong, China
| |
Collapse
|
8
|
Zheng A, Hu N, Xu J, Yuan Y, Zhang S, Chen W, Bai Y, Sun H. Associations between TNFSF13B polymorphisms and primary Sjögren's syndrome susceptibility in primary Sjögren's syndrome patients: A meta-analysis. Immun Inflamm Dis 2023; 11:e1103. [PMID: 38156381 PMCID: PMC10698818 DOI: 10.1002/iid3.1103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023] Open
Abstract
OBJECTIVE B-cell activating factor (BAFF) is a key regulator of primary Sjögren's syndrome (pSS), which is characterized by B-lymphocyte hyperactivity. BAFF, also known as tumor necrosis factor ligand superfamily member 13B, is encoded by TNFSF13B. This study aimed to explore the possible relationships between five single-nucleotide polymorphisms (SNPs) of TNFSF13B (rs9514827, rs1041569, rs9514828, rs1224141, and rs12583006) and pSS susceptibility. METHODS We searched the following databases for articles on TNFSF13B polymorphism and pSS published up to January 2023: PubMed, Cochrane, Elsevier, Web of Science, CNKI, CQVIP, and WanFang. The odds ratios (with 95% confidence intervals) of genotypes and SNP alleles of TNFSF13B were investigated in patients with pSS to determine their relationships with pSS. RESULTS This meta-analysis employing the fixed-effect model comprised three studies of pSS patients and randomly selected healthy controls (HCs), revealing statistically significant relationships between pSS susceptibility and two SNPs: rs1041569 and rs12583006. Because rs1041569 was not in Hardy-Weinberg equilibrium in the HC group, it was eliminated from the analysis. CONCLUSIONS Polymorphisms in the BAFF (TNFSF13B) gene were related to vulnerability to pSS among pSS patients and HCs alike. The SNP rs12583006 was significantly related to pSS susceptibility in pSS patients.
Collapse
Affiliation(s)
- Anhao Zheng
- Medical Integration and Practice CenterCheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Rheumatology and ImmunologyShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Naiwen Hu
- Department of Rheumatology and ImmunologyShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Rheumatology and ImmunologyShandong Provincial Hospital, Affiliated to Shandong First Medical UniversityJinanChina
| | - Jing Xu
- Graduate SchoolShandong First Medical UniversityJinanChina
| | - Ye Yuan
- Graduate SchoolShandong First Medical UniversityJinanChina
| | - Shumin Zhang
- Graduate SchoolShandong First Medical UniversityJinanChina
| | - Wenbin Chen
- Department of Rheumatology and ImmunologyShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Rheumatology and ImmunologyShandong Provincial Hospital, Affiliated to Shandong First Medical UniversityJinanChina
| | - Yanyan Bai
- Department of Rheumatology and ImmunologyShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Rheumatology and ImmunologyShandong Provincial Hospital, Affiliated to Shandong First Medical UniversityJinanChina
| | - Hongsheng Sun
- Department of Rheumatology and ImmunologyShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Rheumatology and ImmunologyShandong Provincial Hospital, Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
9
|
Chen S, Tan L, Qin D, Lv H, Liu K, Xu Y, Wu X, Huang J, Xu Y. The causal relationship between multiple autoimmune diseases and nasal polyps. Front Immunol 2023; 14:1228226. [PMID: 37691921 PMCID: PMC10484405 DOI: 10.3389/fimmu.2023.1228226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Background Although previous sporadic studies have reported the associations between a few autoimmune diseases and nasal polyps, these studies have limitations such as conflicting results, small sample sizes, and low levels of evidence. Methods Several autoimmune diseases were selected as exposures while the nasal polyps were selected as outcomes. Bidirectional univariable Mendelian randomization and multivariable Mendelian randomization analyses were performed after rigorous screening of instrumental variables. Then mediation analyses were conducted to further investigate the underlying mechanisms. Results For the first time, we investigated the causal relationships between nine autoimmune diseases and nasal polyps in different genders and found: (1) there was a causal association between adult-onset Still's disease and nasal polyps; (2) sarcoidosis, ulcerative colitis, type 1 diabetes, and Crohn's disease had no significant associations with nasal polyps; (3) celiac disease showed a suggestive positive association with female nasal polyps, whereas juvenile arthritis and multiple sclerosis showed suggestive positive associations with male nasal polyps. By contrast, arthropathic psoriasis showed a suggestive negative association with nasal polyps. In addition to these nine diseases, previous controversial issues were further investigated: (1) there was a causal relationship between rheumatoid arthritis and nasal polyps, which was partially mediated by "BAFF-R for IgD+ B cells"; (2) ankylosing spondylitis showed suggestive positive associations with the female but not the male nasal polyps. Besides, we validated that there was no causal effect of autoimmune hyperthyroidism on nasal polyps. Conclusion Specific conclusions regarding the causal effects of multiple autoimmune diseases on nasal polyps are the same as above. By comparing results between different genders, we have initially observed the sex bimodality in the causal effects between autoimmune diseases and nasal polyps, with those on male nasal polyps being stronger than those on female nasal polyps. Our study lays a solid foundation for further research in the future, not only helping identify individuals susceptible to nasal polyps early but also improving our understanding of the immunopathogenesis of these heterogeneous diseases.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Tan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danxue Qin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kunyu Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingying Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaomin Wu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingyu Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Luo D, Li L, Yang Y, Ye Y, Hu J, Zong Y, Zhao J, Gao Y, Xu H, Li N, Xie Y, Jiang L. Unraveling the transcriptome-based network of tfh cells in primary sjogren syndrome: insights from a systems biology approach. Front Immunol 2023; 14:1216379. [PMID: 37638029 PMCID: PMC10448518 DOI: 10.3389/fimmu.2023.1216379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Background Primary Sjogren Syndrome (pSS) is an autoimmune disease characterized by immune cell infiltration. While the presence of follicular T helper (Tfh) cells in the glandular microenvironment has been observed, their biological functions and clinical significance remain poorly understood. Methods We enrolled a total of 106 patients with pSS and 46 patients without pSS for this study. Clinical data and labial salivary gland (LSG) biopsies were collected from all participants. Histological staining was performed to assess the distribution of Tfh cells and B cells. Transcriptome analysis using RNA-sequencing (RNA-seq) was conducted on 56 patients with pSS and 26 patients without pSS to uncover the underlying molecular mechanisms of Tfh cells. To categorize patients, we employed the single-sample gene set enrichment analysis (ssGSEA) algorithm, dividing them into low- and high-Tfh groups. We then utilized gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), and deconvolution tools to explore functional and immune infiltration differences between the low- and high-Tfh groups. Results Patients with pSS had a higher positive rate of the antinuclear antibody (ANA), anti-Ro52, anti-SSA, anti-SSB and hypergammaglobulinaemia and higher levels of serum IgG compared to the non-pSS. Histopathologic analyses revealed the presence of Tfh cells (CD4+CXCR5+ICOS+) in germinal centers (GC) within the labial glands of pSS patients. GSEA, WGCNA, and correlation analysis indicated that the high-Tfh group was associated with an immune response related to virus-mediated IFN response and metabolic processes, primarily characterized by hypoxia, elevated glycolysis, and oxidative phosphorylation levels. In pSS, most immune cell types exhibited significantly higher infiltration levels in the high-Tfh group compared to the low-Tfh group. Additionally, patients in the Tfh-high group demonstrated a higher positive rate of the ANA, rheumatoid factor (RF), and hypergammaglobulinaemia, as well as higher serum IgG levels. Conclusion Our study suggests that Tfh cells may play a crucial role in the pathogenesis of pSS and could serve as potential therapeutic targets in pSS patients.
Collapse
Affiliation(s)
- Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Yang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yulin Ye
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Hu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Zong
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawen Zhao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai, China
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Urbanski G, Chabrun F, Delattre E, Lacout C, Davidson B, Blanchet O, Chao de la Barca JM, Simard G, Lavigne C, Reynier P. An immuno-lipidomic signature revealed by metabolomic and machine-learning approaches in labial salivary gland to diagnose primary Sjögren's syndrome. Front Immunol 2023; 14:1205616. [PMID: 37520535 PMCID: PMC10375713 DOI: 10.3389/fimmu.2023.1205616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Assessing labial salivary gland exocrinopathy is a cornerstone in primary Sjögren's syndrome. Currently this relies on the histopathologic diagnosis of focal lymphocytic sialadenitis and computing a focus score by counting lym=phocyte foci. However, those lesions represent advanced stages of primary Sjögren's syndrome, although earlier recognition of primary Sjögren's syndrome and its effective treatment could prevent irreversible damage to labial salivary gland. This study aimed at finding early biomarkers of primary Sjögren's syndrome in labial salivary gland combining metabolomics and machine-learning approaches. Methods We used a standardized targeted metabolomic approach involving high performance liquid chromatography coupled with mass spectrometry among newly diagnosed primary Sjögren's syndrome (n=40) and non- primary Sjögren's syndrome sicca (n=40) participants in a prospective cohort. A metabolic signature predictive of primary Sjögren's syndrome status was explored using linear (logistic regression with elastic-net regularization) and non-linear (random forests) machine learning architectures, after splitting the data set into training, validation, and test sets. Results Among 126 metabolites accurately measured, we identified a discriminant signature composed of six metabolites with robust performances (ROC-AUC = 0.86) for predicting primary Sjögren's syndrome status. This signature included the well-known immune-metabolite kynurenine and five phospholipids (LysoPC C28:0; PCaa C26:0; PCaaC30:2; PCae C30:1, and PCaeC30:2). It was split into two main components: the first including the phospholipids was related to the intensity of lymphocytic infiltrates in salivary glands, while the second represented by kynurenine was independently associated with the presence of anti-SSA antibodies in participant serum. Conclusion Our results reveal an immuno-lipidomic signature in labial salivary gland that accurately distinguishes early primary Sjögren's syndrome from other causes of sicca symptoms.
Collapse
Affiliation(s)
- Geoffrey Urbanski
- Department of Internal Medicine and Clinical Immunology, University Hospital, Angers, France
- Mitolab, MitoVasc Institute, CNRS 6015, INSERM U1083, University of Angers, Angers, France
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Floris Chabrun
- Mitolab, MitoVasc Institute, CNRS 6015, INSERM U1083, University of Angers, Angers, France
- Department of Biochemistry and Molecular Biology, University Hospital, Angers, France
| | - Estelle Delattre
- Department of Internal Medicine and Clinical Immunology, University Hospital, Angers, France
| | - Carole Lacout
- Department of Internal Medicine and Clinical Immunology, University Hospital, Angers, France
| | - Brittany Davidson
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Odile Blanchet
- Centre de Ressources Biologiques, University Hospital, Angers, France
| | - Juan Manuel Chao de la Barca
- Mitolab, MitoVasc Institute, CNRS 6015, INSERM U1083, University of Angers, Angers, France
- Department of Biochemistry and Molecular Biology, University Hospital, Angers, France
| | - Gilles Simard
- Mitolab, MitoVasc Institute, CNRS 6015, INSERM U1083, University of Angers, Angers, France
- Department of Biochemistry and Molecular Biology, University Hospital, Angers, France
| | - Christian Lavigne
- Department of Internal Medicine and Clinical Immunology, University Hospital, Angers, France
| | - Pascal Reynier
- Mitolab, MitoVasc Institute, CNRS 6015, INSERM U1083, University of Angers, Angers, France
- Department of Biochemistry and Molecular Biology, University Hospital, Angers, France
| |
Collapse
|
12
|
Mihai A, Caruntu C, Jurcut C, Blajut FC, Casian M, Opris-Belinski D, Ionescu R, Caruntu A. The Spectrum of Extraglandular Manifestations in Primary Sjögren's Syndrome. J Pers Med 2023; 13:961. [PMID: 37373950 DOI: 10.3390/jpm13060961] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Extraglandular manifestations (EGMs) in primary Sjogren's syndrome (pSS) represent the clinical expression of the systemic involvement in this disease. EGMs are characterized by a wide heterogeneity; virtually any organ or system can be affected, with various degrees of dysfunction. The existing gaps of knowledge in this complex domain of extraglandular extension in pSS need to be overcome in order to increase the diagnostic accuracy of EGMs in pSS. The timely identification of EGMs, as early as from subclinical stages, can be facilitated using highly specific biomarkers, thus preventing decompensated disease and severe complications. To date, there is no general consensus on the diagnostic criteria for the wide range of extraglandular involvement in pSS, which associates important underdiagnosing of EGMs, subsequent undertreatment and progression to severe organ dysfunction in these patients. This review article presents the most recent basic and clinical science research conducted to investigate pathogenic mechanisms leading to EGMs in pSS patients. In addition, it presents the current diagnostic and treatment recommendations and the trends for future therapeutic strategies based on personalized treatment, as well as the latest research in the field of diagnostic and prognostic biomarkers for extraglandular involvement in pSS.
Collapse
Affiliation(s)
- Ancuta Mihai
- Department of Internal Medicine, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Rheumatology, Faculty of General Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Ciprian Jurcut
- Department of Internal Medicine, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Florin Cristian Blajut
- Department of General Surgery, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Medical-Surgical Specialties, "Titu Maiorescu" University of Bucharest, 040441 Bucharest, Romania
| | - Mihnea Casian
- Emergency Institute for Cardiovascular Diseases Prof. Dr. C.C. Iliescu, 022328 Bucharest, Romania
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Opris-Belinski
- Internal Medicine and Rheumatology Department, Sfanta Maria Clinical Hospital, 011172 Bucharest, Romania
- Internal Medicine and Rheumatology Department, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ruxandra Ionescu
- Internal Medicine and Rheumatology Department, Sfanta Maria Clinical Hospital, 011172 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| |
Collapse
|
13
|
Yang L, Pu J, Cai F, Zhang Y, Gao R, Zhuang S, Liang Y, Wu Z, Pan S, Song J, Han F, Tang J, Wang X. Chronic Epstein-Barr virus infection: A potential junction between primary Sjögren's syndrome and lymphoma. Cytokine 2023; 168:156227. [PMID: 37244248 DOI: 10.1016/j.cyto.2023.156227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/29/2023]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease that targets exocrine glands, leading to exocrine dysfunction. Due to its propensity to infect epithelial and B cells, Epstein-Barr virus (EBV) is hypothesized to be related with pSS. Through molecular mimicry, the synthesis of specific antigens, and the release of inflammatory cytokines, EBV contributes to the development of pSS. Lymphoma is the most lethal outcome of EBV infection and the development of pSS. As a population-wide virus, EBV has had a significant role in the development of lymphoma in people with pSS. In the review, we will discuss the possible causes of the disease.
Collapse
Affiliation(s)
- Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Feiyang Cai
- Department of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada; Gerald Bronfman Department of Oncology, Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Youwei Zhang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ronglin Gao
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shuqi Zhuang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shengnan Pan
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| |
Collapse
|
14
|
Zhan Q, Zhang J, Lin Y, Chen W, Fan X, Zhang D. Pathogenesis and treatment of Sjogren's syndrome: Review and update. Front Immunol 2023; 14:1127417. [PMID: 36817420 PMCID: PMC9932901 DOI: 10.3389/fimmu.2023.1127417] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Sjogren's syndrome (SS) is a chronic autoimmune disease accompanied by multiple lesions. The main manifestations include dryness of the mouth and eyes, along with systemic complications (e.g., pulmonary disease, kidney injury, and lymphoma). In this review, we highlight that IFNs, Th17 cell-related cytokines (IL-17 and IL-23), and B cell-related cytokines (TNF and BAFF) are crucial for the pathogenesis of SS. We also summarize the advances in experimental treatment strategies, including targeting Treg/Th17, mesenchymal stem cell treatment, targeting BAFF, inhibiting JAK pathway, et al. Similar to that of SLE, RA, and MS, biotherapeutic strategies of SS consist of neutralizing antibodies and inflammation-related receptor blockers targeting proinflammatory signaling pathways. However, clinical research on SS therapy is comparatively rare. Moreover, the differences in the curative effects of immunotherapies among SS and other autoimmune diseases are not fully understood. We emphasize that targeted drugs, low-side-effect drugs, and combination therapies should be the focus of future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Dunfang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Block V, Sevdali E, Recher M, Abolhassani H, Hammarstrom L, Smulski CR, Baronio M, Plebani A, Proietti M, Speletas M, Warnatz K, Voll RE, Lougaris V, Schneider P, Eibel H. CVID-Associated B Cell Activating Factor Receptor Variants Change Receptor Oligomerization, Ligand Binding, and Signaling Responses. J Clin Immunol 2023; 43:391-405. [PMID: 36308663 PMCID: PMC9616699 DOI: 10.1007/s10875-022-01378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/23/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Binding of the B cell activating factor (BAFF) to its receptor (BAFFR) activates in mature B cells many essential pro-survival functions. Null mutations in the BAFFR gene result in complete BAFFR deficiency and cause a block in B cell development at the transition from immature to mature B cells leading therefore to B lymphopenia and hypogammaglobulinemia. In addition to complete BAFFR deficiency, single nucleotide variants encoding BAFFR missense mutations were found in patients suffering from common variable immunodeficiency (CVID), autoimmunity, or B cell lymphomas. As it remained unclear to which extent such variants disturb the activity of BAFFR, we performed genetic association studies and developed a cellular system that allows the unbiased analysis of BAFFR variants regarding oligomerization, signaling, and ectodomain shedding. METHODS In addition to genetic association studies, the BAFFR variants P21R, A52T, G64V, DUP92-95, P146S, and H159Y were expressed by lentiviral gene transfer in DG-75 Burkitt's lymphoma cells and analyzed for their impacts on BAFFR function. RESULTS Binding of BAFF to BAFFR was affected by P21R and A52T. Spontaneous oligomerization of BAFFR was disturbed by P21R, A52T, G64V, and P146S. BAFF-dependent activation of NF-κB2 was reduced by P21R and P146S, while interactions between BAFFR and the B cell antigen receptor component CD79B and AKT phosphorylation were impaired by P21R, A52T, G64V, and DUP92-95. P21R, G64V, and DUP92-95 interfered with phosphorylation of ERK1/2, while BAFF-induced shedding of the BAFFR ectodomain was only impaired by P21R. CONCLUSION Although all variants change BAFFR function and have the potential to contribute as modifiers to the development of primary antibody deficiencies, autoimmunity, and lymphoma, P21R is the only variant that was found to correlate positively with CVID.
Collapse
Affiliation(s)
- Violeta Block
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eirini Sevdali
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mike Recher
- Immunodeficiency Clinic and Laboratory, Medical Outpatient Unit and Department Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Lennart Hammarstrom
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Cristian R Smulski
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Carlos de Bariloche, Río Negro, Argentina
| | - Manuela Baronio
- Department of Clinical and Exp. Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Department of Clinical and Exp. Sciences, University of Brescia, Brescia, Italy
| | - Michele Proietti
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthaios Speletas
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vassilios Lougaris
- Department of Clinical and Exp. Sciences, University of Brescia, Brescia, Italy
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Hermann Eibel
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
16
|
Giovannini D, Belbezier A, Baillet A, Bouillet L, Kawano M, Dumestre-Perard C, Clavarino G, Noble J, Pers JO, Sturm N, Huard B. Heterogeneity of antibody-secreting cells infiltrating autoimmune tissues. Front Immunol 2023; 14:1111366. [PMID: 36895558 PMCID: PMC9989216 DOI: 10.3389/fimmu.2023.1111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
The humoral response is frequently dysfunctioning in autoimmunity with a frequent rise in total serum immunoglobulins, among which are found autoantibodies that may be pathogenic by themselves and/or propagate the inflammatory reaction. The infiltration of autoimmune tissues by antibody-secreting cells (ASCs) constitutes another dysfunction. The known high dependency of ASCs on the microenvironment to survive combined to the high diversity of infiltrated tissues implies that ASCs must adapt. Some tissues even within a single clinical autoimmune entity are devoid of infiltration. The latter means that either the tissue is not permissive or ASCs fail to adapt. The origin of infiltrated ASCs is also variable. Indeed, ASCs may be commonly generated in the secondary lymphoid organ draining the autoimmune tissue, and home at the inflammation site under the guidance of specific chemokines. Alternatively, ASCs may be generated locally, when ectopic germinal centers are formed in the autoimmune tissue. Alloimmune tissues with the example of kidney transplantation will also be discussed own to their high similarity with autoimmune tissues. It should also be noted that antibody production is not the only function of ASCs, since cells with regulatory functions have also been described. This article will review all the phenotypic variations indicative of tissue adaptation described so for at the level of ASC-infiltrating auto/alloimmune tissues. The aim is to potentially define tissue-specific molecular targets in ASCs to improve the specificity of future autoimmune treatments.
Collapse
Affiliation(s)
- Diane Giovannini
- Department of Pathology, Grenoble University Hospital, Grenoble, France.,Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| | - Aude Belbezier
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Internal Medicine, Grenoble University Hospital, Grenoble, France
| | - Athan Baillet
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Rheumatology, Grenoble University Hospital, Grenoble, France
| | - Laurence Bouillet
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Internal Medicine, Grenoble University Hospital, Grenoble, France
| | - Mitsuhiro Kawano
- Department of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | | | | | - Johan Noble
- Department of Nephrology, Grenoble University Hospital, Grenoble, France
| | - Jacques-Olivier Pers
- B Lymphocytes, Autoimmunity and Immunotherapies, Brest University, INSERM, UMR1227, Brest, France.,Odontology Unit, Brest University Hospital, Brest, France
| | - Nathalie Sturm
- Department of Pathology, Grenoble University Hospital, Grenoble, France.,Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| | - Bertrand Huard
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| |
Collapse
|
17
|
Association between Anti-Hepatitis C Viral Intervention Therapy and Risk of Sjögren’s Syndrome: A National Retrospective Analysis. J Clin Med 2022; 11:jcm11154259. [PMID: 35893350 PMCID: PMC9332495 DOI: 10.3390/jcm11154259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/10/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a potential risk factor for Sjögren’s syndrome (SS). However, it is unclear whether anti-HCV intervention therapy could decrease SS risk. A retrospective cohort analysis from 1997–2012 comprising 17,166 eligible HCV-infected adults was conducted. By 1:2 propensity score matching, a total of 2123 treated patients and 4246 untreated patients were subjected to analysis. The incidence rates and risks of SS and death were evaluated through to the end of 2012. In a total follow-up of 36,906 person-years, 177 (2.8%) patients developed SS, and 522 (8.2%) died during the study period. The incidence rates of SS for the treated and untreated cohorts were 5.3 vs. 4.7/1000 person-years, and those of death for the treated and untreated cohorts were 10.0 vs. 14.8/1000 person-years. A lower risk of death (adjusted hazard ratio, 0.68; 95% CI, 0.53–0.87) was present in HCV-infected patients receiving anti-HCV therapy in multivariable Cox regression, and this remained consistent in multivariable stratified analysis. However, there were no relationships between anti-HCV therapy and its therapeutic duration, and SS risk in multivariable Cox regression. In conclusion, anti-HCV intervention therapy was not associated with lower SS risk in HCV-infected patients, but associated with lower death risk.
Collapse
|
18
|
Wu X, Peng Y, Li J, Zhang P, Liu Z, Lu H, Peng L, Zhou J, Fei Y, Zeng X, Zhao Y, Zhang W. Single-Cell Sequencing of Immune Cell Heterogeneity in IgG4-Related Disease. Front Immunol 2022; 13:904288. [PMID: 35693817 PMCID: PMC9184520 DOI: 10.3389/fimmu.2022.904288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022] Open
Abstract
Background The IgG4-related disease (IgG4-RD) is an immune-mediated disorder with fibrotic manifestations. However, the transcriptional profiles of immune cell subsets at single-cell level are unknown. Herein, single-cell sequencing was used to assess the specific cell subpopulations and pathways in peripheral blood mononuclear cells (PBMCs) of IgG4-RD. Methods Single-cell sequencing was performed using the PBMCs from four patients with IgG4-RD and three healthy controls (HCs). Functional enrichment and cell analysis were performed through re-clustering of PBMCs to assess functional pathways and intercellular communication networks in IgG4-RD. Western blot and flow cytometry were used to verify sequencing and functional enrichment results. Results Four major cell types and 21 subtypes were identified. Further subclustering demonstrated that plasma B-cell proportions increased with increasing glycolysis/gluconeogenesis activity in IgG4-RD. Re-clustering of myeloid cells showed that EGR1 and CD36 expressions were significantly increased in CD14+ monocytes of IgG4-RD, as validated by Western blot analysis. Moreover, tumor necrosis factor (TNF) production pathways were positively regulated in CD14+ monocytes of IgG4-RD. In vitro stimulation showed that CD14+ monocytes of IgG4-RD could secrete higher levels of TNF-α . Notably, the proportions of CD8 central memory T (TCM) and TIGIT+ CD8 cytotoxic T (CTL) increased in patients with IgG4-RD compared with HCs. Further interaction analysis showed that B cell activation factor (BAFF) signaling pathways were enriched from myeloid cells subsets to B cells. Conclusion This study enhances the understanding of the cellular heterogeneity and transcriptional features involved in the pathogenesis of IgG4-RD, providing key clinical implications.
Collapse
Affiliation(s)
- Xunyao Wu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- Clinical Biobank, Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Peng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Jieqiong Li
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Panpan Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Zheng Liu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Hui Lu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Linyi Peng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Yunyun Fei
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Yan Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- *Correspondence: Yan Zhao, ; Wen Zhang,
| | - Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- *Correspondence: Yan Zhao, ; Wen Zhang,
| |
Collapse
|
19
|
B-Cell Activating Factor Increases Related to Adiposity, Insulin Resistance, and Endothelial Dysfunction in Overweight and Obese Subjects. Life (Basel) 2022; 12:life12050634. [PMID: 35629302 PMCID: PMC9146198 DOI: 10.3390/life12050634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity (OB) is a major healthcare problem that results from long-term energy imbalance. Adipokines and pro-inflammatory cytokines facilitate adipose tissue (AT) remodeling to safely store excess nutrients. B-cell activating factor (BAFF) is a newly described adipokine whose role in enhancing adipogenesis has been reported. The present study aimed to evaluate serum BAFF association with adiposity distribution, serum adipokines, pro-inflammatory cytokines, and metabolic and endothelial dysfunction markers. The study included 124 young Mexican adults with no diagnosed comorbidities, divided according to their BMI. Anthropometric measurements, blood counts, and serum molecules (i.e., glucose, lipid profile, insulin, leptin, pro- and anti-inflammatory cytokines, von Willebrand factor (vWF), and BAFF) were assessed. The analysis showed positive correlation between BAFF and increased fat mass in all anthropometric measurements (p < 0.0001). BAFF augmentation was related to systemic inflammatory environment (p < 0.05), and linked with insulin resistance status (p < 0.05). BAFF increment was also correlated with early endothelial damage markers such as vWF (p < 0.0001). Linear regression analysis showed a role for BAFF in predicting serum vWF concentrations (p < 0.01). In conclusion, our data show that BAFF is an adipokine dynamically related to OB progression, insulin resistance status, and systemic inflammatory environment, and is a predictor of soluble vWF augmentation, in young overweight and obese Mexican subjects.
Collapse
|
20
|
Shao Y, Fu J, Zhan T, Ye L, Yu C. Fangchinoline inhibited proliferation of neoplastic B-lymphoid cells and alleviated Sjögren's syndrome-like responses in NOD/Ltj mice via the Akt/mTOR pathway. Curr Mol Pharmacol 2022; 15:969-979. [PMID: 35176991 DOI: 10.2174/1874467215666220217103233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/11/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
Backgound: Fangchinoline is a bisbenzylisoquinoline alkaloid extracted from Stephania tetrandra S. Moore that is conventionally used as an analgesic, antirheumatic, and antihypertensive drug in China. However, the application of Fanchinoline in Sjögren syndrome (SS) remains unreported. OBJECTIVE This study aimed to identify the potential role of Fangchinoline in the treatment of SS via altering Akt/mTOR signaling. METHODS First, we examined levels of p-Akt and p-mTOR in infiltrating lymphocytes of labial glands from SS patients by immunohistochemistry. Then, the effects of Fangchinoline on Raji cells and Daudi cells were investigated using the CCK-8 assay, and propidium iodide (PI)/RNase and Annexin V/PI staining. Western blotting was used to identify the levels of Akt, p-Akt(ser473), mTOR, and p-mTOR. For in vivo analyses, NOD/Ltj and wild-type ICR mice were treated with a Fangchinoline solution, a LY294002 solution (an inhibitor of the PI3K/Akt/mTOR pathway) or their solvent for 28 days. Then, salivary flow assays and hematoxylin and eosin staining of submandibular glands were performed to determine the severity of SS-like responses in the mice. RESULTS Immunohistochemical staining of labial glands from SS patients showed that activation of p-Akt and p-mTOR in infiltrating lymphocytes might be correlated with SS development. In vitro, Fangchinoline and LY294002 inhibited proliferation, induced cell cycle arrest, and promoted apoptosis in Raji and Daudi cells by altering Akt/mTOR signaling. In vivo, Fangchinoline and LY294002 significantly improved the salivary secretion by NOD/Ltj mice and reduced the number of lymphocytic foci in the submandibular glands. CONCLUSION These results indicated that Fangchinoline could effectively inhibit the proliferation of neoplastic B-lymphoid cells and reduce SS-like responses in NOD/Ltj mice. Our study highlights the potential value of the clinical application of Fangchinoline for SS treatment.
Collapse
Affiliation(s)
- Yanxiong Shao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiayao Fu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tianle Zhan
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lei Ye
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chuangqi Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
21
|
Ren Y, Cui G, Gao Y. Research progress on inflammatory mechanism of primary Sjögren syndrome. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:783-794. [PMID: 35347914 PMCID: PMC8931614 DOI: 10.3724/zdxbyxb-2021-0072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/30/2021] [Indexed: 06/14/2023]
Abstract
Primary Sjögren syndrome is an autoimmune disease, in which a large number of lymphocytes infiltrate the exocrine glands and cause gland dysfunction. Its pathogenesis is related to the chronic inflammation of the exocrine glands caused by genetic factors, immunodeficiency or viral infection. Long-term inflammation leads to accelerated apoptosis of epithelial cells, disordered gland structure, increased expression of proinflammatory cytokine such as CXC subfamily ligand (CXCL) 12, CXCL13, B cell-activating factor (BAF), interleukin (IL)-6, interferon (IFN)-γ and tumor necrosis factor (TNF)-α in submandibular gland. With the action of antigen-presenting cells such as dendritic cells and macrophages, lymphocytes (mainly B cells) are induced to mature in secondary lymphoid organs and migrate to the submandibular gland to promotes the formation of germinal centers and the synthesis of autoantibodies. Meanwhile, innate lymphocytes, vascular endothelial cells and mucosa-associated constant T cells as important immune cells, also participated in the inflammatory response of the submandibular gland in primary Sjögren syndrome through different mechanisms. This process involves the activation of multiple signal pathways such as JAK/STAT, MAPK/ERK, PI3K/AKT/mTOR, PD-1/PD-L1, TLR/MyD88/NF-κB, BAF/BAF-R and IFN. These signaling pathways interact with each other and are intricately complex, causing lymphocytes to continuously activate and invade the submandibular glands. This article reviews the latest literature to clarify the mechanism of submandibular gland inflammation in primary Sjögren syndrome, and to provide insights for further research.
Collapse
|
22
|
Greaves RB, Chen D, Green EA. Thymic B Cells as a New Player in the Type 1 Diabetes Response. Front Immunol 2021; 12:772017. [PMID: 34745148 PMCID: PMC8566354 DOI: 10.3389/fimmu.2021.772017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 12/27/2022] Open
Abstract
Type 1 diabetes (T1d) results from a sustained autoreactive T and B cell response towards insulin-producing β cells in the islets of Langerhans. The autoreactive nature of the condition has led to many investigations addressing the genetic or cellular changes in primary lymphoid tissues that impairs central tolerance- a key process in the deletion of autoreactive T and B cells during their development. For T cells, these studies have largely focused on medullary thymic epithelial cells (mTECs) critical for the effective negative selection of autoreactive T cells in the thymus. Recently, a new cellular player that impacts positively or negatively on the deletion of autoreactive T cells during their development has come to light, thymic B cells. Normally a small population within the thymus of mouse and man, thymic B cells expand in T1d as well as other autoimmune conditions, reside in thymic ectopic germinal centres and secrete autoantibodies that bind selective mTECs precipitating mTEC death. In this review we will discuss the ontogeny, characteristics and functionality of thymic B cells in healthy and autoimmune settings. Furthermore, we explore how in silico approaches may help decipher the complex cellular interplay of thymic B cells with other cells within the thymic microenvironment leading to new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Richard B Greaves
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| | - Dawei Chen
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| | - E Allison Green
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
23
|
Chowdhury F, Tappuni A, Bombardieri M. Biological Therapy in Primary Sjögren's Syndrome: Effect on Salivary Gland Function and Inflammation. Front Med (Lausanne) 2021; 8:707104. [PMID: 34336905 PMCID: PMC8319401 DOI: 10.3389/fmed.2021.707104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic, systemic autoimmune disease. It is the second most common rheumatic autoimmune disorder, affecting 0.7% of European Americans and up to 1% of people globally. pSS is characterized by the impaired secretory function of exocrine glands, including salivary and lachrymal glands. A lymphocytic infiltration of these organs leads to the common and debilitating symptoms of oral and ocular dryness, majorly affecting the quality of life of these patients. Currently, no disease-modifying drug has been approved for the treatment of pSS, with therapies largely aimed at relieving symptoms of dry mouth and dry eyes. In particular, management of oral dryness still represents a major unmet clinical need in pSS and a significant burden for patients with this condition. Recently, several randomized clinical trials in pSS with biological therapies targeting specific mechanistic pathways implicated in the disease pathogenesis, including B-cell hyperactivity, T-cell co-stimulation and the aberrant role of cytokines, have been completed with mixed results. In this review, we summarize evidence from recent clinical trials investigating biological therapy in pSS, specifically highlighting efficacy, or lack thereof, in modulating local inflammation and improving salivary gland function.
Collapse
Affiliation(s)
- Farzana Chowdhury
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Anwar Tappuni
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| |
Collapse
|
24
|
Du W, Han M, Zhu X, Xiao F, Huang E, Che N, Tang X, Zou H, Jiang Q, Lu L. The Multiple Roles of B Cells in the Pathogenesis of Sjögren's Syndrome. Front Immunol 2021; 12:684999. [PMID: 34168653 PMCID: PMC8217880 DOI: 10.3389/fimmu.2021.684999] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is a chronic autoimmune disease characterized by lymphocytic infiltration and tissue destruction of exocrine glands such as salivary glands. Although the formation of ectopic lymphoid tissue in exocrine glands and overproduction of autoantibodies by autoreactive B cells highlight the critical involvement of B cells in disease development, the precise roles of various B cell subsets in pSS pathogenesis remain partially understood. Current studies have identified several novel B cell subsets with multiple functions in pSS, among which autoreactive age-associated B cells, and plasma cells with augmented autoantibody production contribute to the disease progression. In addition, tissue-resident Fc Receptor-Like 4 (FcRL4)+ B cell subset with enhanced pro-inflammatory cytokine production serves as a key driver in pSS patients with mucosa-associated lymphoid tissue (MALT)-lymphomas. Recently, regulatory B (Breg) cells with impaired immunosuppressive functions are found negatively correlated with T follicular helper (Tfh) cells in pSS patients. Further studies have revealed a pivotal role of Breg cells in constraining Tfh response in autoimmune pathogenesis. This review provides an overview of recent advances in the identification of pathogenic B cell subsets and Breg cells, as well as new development of B-cell targeted therapies in pSS patients.
Collapse
Affiliation(s)
- Wenhan Du
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Man Han
- Division of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxia Zhu
- Department of Rheumatology, Huashan Hospital and Fudan University, Shanghai, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Enyu Huang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Nan Che
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | - Xiaopo Tang
- Division of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital and Fudan University, Shanghai, China
| | - Quan Jiang
- Division of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.,Chongqing International Institute for Immunology, Chongqing, China
| |
Collapse
|
25
|
Chatzis L, Vlachoyiannopoulos PG, Tzioufas AG, Goules AV. New frontiers in precision medicine for Sjogren's syndrome. Expert Rev Clin Immunol 2021; 17:127-141. [PMID: 33478279 DOI: 10.1080/1744666x.2021.1879641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Sjögren's syndrome is a unique systemic autoimmune disease, placed in the center of systemic autoimmunity and at the crossroads of autoimmunity and lymphoproliferation. The diverse clinical picture of the disease, the inefficacy of current biologic treatments, and the co-existence with lymphoma conferring to the patients' morbidity and mortality force the scientific community to review disease pathogenesis and reveal the major implicated cellular and molecular elements.Areas covered: Biomarkers for early diagnosis, prediction, stratification, monitoring, and targeted treatments can serve as a tool to interlink and switch from the clinical phenotyping of the disease into a more sophisticated classification based on the underlying critical molecular pathways and endotypes. Such a transition may define the establishment of the so-called precision medicine era in which patients' management will be based on grouping according to pathogenetically related biomarkers. In the current work, literature on Sjogren's syndrome covering several research fields including clinical, translational, and basic research has been reviewed.Expert opinion: The perspectives of clinical and translational research are anticipated to define phenotypic clustering of high-risk pSS patients and link the clinical picture of the disease with fundamental molecular mechanisms and molecules implicated in pathogenesis.
Collapse
Affiliation(s)
- Loukas Chatzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas V Goules
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|