1
|
Barbosa P, Pinho A, Lázaro A, Paula D, Tralhão JG, Paiva A, Pereira MJ, Carvalho E, Laranjeira P. Bariatric Surgery Induces Alterations in the Immune Profile of Peripheral Blood T Cells. Biomolecules 2024; 14:219. [PMID: 38397455 PMCID: PMC10886753 DOI: 10.3390/biom14020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Low-grade inflammation is closely linked to obesity and obesity-related comorbidities; therefore, immune cells have become an important topic in obesity research. Here, we performed a deep phenotypic characterization of circulating T cells in people with obesity, using flow cytometry. Forty-one individuals with obesity (OB) and clinical criteria for bariatric surgery were enrolled in this study. We identified and quantified 44 different circulating T cell subsets and assessed their activation status and the expression of immune-checkpoint molecules, immediately before (T1) and 7-18 months after (T2) the bariatric surgery. Twelve age- and sex-matched healthy individuals (nOB) were also recruited. The OB participants showed higher leukocyte counts and a higher percentage of neutrophils. The percentage of circulating Th1 cells were negatively correlated to HbA1c and insulin levels. OB Th1 cells displayed a higher activation status and lower PD-1 expression. The percentage of Th17 and Th1/17 cells were increased in OB, whereas the CD4+ Tregs' percentage was decreased. Interestingly, a higher proportion of OB CD4+ Tregs were polarized toward Th1- and Th1/17-like cells and expressed higher levels of CCR5. Bariatric surgery induced the recovery of CD4+ Treg cell levels and the expansion and activation of Tfh and B cells. Our results show alterations in the distribution and phenotype of circulating T cells from OB people, including activation markers and immune-checkpoint proteins, demonstrating that different metabolic profiles are associated to distinct immune profiles, and both are modulated by bariatric surgery.
Collapse
Affiliation(s)
- Pedro Barbosa
- University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), 3030-789 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal;
| | - Aryane Pinho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal;
- Department of Life Science, University of Coimbra, 3000-456 Coimbra, Portugal
| | - André Lázaro
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (A.L.); (D.P.); (J.G.T.)
- Clinical Academic Center of Coimbra (CACC), 3004-061 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diogo Paula
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (A.L.); (D.P.); (J.G.T.)
- Clinical Academic Center of Coimbra (CACC), 3004-061 Coimbra, Portugal
| | - José G. Tralhão
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (A.L.); (D.P.); (J.G.T.)
- Clinical Academic Center of Coimbra (CACC), 3004-061 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Paiva
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-061 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3000-076 Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, 3046-854 Coimbra, Portugal
| | - Maria J. Pereira
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, SE-75185 Uppsala, Sweden;
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal;
| | - Paula Laranjeira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-061 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3000-076 Coimbra, Portugal
| |
Collapse
|
2
|
Barbosa P, Pinho A, Lázaro A, Rosendo-Silva D, Paula D, Campos J, Tralhão JG, Pereira MJ, Paiva A, Laranjeira P, Carvalho E. CD8 + Treg cells play a role in the obesity-associated insulin resistance. Life Sci 2024; 336:122306. [PMID: 38030055 DOI: 10.1016/j.lfs.2023.122306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Obesity-related chronic low-grade inflammation may trigger insulin resistance and type 2 diabetes (T2D) development. Cells with regulatory phenotype have been shown to be reduced during obesity, especially CD4+ Treg cells. However, little is known about the CD8+ Treg cells. Therefore, we aim to characterize the CD8+ Treg cells in human peripheral blood and adipose tissue, specifically, to address the effect of obesity and insulin resistance in this regulatory immune cell population. A group of 42 participants with obesity (OB group) were recruited. Fourteen of them were evaluated pre- and post-bariatric surgery. A group of age- and sex-matched healthy volunteers (n = 12) was also recruited (nOB group). CD8+ Treg cell quantification and phenotype were evaluated by flow cytometry, in peripheral blood (PB), subcutaneous (SAT), and visceral adipose tissues (VAT). The OB group displayed a higher percentage of CD8+ Treg cells in PB, compared to the nOB. In addition, they were preferentially polarized into Tc1- and Tc1/17-like CD8+ Treg cells, compared to nOB. Moreover, SAT displayed the highest content of CD8+ Tregs infiltrated, compared to PB or VAT, while CD8+ Tregs infiltrating VAT displayed a higher percentage of cells with Tc1-like phenotype. Participants with pre-diabetes displayed a reduced percentage of TIM-3+CD8+ Tregs in circulation, and PD-1+CD8+ Tregs infiltrated in the VAT. An increase in the percentage of circulating Tc1-like CD8+ Treg cells expressing PD-1 was observed post-surgery. In conclusion, obesity induces significant alterations in CD8+ Treg cells, affecting their percentage and phenotype, as well as the expression of important immune regulatory molecules.
Collapse
Affiliation(s)
- Pedro Barbosa
- University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
| | - Aryane Pinho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; Department of Life Science, University of Coimbra, 3000-456 Coimbra, Portugal
| | - André Lázaro
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Daniela Rosendo-Silva
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diogo Paula
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - José Campos
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - José G Tralhão
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Artur Paiva
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3000-076 Coimbra, Portugal; Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, 3046-854 Coimbra, Portugal
| | - Paula Laranjeira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3000-076 Coimbra, Portugal.
| | - Eugénia Carvalho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal.
| |
Collapse
|
3
|
Koletzko S, Le Thi TG, Zhelyazkova A, Osterman A, Wichert SP, Breiteneicher S, Koletzko L, Schwerd T, Völk S, Jebrini T, Horak J, Tuschen M, Choukér A, Hornung V, Keppler OT, Koletzko B, Török HP, Adorjan K. A prospective longitudinal cohort study on risk factors for COVID-19 vaccination failure (RisCoin): methods, procedures and characterization of the cohort. Clin Exp Med 2023; 23:4901-4917. [PMID: 37659994 PMCID: PMC10725370 DOI: 10.1007/s10238-023-01170-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/11/2023] [Indexed: 09/04/2023]
Abstract
The primary objective of the RisCoin study was to investigate the interplay of genetic, metabolic, and lifestyle factors as well as stress levels on influencing the humoral immune response after at least two COVID-19 vaccinations, primarily with mRNAs, and the risk of SARS-CoV-2 breakthrough infections during follow-up. Here, we describe the study design, procedures, and study population. RisCoin is a prospective, monocentric, longitudinal, observational cohort study. Between October and December 2021, 4515 participants with at least two COVID-19 vaccinations, primarily BNT162b2 and mRNA-1273, were enrolled at the LMU University Hospital of Munich, thereof > 4000 healthcare workers (HCW), 180 patients with inflammatory bowel disease under immunosuppression, and 119 patients with mental disorders. At enrollment, blood and saliva samples were collected to measure anti-SARS-CoV-2 antibodies, their neutralizing capacity against Omicron-BA.1, stress markers, metabolomics, and genetics. To ensure the confidential handling of sensitive data of study participants, we developed a data protection concept and a mobile application for two-way communication. The application allowed continuous data reporting, including breakthrough infections by the participants, despite irreversible anonymization. Up to 1500 participants attended follow-up visits every two to six months after enrollment. The study gathered comprehensive data and bio-samples of a large representative HCW cohort and two patient groups allowing analyses of complex interactions. Our data protection concept combined with the mobile application proves the feasibility of longitudinal assessment of anonymized participants. Our concept may serve as a blueprint for other studies handling sensitive data on HCW.
Collapse
Affiliation(s)
- Sibylle Koletzko
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany.
- Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium, Medicum University of Warmia and Mazury, Olsztyn, Poland.
| | - Thu Giang Le Thi
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Ana Zhelyazkova
- Institut für Notfallmedizin und Medizinmanagement (INM), Klinikum der Universität München, LMU München, Munich, Germany
| | - Andreas Osterman
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Sven P Wichert
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany
| | | | - Leandra Koletzko
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Stefanie Völk
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Tarek Jebrini
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany
| | - Jeannie Horak
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Marina Tuschen
- Department of Anesthesiology, Laboratory of Translational Research Stress and Immunity, LMU University Hospital, LMU Munich, Munich, Germany
| | - Alexander Choukér
- Department of Anesthesiology, Laboratory of Translational Research Stress and Immunity, LMU University Hospital, LMU Munich, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, LMU Munich, Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Berthold Koletzko
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Helga P Török
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Kristina Adorjan
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany.
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany.
- Center for International Health (CIH), LMU Munich, Munich, Germany.
| |
Collapse
|
4
|
Salgado Del Riego E, Saiz ML, Corte-Iglesias V, Leoz Gordillo B, Martin-Martin C, Rodríguez-Pérez M, Escudero D, Lopez-Larrea C, Suarez-Alvarez B. Divergent SARS-CoV-2-specific T cell responses in intensive care unit workers following mRNA COVID-19 vaccination. Front Immunol 2022; 13:942192. [PMID: 36275696 PMCID: PMC9582956 DOI: 10.3389/fimmu.2022.942192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The cellular immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in response to full mRNA COVID-19 vaccination could be variable among healthy individuals. Studies based only in specific antibody levels could show an erroneous immune protection at long times. For that, we analyze the antibody levels specific to the S protein and the presence of SARS-CoV-2-specific T cells by ELISpot and AIM assays in intensive care unit (ICU) workers with no antecedents of COVID-19 and vaccinated with two doses of mRNA COVID-19 vaccines. All individuals were seronegative for the SARS-CoV-2 protein S before vaccination (Pre-v), but 34.1% (14/41) of them showed pre-existing T lymphocytes specific for some viral proteins (S, M and N). One month after receiving two doses of COVID-19 mRNA vaccine (Post-v1), all cases showed seroconversion with high levels of total and neutralizing antibodies to the spike protein, but six of them (14.6%) had no T cells reactive to the S protein. Specifically, they lack of specific CD8+ T cells, but maintain the contribution of CD4+ T cells. Analysis of the immune response against SARS-CoV-2 at 10 months after full vaccination (Post-v10), exhibited a significant reduction in the antibody levels (p<0.0001) and protein S-reactive T cells (p=0.0073) in all analyzed individuals, although none of the individuals become seronegative and 77% of them maintained a competent immune response. Thus, we can suggest that the immune response to SARS-CoV-2 elicited by the mRNA vaccines was highly variable among ICU workers. A non-negligible proportion of individuals did not develop a specific T cell response mediated by CD8+ T cells after vaccination, that may condition the susceptibility to further viral infections with SARS-CoV-2. By contrast, around 77% of individuals developed strong humoral and cellular immune responses to SARS-CoV-2 that persisted even after 10 months. Analysis of the cellular immune response is highly recommended for providing exact information about immune protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Estefanía Salgado Del Riego
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - María Laura Saiz
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Viviana Corte-Iglesias
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Blanca Leoz Gordillo
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Cristina Martin-Martin
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Mercedes Rodríguez-Pérez
- Servicio de Microbiología, Hospital Universitario Central de Asturias, Oviedo, Spain
- Translational Microbiology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Dolores Escudero
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, Spain
- Translational Microbiology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carlos Lopez-Larrea
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
- Servicio de Inmunología, Hospital Universitario Central De Asturias, Oviedo, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|