1
|
Chen T, Jiang H, He Y, Shen Y, Fang J, Huang Z, Shen Y, Chen X. Histopathological, physiological, and multi-omics insights into the hepatotoxicity mechanism of nanopolystyrene and/or diclofenac in Mylopharyngodon piceus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122894. [PMID: 37944890 DOI: 10.1016/j.envpol.2023.122894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/08/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Nanopolystyrene (NP) and diclofenac (DCF) are common environmental contaminants in the aquatic ecosystem; therefore, the present study aimed to investigate the hepatotoxicity of NP and/or DCF exposure on aquatic organisms and the underlying mechanisms. Juvenile Mylopharyngodon piceus were used as a model organism to study the effects of NP and/or DCF exposure at environmentally relevant concentrations for 21 days. Subchronic exposure to NP and/or DCF resulted in liver histological damage. In the NP group, the presence of large lipid droplets was observed, whereas the DCF group exhibited marked hepatic sinusoidal dilatation accompanied by inflammation. Additionally, this exposure induced liver oxidative stress, as evidenced by the changes in several physiological parameters, including catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), reactive oxygen species (ROS), and malondialdehyde (MDA). Integrated transcriptomic and metabolomic analysis was performed to further investigate the molecular mechanism underlying hepatotoxicity. Multi-omics analysis demonstrated, for the first time to our knowledge, that NP induced hepatic steatosis mainly through activating the glycerol-3-phosphate pathway and inhibiting VLDL assembly by targeting several key enzyme genes including GPAT, DGAT, ACSL, APOB, and MTTP. Furthermore, NP exposure disrupted arachidonic acid metabolism, which induced the release of inflammatory factors and inhibited the release of anti-inflammatory factors, ultimately causing liver inflammation in M. piceus. In contrast, DCF induced interleukin production and downregulated KLF2, causing hepatic sinusoidal dilatation with inflammation in juvenile M. piceus, which is consistent with the finding of JAK-STAT signaling pathway activation. In addition, the upregulated AMPK signaling pathway in the DCF group suggested perturbation of energy metabolism. Collectively, these findings provide novel insights into the molecular mechanism of the multiple hepatotoxicity endpoints of NP and/or DCF exposure in aquatic organisms.
Collapse
Affiliation(s)
- Tiantian Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hewei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaoji He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yawei Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiajie Fang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zequn Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yubang Shen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Chen T, Jiang H, Shen Y, Cui T, Yang Z, Liu Y, Zhao J, Chen X. Impacts of exposure to nanopolystyrene and/or chrysene at ambient concentrations on neurotoxicity in Siniperca chuatsi. CHEMOSPHERE 2023; 340:139830. [PMID: 37597625 DOI: 10.1016/j.chemosphere.2023.139830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Health risks caused by widespread environmental pollutants such as nanopolystyrene (NP) and chrysene (CHR) in aquatic ecosystems have aroused considerable concern. The present study established juvenile Mandarin fish (Siniperca chuatsi) models of NP and/or CHR exposure at ambient concentrations for 21 days to systematically investigate the underlying neurotoxicity mechanisms. The results showed that single and combined exposure to NP and CHR not only reduced the density of small neuronal cells in the grey matter layer of the optic tectum, but also induced brain oxidative stress according to physiological parameters including CAT, GSH-Px, SOD, T-AOC, and MDA. The co-exposure alleviated the histopathological damage, compared to NP and CHR single exposure group. These results indicate that NP and/or CHR causes neurotoxicity in S. chuatsi, in accordance with decreased acetylcholinesterase activity and altered expression of several marker genes of nervous system functions and development including c-fos, shha, elavl3, and mbpa. Transcriptomics analysis was performed to further investigate the potential molecular mechanisms of neurotoxicity. We propose that single NP and co-exposure induced oxidative stress activates MMP, which degrades tight junction proteins according to decreased expression of claudin, JAM, caveolin and TJP, ultimately damaging the integrity of the blood-brain barrier in S. chuatsi. Remarkably, the co-exposure exacerbated the blood-brain barrier disruption. More importantly, single NP and co-exposure induced neuronal apoptosis mainly activates the expression of apoptosis-related genes through the death receptor apoptosis pathway, while CHR acted through both death receptor apoptosis and endoplasmic reticulum apoptosis pathways. Additionally, subchronic CHR exposure caused neuroinflammation, supported by activation of TNF/NF-κB and JAK-STAT signaling pathways via targeting-related genes, while the co-exposure greatly alleviated the neuroinflammation. Collectively, our findings illuminate the underlying neurotoxicity molecular mechanisms of NP and/or CHR exposure on aquatic organisms.
Collapse
Affiliation(s)
- Tiantian Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hewei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yawei Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Tingwen Cui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zonglin Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yufei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinliang Zhao
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
3
|
Elmas E, Saljoughian N, de Souza Fernandes Pereira M, Tullius BP, Sorathia K, Nakkula RJ, Lee DA, Naeimi Kararoudi M. CRISPR Gene Editing of Human Primary NK and T Cells for Cancer Immunotherapy. Front Oncol 2022; 12:834002. [PMID: 35449580 PMCID: PMC9016158 DOI: 10.3389/fonc.2022.834002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Antitumor activity of immune cells such as T cells and NK cells has made them auspicious therapeutic regimens for adaptive cancer immunotherapy. Enhancing their cytotoxic effects against malignancies and overcoming their suppression in tumor microenvironment (TME) may improve their efficacy to treat cancers. Clustered, regularly interspaced short palindromic repeats (CRISPR) genome editing has become one of the most popular tools to enhance immune cell antitumor activity. In this review we highlight applications and practicability of CRISPR/Cas9 gene editing and engineering strategies for cancer immunotherapy. In addition, we have reviewed several approaches to study CRISPR off-target effects.
Collapse
Affiliation(s)
- Ezgi Elmas
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, United States
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Noushin Saljoughian
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- CRISPR/Gene Editing Core, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Marcelo de Souza Fernandes Pereira
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Brian P. Tullius
- Pediatric Cellular Therapy, AdventHealth for Children, Orlando, FL, United States
| | - Kinnari Sorathia
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Robin J. Nakkula
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Dean A. Lee
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- CRISPR/Gene Editing Core, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Han Z, Estephan RJ, Wu X, Su C, Yuan YC, Qin H, Kil SH, Morales C, Schmolze D, Sanchez JF, Tian L, Yu J, Kortylewski M, Rosen ST, Querfeld C. MicroRNA Regulation of T-Cell Exhaustion in Cutaneous T Cell Lymphoma. J Invest Dermatol 2022; 142:603-612.e7. [PMID: 34774537 PMCID: PMC8860868 DOI: 10.1016/j.jid.2021.08.447] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 10/19/2022]
Abstract
Cutaneous T cell lymphoma (CTCL) is characterized by a background of chronic inflammation, where malignant CTCL cells escape immune surveillance. To study how microRNAs (miRs) regulate T-cell exhaustion, we performed miR sequencing analysis, qRT-PCR, and in situ hybridization on 45 primary CTCL samples, three healthy skin samples, and CTCL cell lines, identifying miR-155-5p, miR-130b-3p, and miR-21-3p. Moreover, miR-155-5p, miR-130b-3p, and miR-21-3p positively correlated with immune checkpoint gene expression in lesional skin samples and were enriched in the IL-6/Jak/signal transducer and activator of transcription signaling pathway by gene set enrichment analysis. Further gene sequencing analysis showed decreased mRNA expression of the major negative regulators of Jak/signal transducer and activator of transcription signaling: SOCS, PIAS, and PTPN. Transfection of MyLa and HuT78 cells with anti-miR-155-5p, anti‒miR-21-3p, and anti‒miR-130b revealed a considerable increase in SOCS proteins along with a significant decrease in the levels of activated signal transducer and activator of transcription 3 and immune checkpoint surface protein expression as well as decreased cell proliferation. Downregulation of miR-155, miR-130, and miR-21 in CTCL cell lines decreased CTCL cell growth and facilitated CD8+ T-cell-mediated cytotoxic activity, with concordant production of IFN-γ and CD107a expression. Our results describe the mechanisms of miR-induced T-cell exhaustion, which provide a foundation for developing synthetic anti-miRs to therapeutically target the tumor microenvironment in CTCL.
Collapse
Affiliation(s)
- Zhen Han
- Division of Dermatology, Duarte, CA, USA,Beckman Research Institute, Duarte, CA, USA
| | - Renee J. Estephan
- Irell and Manella Graduate School of Biological Sciences, Duarte, CA, USA
| | - Xiwei Wu
- Beckman Research Institute, Duarte, CA, USA,Department of Integrative Genomics, Duarte, CA, USA
| | - Chingyu Su
- Division of Dermatology, Duarte, CA, USA,Beckman Research Institute, Duarte, CA, USA
| | - Yate-Ching Yuan
- Beckman Research Institute, Duarte, CA, USA,Division of Translational Bioinformatics, Center for Informatics, Duarte, CA, USA
| | - Hanjun Qin
- Beckman Research Institute, Duarte, CA, USA,Department of Integrative Genomics, Duarte, CA, USA
| | - Sung Hee Kil
- Division of Dermatology, Duarte, CA, USA,Beckman Research Institute, Duarte, CA, USA
| | - Corey Morales
- Beckman Research Institute, Duarte, CA, USA,Department of Hematology/ Hematopoietic Cell Transplantation, Duarte, CA, USA
| | | | - James F. Sanchez
- Beckman Research Institute, Duarte, CA, USA,Department of Hematology/ Hematopoietic Cell Transplantation, Duarte, CA, USA
| | - Lei Tian
- Beckman Research Institute, Duarte, CA, USA,Department of Hematology/ Hematopoietic Cell Transplantation, Duarte, CA, USA
| | - Jianhua Yu
- Beckman Research Institute, Duarte, CA, USA,Department of Hematology/ Hematopoietic Cell Transplantation, Duarte, CA, USA
| | - Marcin Kortylewski
- Beckman Research Institute, Duarte, CA, USA,Department of Immuno-Oncology, Duarte, CA, USA
| | - Steven T. Rosen
- Beckman Research Institute, Duarte, CA, USA,Department of Hematology/ Hematopoietic Cell Transplantation, Duarte, CA, USA
| | - Christiane Querfeld
- Division of Dermatology, Department of Surgery, City of Hope National Medical Center, Duarte, California, USA; Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA; Department of Pathology, City of Hope National Medical Center, Duarte, California, USA.
| |
Collapse
|
5
|
Prêle CM, Iosifidis T, McAnulty RJ, Pearce DR, Badrian B, Miles T, Jamieson SE, Ernst M, Thompson PJ, Laurent GJ, Knight DA, Mutsaers SE. Reduced SOCS1 Expression in Lung Fibroblasts from Patients with IPF Is Not Mediated by Promoter Methylation or Mir155. Biomedicines 2021; 9:biomedicines9050498. [PMID: 33946612 PMCID: PMC8147237 DOI: 10.3390/biomedicines9050498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 01/16/2023] Open
Abstract
The interleukin (IL)-6 family of cytokines and exaggerated signal transducer and activator of transcription (STAT)3 signaling is implicated in idiopathic pulmonary fibrosis (IPF) pathogenesis, but the mechanisms regulating STAT3 expression and function are unknown. Suppressor of cytokine signaling (SOCS)1 and SOCS3 block STAT3, and low SOCS1 levels have been reported in IPF fibroblasts and shown to facilitate collagen production. Fibroblasts and lung tissue from IPF patients and controls were used to examine the mechanisms underlying SOCS1 down-regulation in IPF. A significant reduction in basal SOCS1 mRNA in IPF fibroblasts was confirmed. However, there was no difference in the kinetics of activation, and methylation of SOCS1 in control and IPF lung fibroblasts was low and unaffected by 5′-aza-2′-deoxycytidine’ treatment. SOCS1 is a target of microRNA-155 and although microRNA-155 levels were increased in IPF tissue, they were reduced in IPF fibroblasts. Therefore, SOCS1 is not regulated by SOCS1 gene methylation or microRNA155 in these cells. In conclusion, we confirmed that IPF fibroblasts had lower levels of SOCS1 mRNA compared with control fibroblasts, but we were unable to determine the mechanism. Furthermore, although SOCS1 may be important in the fibrotic process, we were unable to find a significant role for SOCS1 in regulating fibroblast function.
Collapse
Affiliation(s)
- Cecilia M. Prêle
- Institute for Respiratory Health, Nedland, WA 6009, Australia; (C.M.P.); (T.I.); (B.B.); (T.M.); (P.J.T.); (G.J.L.)
- Centre for Respiratory Health and Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Nedland, WA 6009, Australia
| | - Thomas Iosifidis
- Institute for Respiratory Health, Nedland, WA 6009, Australia; (C.M.P.); (T.I.); (B.B.); (T.M.); (P.J.T.); (G.J.L.)
| | - Robin J. McAnulty
- Centre for Inflammation and Tissue Repair, Rayne Institute, Department of Medicine, University College London, London WC1E 6JJ, UK; (R.J.M.); (D.R.P.)
| | - David R. Pearce
- Centre for Inflammation and Tissue Repair, Rayne Institute, Department of Medicine, University College London, London WC1E 6JJ, UK; (R.J.M.); (D.R.P.)
| | - Bahareh Badrian
- Institute for Respiratory Health, Nedland, WA 6009, Australia; (C.M.P.); (T.I.); (B.B.); (T.M.); (P.J.T.); (G.J.L.)
| | - Tylah Miles
- Institute for Respiratory Health, Nedland, WA 6009, Australia; (C.M.P.); (T.I.); (B.B.); (T.M.); (P.J.T.); (G.J.L.)
| | - Sarra E. Jamieson
- Telethon Kids Institute and Centre for Child Health Research, University of Western Australia, Nedlands, WA 6009, Australia;
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
| | - Philip J. Thompson
- Institute for Respiratory Health, Nedland, WA 6009, Australia; (C.M.P.); (T.I.); (B.B.); (T.M.); (P.J.T.); (G.J.L.)
| | - Geoffrey J. Laurent
- Institute for Respiratory Health, Nedland, WA 6009, Australia; (C.M.P.); (T.I.); (B.B.); (T.M.); (P.J.T.); (G.J.L.)
- Centre for Respiratory Health and Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Nedland, WA 6009, Australia
| | - Darryl A. Knight
- Faculty of Medicine, University of British Columbia (UBC), Vancouver, BC V6Z 1Y5, Canada;
| | - Steven E. Mutsaers
- Institute for Respiratory Health, Nedland, WA 6009, Australia; (C.M.P.); (T.I.); (B.B.); (T.M.); (P.J.T.); (G.J.L.)
- Centre for Respiratory Health and Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia, Nedland, WA 6009, Australia
- Correspondence: ; Tel.: +61-(0)8-6151-0891; Fax: +61-(0)8-6151-1027
| |
Collapse
|
6
|
Park JM, An JM, Han YM, Surh YJ, Hwang SJ, Kim SJ, Hahm KB. Walnut polyphenol extracts inhibit Helicobacter pylori-induced STAT3 Tyr705 phosphorylation through activation of PPAR-γ and SOCS1 induction. J Clin Biochem Nutr 2021. [DOI: 10.3164/jcbn.20-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Jeong Min An
- CHA Cancer Preventive Research Center, CHA Bio Complex, CHA University
| | | | | | | | | | - Ki Baik Hahm
- CHA Cancer Preventive Research Center, CHA Bio Complex, CHA University
- Medpacto Research Institute, Medpacto
| |
Collapse
|
7
|
YOSHIMURA A, AKI D, ITO M. SOCS, SPRED, and NR4a: Negative regulators of cytokine signaling and transcription in immune tolerance. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:277-291. [PMID: 34121041 PMCID: PMC8403526 DOI: 10.2183/pjab.97.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cytokines are important intercellular communication tools for immunity. Most cytokines utilize the JAK-STAT and Ras-ERK pathways to promote gene transcription and proliferation; however, this signaling is tightly regulated. The suppressor of cytokine signaling (SOCS) family and SPRED family are a representative negative regulators of the JAK-STAT pathway and the Ras-ERK pathway, respectively. The SOCS family regulates the differentiation and function of CD4+ T cells, CD8+ T cells, and regulatory T cells, and is involved in immune tolerance, anergy, and exhaustion. SPRED family proteins have been shown to inactivate Ras by recruiting the Ras-GTPase neurofibromatosis type 1 (NF1) protein. Human genetic analysis has shown that SOCS family members are strongly associated with autoimmune diseases, allergies, and tumorigenesis, and SPRED1 is involved in NF1-like syndromes and tumors. We also identified the NR4a family of nuclear receptors as a key transcription factor for immune tolerance that suppresses cytokine expression and induces various immuno-regulatory molecules including SOCS1.
Collapse
Affiliation(s)
- Akihiko YOSHIMURA
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Correspondence should be addressed: A. Yoshimura, Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan (e-mail: )
| | - Daisuke AKI
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Minako ITO
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Park JM, An JM, Han YM, Surh YJ, Hwang SJ, Kim SJ, Hahm KB. Walnut polyphenol extracts inhibit Helicobacter pylori-induced STAT3 Tyr705 phosphorylation through activation of PPAR-γ and SOCS1 induction. J Clin Biochem Nutr 2020; 67:248-256. [PMID: 33293765 PMCID: PMC7705089 DOI: 10.3164/jcbn.20-89] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022] Open
Abstract
The health beneficial effects of walnut plentiful of n-3 polyunsaturated fatty acid had been attributed to its anti-inflammatory and anti-oxidative properties against various clinical diseases. Since we have published Fat-1 transgenic mice overexpressing 3-desaturase significantly mitigated Helicobacter pylori (H. pylori)-associated gastric pathologies including rejuvenation of chronic atrophic gastritis and prevention of gastric cancer, in this study, we have explored the underlying molecular mechanisms of walnut against H. pylori infection. Fresh walnut polyphenol extracts (WPE) were found to suppress the phosphorylation and nuclear translocation of signal transducer and activator of transcription 3 (STAT3) induced by H. pylori infection in RGM-1 gastric mucosal cells. Notably, H. pylori infection significantly decreased suppressor of cytokine signaling 1 (SOCS1), but WPE induced expression of SOCS1, by which the suppressive effect of walnut extracts on STAT3Tyr705 phosphorylation was not seen in SOCS1 KO cells. WPE induced significantly increased nuclear translocation nuclear translocation of PPAR-γ in RGM1 cells, by which PPAR-γ KO inhibited transcription of SOCS1 and suppressive effect of WPE on p-STAT3Tyr705 was not seen. WPE inhibited the expression of c-Myc and IL-6/IL-6R signaling, which was attenuated in the RGM1 cells harboring SOCS1 specific siRNA. Conclusively, WPE inhibits H. pylori-induced STAT3 phosphorylation in a PPAR-γ and SOCS1-dependent manner.
Collapse
Affiliation(s)
- Jong Min Park
- College of Oriental Medicine, Daejeon University, Daehak-ro 62, Dong-gu, Daejeon, 34520, Korea
| | - Jeong Min An
- CHA Cancer Preventive Research Center, CHA Bio Complex, 330 Pangyo-dong, Bundang-gu, Seongnam, 13497, Korea
| | - Young Min Han
- Western Seoul Center, Korea Basic Science Institute, University-Industry Cooperate Building, 150 Bugahyeon-ro, Seodaemun-gu, Seoul, 03759, Korea
| | - Young Joon Surh
- College of Pharmacy Seoul National University, Seoul, 08826, Korea
| | - Sun Jin Hwang
- Medpacto Research Institute, Medpacto Inc., 92, Myeongdal-ro, Seocho-gu, Seoul, 06668, Korea
| | - Seong Jin Kim
- Medpacto Research Institute, Medpacto Inc., 92, Myeongdal-ro, Seocho-gu, Seoul, 06668, Korea
| | - Ki Baik Hahm
- CHA Cancer Preventive Research Center, CHA Bio Complex, 330 Pangyo-dong, Bundang-gu, Seongnam, 13497, Korea.,Medpacto Research Institute, Medpacto Inc., 92, Myeongdal-ro, Seocho-gu, Seoul, 06668, Korea
| |
Collapse
|
9
|
Gras D, Chanez P. New sociology for better understanding severe eosinophilic asthma: introducing the SOCS family. Eur Respir J 2018; 48:608-10. [PMID: 27581402 DOI: 10.1183/13993003.01240-2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 01/09/2023]
Affiliation(s)
| | - Pascal Chanez
- UMR INSERM 1067/CNRS 7333, Marseille, France Aix-Marseille Université, Marseille, France APHM (Assistance Publique Hôpitaux de Marseille), Clinique des Bronches, de l'Allergie et du Sommeil, Hôpital Nord, Marseille, France
| |
Collapse
|
10
|
Comparison of Cytokine and Efflux Transporter Expression in Pediatric Versus Adult-onset Ulcerative Colitis. J Pediatr Gastroenterol Nutr 2017; 64:943-948. [PMID: 27622899 DOI: 10.1097/mpg.0000000000001403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Ulcerative colitis (UC), a chronic inflammation of the colon, is often more severe in children than adults. Identification of altered expression of efflux transporters, cytokines, and suppressor of cytokine signaling (SOCS) molecules in pediatric versus adult patients could provide insight into the differential molecular patterns related to the age and disease pathology. METHODS Mucosal samples from terminal ileum and colon in pediatric (9 UC-New, 4 UC-Remission) and adult (9 UC-New, 8 UC-Remission) patients were compared with healthy subjects (15 children and 10 adults) for mRNA expressions of several efflux transporters, cytokines, and SOCS molecules. RESULTS The inflamed colon interleukin (IL)-6, IL-17A, and interferon-γ levels were elevated in UC-New subgroups but close to control values in UC-Remission. IL-1β expression was increased only in UC-New children. Interestingly, uninflamed ileum also showed increased IL-6 and IL-1β levels in UC-New subgroups. SOCS1/SOCS3 expression pattern followed a trend observed for inflammatory cytokines only in children. Both children and adults had decreased multidrug resistance protein 1 expression in colon, which inversely correlated with disease score, IL-6 and interferon-γ levels in UC-New children. IL-2 expression was upregulated in UC-Remission, compared with controls. CONCLUSIONS Efflux transporter expression varies between UC children and adults except for decreased multidrug resistance protein 1. UC is characterized by a dysregulated TH1 and TH17 cytokine response irrespective of age at disease onset, with higher cytokine levels detected in children. Increased IL-2 levels in remission imply a protective role for regulatory T cells (Tregs).
Collapse
|
11
|
The suppressor of cytokine signaling SOCS1 promotes apoptosis of intestinal epithelial cells via p53 signaling in Crohn's disease. Exp Mol Pathol 2016; 101:1-11. [DOI: 10.1016/j.yexmp.2016.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022]
|
12
|
Russo F, Linsalata M, Orlando A. Probiotics against neoplastic transformation of gastric mucosa: Effects on cell proliferation and polyamine metabolism. World J Gastroenterol 2014; 20:13258-13272. [PMID: 25309063 PMCID: PMC4188884 DOI: 10.3748/wjg.v20.i37.13258] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 04/02/2014] [Accepted: 06/05/2014] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is still the second leading cause of cancer death worldwide, accounting for about 10% of newly diagnosed neoplasms. In the last decades, an emerging role has been attributed to the relations between the intestinal microbiota and the onset of both gastrointestinal and non-gastrointestinal neoplasms. Thus, exogenous microbial administration of peculiar bacterial strains (probiotics) has been suggested as having a profound influence on multiple processes associated with a change in cancer risk. The internationally accepted definition of probiotics is live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. The possible effects on the gastrointestinal tract following probiotic administration have been investigated in vitro and in animal models, as well as in healthy volunteers and in patients suffering from different human gastrointestinal diseases. Although several evidences are available on the use of probiotics against the carcinogen Helicobacter pylori, little is still known about the potential cross-interactions among probiotics, the composition and quality of intestinal flora and the neoplastic transformation of gastric mucosa. In this connection, a significant role in cell proliferation is played by polyamines (putrescine, spermidine, and spermine). These small amines are required in both pre-neoplastic and neoplastic tissue to sustain the cell growth and the evidences here provided suggest that probiotics may act as antineoplastic agents in the stomach by affecting also the polyamine content and functions. This review will summarize data on the most widely recognized effects of probiotics against neoplastic transformation of gastric mucosa and in particular on their ability in modulating cell proliferation, paying attention to the polyamine metabolism.
Collapse
|
13
|
Ramírez-Vélez G, Medina F, Ramírez-Montaño L, Zarazúa-Lozada A, Hernández R, Llorente L, Moreno J. Constitutive phosphorylation of interferon receptor A-associated signaling proteins in systemic lupus erythematosus. PLoS One 2012; 7:e41414. [PMID: 22859983 PMCID: PMC3408474 DOI: 10.1371/journal.pone.0041414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
Background Overexpression of type I interferon (IFN-I)-induced genes is a common feature of systemic lupus erythematosus (SLE) and its experimental models, but the participation of endogenous overproduction of IFN-I on it is not clear. To explore the possibility that abnormally increased IFN-I receptor (IFNAR) signaling could participate in IFN-I-induced gene overexpression of SLE, we examined the phosphorylation status of the IFNAR-associated signaling partners Jak1 and STAT2, and its relation with expression of its physiologic inhibitor SOCS1 and with plasma levels of IFNα and IFN-like activity. Methodology/Principal Findings Peripheral blood mononuclear cells (PBMC) from SLE patients with or without disease activity and healthy controls cultured in the presence or in the absence of IFNβ were examined by immunoprecipitation and/or western blotting for expression of the two IFNAR chains, Jak1, Tyk2, and STAT2 and their phosphorylated forms. In SLE but not in healthy control PBMC, Jak1 and STAT2 were constitutively phosphorylated, even in the absence of disease activity (basal pJak1: controls vs. active SLE p<0.0001 and controls vs. inactive SLE p = 0.0006; basal pSTAT2: controls vs. active and inactive SLE p<0.0001). Although SOCS1 protein was slightly but significantly decreased in SLE in the absence or in the presence of IFNβ (p = 0.0096 to p<0.0001), in SOCS1 mRNA levels were markedly decreased (p = 0.036 to p<0.0001). IFNβ induced higher levels of the IFN-I-dependent MxA protein mRNA in SLE than in healthy controls, whereas the opposite was observed for SOCS1. Although there was no relation to increased serum IFNα, active SLE plasma could induce expression of IFN-dependent genes by normal PBMC. Conclusions/Significance These findings suggest that in some SLE patients IFN-I dependent gene expression could be the result of a low IFNAR signaling threshold.
Collapse
Affiliation(s)
- Gabriela Ramírez-Vélez
- Research Unit on Autoimmune Diseases, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico, D. F., Mexico
| | - Francisco Medina
- Research Unit on Autoimmune Diseases, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico, D. F., Mexico
- Facultad Mexicana de Medicina, Universidad LaSalle, México, D. F., Mexico
| | - Luis Ramírez-Montaño
- Research Unit on Autoimmune Diseases, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico, D. F., Mexico
| | - Abraham Zarazúa-Lozada
- Research Unit on Pharmacology Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico, D. F., Mexico
| | - Ramiro Hernández
- Department of Rheumatology, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico, D. F., Mexico
| | - Luis Llorente
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, D. F., Mexico
| | - José Moreno
- Research Unit on Autoimmune Diseases, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico, D. F., Mexico
- Facultad Mexicana de Medicina, Universidad LaSalle, México, D. F., Mexico
- * E-mail:
| |
Collapse
|
14
|
|
15
|
Analysis of interferon signaling by infectious hepatitis C virus clones with substitutions of core amino acids 70 and 91. J Virol 2011; 85:5986-94. [PMID: 21490101 DOI: 10.1128/jvi.02583-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Substitution of amino acids 70 and 91 in the hepatitis C virus (HCV) core region is a significant predictor of poor responses to peginterferon-plus-ribavirin therapy, while their molecular mechanisms remain unclear. Here we investigated these differences in the response to alpha interferon (IFN) by using HCV cell culture with R70Q, R70H, and L91M substitutions. IFN treatment of cells transfected or infected with the wild type or the mutant HCV clones showed that the R70Q, R70H, and L91M core mutants were significantly more resistant than the wild type. Among HCV-transfected cells, intracellular HCV RNA levels were significantly higher for the core mutants than for the wild type, while HCV RNA in culture supernatant was significantly lower for these mutants than for the wild type. IFN-induced phosphorylation of STAT1 and STAT2 and expression of the interferon-inducible genes were significantly lower for the core mutants than for the wild type, suggesting cellular unresponsiveness to IFN. The expression level of an interferon signal attenuator, SOCS3, was significantly higher for the R70Q, R70H, and L91M mutants than for the wild type. Interleukin 6 (IL-6), which upregulates SOCS3, was significantly higher for the R70Q, R70H, and L91M mutants than for the wild type, suggesting interferon resistance, possibly through IL-6-induced, SOCS3-mediated suppression of interferon signaling. Expression levels of endoplasmic reticulum (ER) stress proteins were significantly higher in cells transfected with a core mutant than in those transfected with the wild type. In conclusion, HCV R70 and L91 core mutants were resistant to interferon in vitro, and the resistance may be induced by IL-6-induced upregulation of SOCS3. Those mechanisms may explain clinical interferon resistance of HCV core mutants.
Collapse
|
16
|
Suda G, Sakamoto N, Itsui Y, Nakagawa M, Tasaka-Fujita M, Funaoka Y, Watanabe T, Nitta S, Kiyohashi K, Azuma S, Kakinuma S, Tsuchiya K, Imamura M, Hiraga N, Chayama K, Watanabe M. IL-6-mediated intersubgenotypic variation of interferon sensitivity in hepatitis C virus genotype 2a/2b chimeric clones. Virology 2010; 407:80-90. [DOI: 10.1016/j.virol.2010.07.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 06/19/2010] [Accepted: 07/26/2010] [Indexed: 01/05/2023]
|
17
|
Gurevich M, Gritzman T, Orbach R, Tuller T, Feldman A, Achiron A. Laquinimod suppress antigen presentation in relapsing-remitting multiple sclerosis: in-vitro high-throughput gene expression study. J Neuroimmunol 2010; 221:87-94. [PMID: 20347159 DOI: 10.1016/j.jneuroim.2010.02.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 12/22/2022]
Abstract
Laquinimod (LAQ) is a new immunomodulatory drug shown to be effective in the treatment of relapsing-remitting multiple sclerosis (RRMS); however, its molecular target pathways are not well recognized. In this study we characterized in-vitro the molecular effects of LAQ in peripheral blood mononuclear cells (PBMC) of healthy subjects and RRMS patients by gene expression microarrays. We demonstrated that LAQ induced suppression of genes related to antigen presentation and corresponding inflammatory pathways. These findings were demonstrated mainly via the NFkB pathway. Analysis of PBMC subpopulations identified activation of Th2 response in CD14+ and CD4+ cells and suppression of proliferation in CD8+ cells.
Collapse
Affiliation(s)
- M Gurevich
- Multiple Sclerosis Center, Sheba Medical Center, Tel-Hashomer, Israel.
| | | | | | | | | | | |
Collapse
|
18
|
Lee JS, Paek NS, Kwon OS, Hahm KB. Anti-inflammatory actions of probiotics through activating suppressor of cytokine signaling (SOCS) expression and signaling in Helicobacter pylori infection: a novel mechanism. J Gastroenterol Hepatol 2010; 25:194-202. [PMID: 20136974 DOI: 10.1111/j.1440-1746.2009.06127.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS In spite of the International Agency for Research on Cancer's definition that Helicobacter pylori is the definite carcinogen of gastric cancer, the simple eradication of the bug is not enough to prevent resultant gastric cancer, and increasing microbial resistance further limits the eradication application. Therefore, probiotics, non-pathogenic microbial feed that can affect the host in a beneficial manner, could be an alternate way to enhance anti-inflammation against H. pylori. However, the mechanism of their anti-inflammatory actions is still unclear. In the current study, we hypothesized that suppressor of cytokine signaling (SOCS) signaling could be a feasible anti-inflammatory mechanism of probiotics against H. pylori infection. RESULTS H. pylori infection or their lipopolysaccharide stimulation led to significant increased expressions of inflammatory mediators including tumor necrosis factor-alpha, interleukin-8, inducible nitric oxide synthase and cyclooxygenase-2 in AGS cells and pretreatment of Lactobacillus plantarum, Lactobacillus rhamnosis and Lactobacillus acidophilus significantly attenuated the expressions of these inflammatory mediators in accordance with the blocking action of nuclear factor-kappaB nuclear translocation. Probiotic administration increased expression of SOCS-2 and SOCS-3 and exerted the active SOCS signaling featured with earlier and higher expressions of SOCS-2 and SOCS-3. In contrast to weak inactivation of mitogen-activated protein kinases including p-38 and extracellular signal-regulated kinase 1/2, probiotic-induced SOCS expressions were mediated through either significant phosphorylation of signal transducers and activation of transcription (STAT)-1 and STAT-3 or simultaneous inhibition of Janus kinase (JAK)2 phosphorylation, which is known to signal SOCS-2/SOCS-3 negatively. CONCLUSION Anti-inflammatory signals of SOCS through STAT-1/STAT-3 activation and JAK2 inactivation might be a key anti-inflammatory mechanism of probiotics, setting probiotics as a non-microbial strategy to H. pylori infection.
Collapse
Affiliation(s)
- Jeong Sang Lee
- Laboratory of Translational Medicine, Gachon University Lee Gil Ya Cancer and Diabetes Institute, Department of Gastroenterology, Gachon Graduate School of Medicine, Incheon, Korea
| | | | | | | |
Collapse
|
19
|
Girolami EI, Bouhy D, Haber M, Johnson H, David S. Differential expression and potential role of SOCS1 and SOCS3 in Wallerian degeneration in injured peripheral nerve. Exp Neurol 2009; 223:173-82. [PMID: 19576891 DOI: 10.1016/j.expneurol.2009.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 01/27/2023]
Abstract
Pro-inflammatory chemokines and cytokines play an important role in Wallerian degeneration (WD) after peripheral nerve injury. These pro-inflammatory signals are "turned-off" in a timely manner to ensure that the inflammatory response in the injured nerve is limited. The factors that regulate the turning-off of the pro-inflammatory state are not fully understood. The suppressors of cytokine signaling (SOCS) proteins are potential candidates that could limit the inflammatory response by acting to regulate cytokine signaling at the intracellular level. In this work we show that the expression SOCS1 and SOCS3 proteins differ from each other during WD in the mouse sciatic nerve after cut/ligation and crush injuries. SOCS1 is mainly expressed by macrophages and its expression is inversely correlated with phosphorylation of JAK2 and STAT3 signaling proteins and the expression of pro-inflammatory cytokines IL-1beta and TNFalpha. In addition, treatment of cut/ligated nerves, which express lower levels of SOCS1 as compared to crush injury, with a SOCS1 mimetic peptide leads to a decrease in macrophage numbers at 14 days post-injury and reduces IL-1beta mRNA expression 1 day post-injury. In contrast, SOCS3 expression is restricted mainly to Schwann cells and is negatively correlated with the expression of IL-6 and LIF. These data suggest that SOCS1 and SOCS3 may play different roles in WD and provide a better understanding of some of the potential regulatory mechanisms that may control inflammation and regeneration in the injured peripheral nerve.
Collapse
Affiliation(s)
- Elizabeth I Girolami
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, Quebec, Canada H3G 1A4
| | | | | | | | | |
Collapse
|
20
|
Poritz LS, Zhang WJ, Thompson J, Boyer M, Clark C, Koltun WA. Impaired IL-4 phosphorylation of STAT6 in EBV transformed B-cells. J Surg Res 2009; 162:290-8. [PMID: 19540524 DOI: 10.1016/j.jss.2009.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 12/16/2008] [Accepted: 01/06/2009] [Indexed: 10/21/2022]
Abstract
BACKGROUND The Interleukin-4 signal transducer and activator of transcription 6 (IL-4-STAT6) signaling pathway plays a pivotal role in regulation of gene transcription. We have previously identified a defective STAT6 activational phenotype in response to IL-4 in patients from our familial Inflammatory Bowel Disease registry. This has been termed Stat6(null) and Stat6(high) is the normal phenotype. The purpose of this study was to investigate the defect in Stat6 activation in Stat6(null) cells. METHODS Stat6(null) and Stat6(high) Epstein Barr virus transformed cell lines were stimulated with 10 ng/mL of IL-4 for 0, 10, 30, or 60 min and cytoplasmic and nuclear proteins harvested. Western blot for STAT6, phosphorylated STAT6 (pSTAT6), Janus Kinase (Jak)1 and Jak3 was performed. Cells were also cultured for 48 h and interferon gamma (IFNgamma) measured in the supernatant. Additional cells were cultured with 20 ng/mL of IFNgamma for 90 min or 5 ug of antibody to IFNgamma for 48 h, and then stimulated with IL-4. RESULTS There were no differences in cytoplasmic STAT6 in Stat6(null)versus Stat6(high) cells. In Stat6(high) cells, STAT6 was rapidly phosphorylated and translocated to the nucleus. In Stat6(null) cells there was minimal phosphorylation and translocation of pSTAT6 to the nucleus. Spontaneous secretion of IFNgamma by Stat6(null) cells was significantly higher than Stat6(null) cells. Addition of IFNgamma decreased pSTAT6 in Stat6(high) cells to Stat6(null) levels while blocking IFNgamma increased baseline pSTAT6 in Stat6(null) cells to levels similar to Stat6(high) cells. CONCLUSION This suggests that the spontaneously produced IFNgamma in the Stat6(null) cell lines suppresses STAT6 function and creates the Stat6(null) phenotype.
Collapse
Affiliation(s)
- Lisa S Poritz
- Department of Surgery, The Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Weiss DJ, Souza CD. Review paper: modulation of mononuclear phagocyte function by Mycobacterium avium subsp. paratuberculosis. Vet Pathol 2008; 45:829-41. [PMID: 18984786 DOI: 10.1354/vp.45-6-829] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pathogenic mycobacteria are highly adapted for survival within host mononuclear phagocytes. This is largely due to the organism's capacity to prevent macrophage activation, block phagosome acidification and maturation, and attenuate presentation of antigens to the immune system. Mycobacterium avium subsp. paratuberculosis (MAP) is one such organism that modulates the ruminant innate immune response. It is the causative agent in paratuberculosis, a chronic progressive granulomatous enteritis in ruminants. MAP initially interacts with cell membrane receptors on bovine mononuclear phagocytes and initiates cell signaling responses and phagocytosis. Mannosylated liparabinomannan (Man-LAM) is a major component of the MAP cell wall that interacts with the cell membrane of mononuclear phagocytes and may be a major virulence factor. Toll-like receptor 2 (TLR2) has been incriminated as major signaling receptor that binds to MAP and initiates signaling though the mitogen-activated protein kinase (MAPK)-p38 pathway. This pathway induces transcription of interleukin (IL)-10. Early production of IL-10 suppresses proinflammatory cytokines, chemokines, IL-12, and major histocompatability factor class-II expression. Both IL-10 dependent and IL-10 independent mechanisms appear to be involved in attenuation of phagosome acidification and phagolysosome fusion. Many of the suppressive effects of MAP on bovine mononuclear phagocytes can be reproduced by exposure of bovine monocytes to Man-LAM. Therefore, MAP Man-LAM-induced TLR2-MAPK-p38 signaling with resultant excessive IL-10 expression has emerged as one of the mechanisms by which MAP organisms suppress inflammatory, immune, and antimicrobial responses and promote their survival within host mononuclear phagocytes.
Collapse
Affiliation(s)
- D J Weiss
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA.
| | | |
Collapse
|
22
|
Baker BJ, Qin H, Benveniste EN. Molecular basis of oncostatin M-induced SOCS-3 expression in astrocytes. Glia 2008; 56:1250-62. [PMID: 18571793 DOI: 10.1002/glia.20694] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Under neuropathological conditions, reactive astrocytes release cytokines and chemokines, which act in an autocrine and/or paracrine fashion to modulate production of immunoregulatory factors from cells including microglia, astrocytes, and neurons. In this way, astrocytes play an important role in orchestrating immune responses within the central nervous system (CNS). Suppressor of cytokine signaling (SOCS) proteins are endogenous, negative regulators of the JAK/STAT signaling pathway and function as attenuators of the immune and inflammatory responses. As such, SOCS proteins may have critical roles in the CNS under neuroinflammatory conditions. In the inflamed CNS, expression of IL-6 cytokine family member oncostatin M (OSM) is elevated; however, its functional effects are not well understood. We demonstrate that OSM is a potent inducer of SOCS-3 in astrocytes. Analysis of the SOCS-3 promoter revealed that an AP-1 element, two IFN-gamma activation sequence (GAS) elements, and a GC-rich region are crucial for SOCS-3 gene expression. Using small interfering RNA against STAT-3, as well as a STAT-3 dominant-negative construct, we demonstrate that STAT-3 activation is critical for OSM induction of SOCS-3 expression. The ERK1/2 and JNK pathways also contribute to OSM-induced SOCS-3 gene expression. OSM stimulation led to a time-dependent recruitment of the transcription factors STAT-3, c-Fos, c-Jun, and Sp1 and the coactivators CREB-binding protein (CBP) and p300 to the endogenous SOCS-3 promoter. These data indicate that OSM-induced activation of STAT-3 and the ERK1/2 and JNK pathways are critical for astrocytic expression of SOCS-3, which provides for feedback inhibition of cytokine-induced inflammatory responses in the CNS.
Collapse
Affiliation(s)
- Brandi J Baker
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | |
Collapse
|
23
|
Song KS, Kim K, Chung KC, Seol JH, Yoon JH. Interaction of SOCS3 with NonO attenuates IL-1beta-dependent MUC8 gene expression. Biochem Biophys Res Commun 2008; 377:946-51. [PMID: 18952062 DOI: 10.1016/j.bbrc.2008.10.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 10/20/2008] [Indexed: 11/30/2022]
Abstract
The intracellular negatively regulatory mechanism which affects IL-1beta-induced MUC8 gene expression remains unclear. We found that SOCS3 overexpression suppressed IL-1beta-induced MUC8 gene expression in NCI-H292 cells, whereas silencing of SOCS3 restored IL-1beta-induced MUC8 gene expression. Sequentially activated ERK1/2, RSK1, and CREB by IL-1beta were not affected by SOCS3, indicating that SOCS3 has an independent mechanism of action. Using immunoprecipitaion and nano LC mass analysis, we found that SOCS3 bound NonO (non-POU-domain containing, octamer-binding domain protein) in the absence of IL-1beta, whereas IL-1beta treatment dissociated the direct binding of SOCS3 and NonO. A dominant-negative SOCS3 mutant (Y204F/Y221F) did not bind to NonO. Interestingly, SOCS3 overexpression dramatically suppressed MUC8 gene expression in cells transfected with wild-type or siRNA of NonO. Moreover, silencing of SOCS3 dramatically increased NonO-mediated MUC8 gene expression caused by IL-1beta compared to NonO overexpression alone, suggesting that SOCS3 acts as a suppressor by regulating the action of NonO.
Collapse
Affiliation(s)
- Kyoung Seob Song
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Abstract
The Jak-Stat-Socs pathway is an important component of cytokine receptor signaling. Not surprisingly, perturbation of this pathway is implicated in diseases of hematopoietic and immune origin, including leukemia, lymphoma and immune deficiencies. This review examines the role of a key component of this pathway, Stat5. This has been shown to be activated in a variety of leukemias and myeloproliferative disorders, including downstream of a range of key oncogenes where it has been shown to play an important role in mediating their effects. Therefore, Stat5 represents a useful pan-leukemia/myeloproliferative disorder diagnostic marker and key therapeutic end point, as well as representing an attractive therapeutic target for these disorders.
Collapse
Affiliation(s)
- Rowena S Lewis
- Cancer & Haematology Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, 3050, Australia.
| | | |
Collapse
|
25
|
Ratthé C, Girard D. Investigation of the interleukin (IL)-4/IL-4 receptor system in promyelocytic leukaemia PLB-985 cells during differentiation toward neutrophil-like phenotype: mechanism involved in IL-4-induced SOCS3 protein expression. Br J Haematol 2007; 140:59-70. [PMID: 18005266 DOI: 10.1111/j.1365-2141.2007.06886.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The interleukin 4 (IL-4)/IL-4 receptor (IL-4R) system in promyelocytes is not well documented. Here, we used promyelocytic leukaemia PLB-985 cells differentiated with dimethylsulfoxide (PLB-985D) toward neutrophil-like phenotype to investigate the IL-4/IL-4R system. PLB-985 cells did not express CD132 (gammac) but expressed the complete IL-4 type II receptor (IL-4Ralpha and IL-13Ralpha1). Moreover, PLB-985 cells lost surface expression of IL-13Ralpha1 during differentiation, resulting in PLB-985D cells expressing only IL-4Ralpha fully responsive to IL-4, as judged by activation of mitogen-activated protein (MAP) kinases and Janus kinase 1. IL-4 also increased suppressor of cytokine signalling 3 (SOCS3) protein level in the presence of the proteasome inhibitor MG132 exclusively in PLB-985D cells. As the IL-4Ralpha chain has been associated with a component of the phagocyte NADPH oxidase, we used PLB-985-gp91(phox) deficient cells (mimicking chronic granulomatous disease, X-CGD), to investigate the IL-4/IL-4R system in X-CGD-D cells. IL-4 was found to activate MAP kinases in X-CGD-D cells but did not up-regulate SOCS3, in contrast to granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor and IL-6. Utilization of catalase, cycloheximide and genistein inhibitors showed that IL-4 induced SOCS3 by a mechanism dependent on a complete NADPH oxidase complex, protein synthesis and tyrosine phosphorylation, but independent of production of reactive oxygen species. We conclude that IL-4 induces cell signalling in promyelocytes expressing only IL-4Ralpha.
Collapse
Affiliation(s)
- Claude Ratthé
- INRS-Institut Armand-Frappier, Université du Québec, Pointe-Claire, QC, Canada
| | | |
Collapse
|
26
|
Ratthé C, Pelletier M, Chiasson S, Girard D. Molecular mechanisms involved in interleukin-4-induced human neutrophils: expression and regulation of suppressor of cytokine signaling. J Leukoc Biol 2007; 81:1287-96. [PMID: 17264307 DOI: 10.1189/jlb.0306209] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Interleukin-4 (IL-4) is a CD132-dependent cytokine known to activate the Jak-STAT pathway in different cells and cell lines. Although IL-4 has been demonstrated previously to be an agonist in human neutrophils, its capacity to activate different cell signaling pathways in these cells has never been investigated. Two types of IL-4 receptor (IL-4R) exist: the Type I (CD132/IL-4Ralpha heterodimer) and the Type II (IL-4Ralpha/IL-13Ralpha1 heterodimer). In a previous study, we demonstrated that neutrophils express the Type I receptor. Herein, using flow cytometry, we demonstrated that neutrophils, unlike U-937 cells, do not express IL-13Ralpha1 and IL-13Ralpha2 and confirmed the expression of CD132 and IL-4Ralpha on their surface. We also demonstrated that IL-4 induced phosphorylation of Syk, p38, Erk-1/2, JNK, Jak-1, Jak-2, STAT6, and STAT1 and that treatment of cells with the inhibitors piceatannol, SB203580, PD98059, or AG490 reversed the ability of IL-4 to delay neutrophil apoptosis. Using RT-PCR, we demonstrated for the first time that neutrophils express mRNA for all suppressor of cytokine signaling (SOCS) members, namely SOCS1-7 and cytokine-inducible Src homology 2 protein. It is interesting that IL-4 increased expression of SOCS3 at the mRNA and protein levels. The effect of IL-4 on SOCS3 protein expression was increased markedly when the proteasome inhibitor MG132 was added to the cultures, but this was inhibited by cycloheximide, suggesting that SOCS3 is de novo-synthesized in response to IL-4. We conclude that neutrophils express only the Type I IL-4R on their surface and that IL-4 signals via different cell signaling pathways, including the Jak/STAT/SOCS pathway.
Collapse
Affiliation(s)
- Claude Ratthé
- INRS-Institut Armand-Frappier, Université du Québec, 245 boul. Hymus, Pointe-Claire (PQ), Canada, H9R 1G6
| | | | | | | |
Collapse
|
27
|
Ozawa Y, Nakao K, Shimazaki T, Shimmura S, Kurihara T, Ishida S, Yoshimura A, Tsubota K, Okano H. SOCS3 is required to temporally fine-tune photoreceptor cell differentiation. Dev Biol 2006; 303:591-600. [PMID: 17198696 DOI: 10.1016/j.ydbio.2006.11.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 10/28/2006] [Accepted: 11/22/2006] [Indexed: 11/30/2022]
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is an intracellular, ligand-induced negative feedback modulator of STAT3 activation that acts during inflammation. Here, we demonstrate that SOCS3 expression is important for normal retinal development in the perinatal period. STAT3 is highly activated in the late-embryonic retina, then downregulated at postnatal day 0 (P0), presumably by the depletion of upstream ligands. We found that SOCS3 was required after P0 to shut down the residual STAT3 activation; this loss of activated STAT3 leads to Rhodopsin expression and rod photoreceptor cell differentiation. SOCS3 deficiency failed to terminate STAT3 activation, thereby delaying expression of Rhodopsin and its upstream transcription factor, crx. Development subsequently continued, but its course was temporally erratic, probably because of faulty compensation. Interestingly, SOCS3 protein expression was first detected postnatally, after STAT3 activation was mostly downregulated. It initially appeared in some of the presumptive photoreceptor cells and gradually spread. SOCS3 mRNA level was constant from the late-embryonic to early-postnatal period. Post-transcriptional inhibition of SOCS3 protein expression maintains a high STAT3 activation during late embryogenesis, and after P0, releasing from the inhibition promptly terminates STAT3 activation. Thus, SOCS3 can act as a temporal fine-tuner of STAT3 activation during photoreceptor cell differentiation.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- DNA Primers/genetics
- Feedback
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Mutant Strains
- Mice, Transgenic
- Models, Biological
- Photoreceptor Cells, Vertebrate/cytology
- Photoreceptor Cells, Vertebrate/metabolism
- Protein Processing, Post-Translational
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Retina/embryology
- Retina/growth & development
- Retina/metabolism
- Retinal Rod Photoreceptor Cells/cytology
- Retinal Rod Photoreceptor Cells/metabolism
- Rhodopsin/genetics
- Rhodopsin/metabolism
- STAT3 Transcription Factor/metabolism
- Suppressor of Cytokine Signaling 3 Protein
- Suppressor of Cytokine Signaling Proteins/deficiency
- Suppressor of Cytokine Signaling Proteins/genetics
- Suppressor of Cytokine Signaling Proteins/metabolism
Collapse
Affiliation(s)
- Yoko Ozawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chinen T, Kobayashi T, Ogata H, Takaesu G, Takaki H, Hashimoto M, Yagita H, Nawata H, Yoshimura A. Suppressor of cytokine signaling-1 regulates inflammatory bowel disease in which both IFNgamma and IL-4 are involved. Gastroenterology 2006; 130:373-88. [PMID: 16472593 DOI: 10.1053/j.gastro.2005.10.051] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 10/19/2005] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The suppressor of cytokine signaling-1 (SOCS1) is a potent negative regulator of various cytokines and it has been implicated in the regulation of immune responses. However, the role of SOCS1 in inflammatory bowel diseases (IBDs) has not been clarified. To determine the role of SOCS1 in colitis, we generated SOCS1/T-cell receptor alpha (TCRalpha) double knockout (DKO) mice. METHODS The depletion of interferon gamma (IFNgamma) and IL-4 was achieved by crossing the DKO mice with IFNgamma knockout (KO) mice and by the administration of anti-IL-4 antibody, respectively. The activation of cytokine-induced transcription factors was determined by Western blotting with phosphorylation-specific antibodies, and the induction of inflammatory factors was measured by reverse-transcription polymerase chain reaction. RESULTS Much more severe colitis developed in 100% of the DKO mice within 9 weeks of age than in TCRalpha-KO mice. Although the proportion and the activation status of CD4(+) TCRalpha(-)beta(+) T cells in DKO mice were similar to those in TCRalpha-KO mice, signal transducer and activator of transcription 1, nuclear factor kappaB, and their target genes were hyperactivated in infiltrated mononuclear cells and colonic epithelial cells in DKO mice. Cytokine-depletion experiments showed that exacerbated colitis in the DKO mice was dependent on both IFNgamma and IL-4. SOCS1-deficient cells were hypersensitive to IFNgamma, IL-4, and lipopolysaccharides, depending on the target genes. CONCLUSIONS SOCS1 plays an important role in preventing murine colitis by restricting the cytokine signals. SOCS1/TCRalpha DKO mice could be a useful model for investigating human IBD.
Collapse
Affiliation(s)
- Takatoshi Chinen
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sparmann G, Glass A, Brock P, Jaster R, Koczan D, Thiesen HJ, Liebe S, Emmrich J. Inhibition of lymphocyte apoptosis by pancreatic stellate cells: impact of interleukin-15. Am J Physiol Gastrointest Liver Physiol 2005; 289:G842-51. [PMID: 16002563 DOI: 10.1152/ajpgi.00483.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There is growing evidence that pancreatic stellate cells (PSCs) produce cytokines and take part in the regulation of inflammatory processes in the pancreas. IL-15 inhibits apoptosis of various cell populations. This study was performed to investigate whether PSCs produce IL-15 and thereby can affect lymphocytes. Primary PSCs were isolated from the rat pancreas using density gradient centrifugation. mRNA expression of IL-15 was demonstrated by RT-PCR, and IL-15 protein was analyzed by immunoblotting. Lymphocytes obtained from rat mesenterial lymph nodes were cocultured with in vitro activated PSCs. Apoptosis has been quantified by the binding of annexin V-FITC with a flow cytometer. Proliferation was monitored using [3H]thymidine incorporation. PSCs express two splice variants of IL-15. The protein was detectable only in cell lysates but not in the cell culture supernatant. Cocultivation of lymphocytes with PSCs and IL-15 inhibited spontaneous lymphocyte apoptosis, and this effect was reduced by an anti-IL-15 antibody. Lymphocytes induced vice versa the proliferation and collagen production of PSCs. The inhibition of spontaneous lymphocyte apoptosis in cocultures with PSCs was at least partially mediated by cell-bound IL-15. This effect and the stimulation of PSCs by lymphocytes may lead to a circulus vitiosus, resulting in the persistence of inflammatory processes and the development of fibrosis during chronic pancreatitis.
Collapse
Affiliation(s)
- Gisela Sparmann
- Division of Gastroenterology, Department of Medicine, University of Rostock, D-18057 Rostock, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Greenhalgh CJ, Rico-Bautista E, Lorentzon M, Thaus AL, Morgan PO, Willson TA, Zervoudakis P, Metcalf D, Street I, Nicola NA, Nash AD, Fabri LJ, Norstedt G, Ohlsson C, Flores-Morales A, Alexander WS, Hilton DJ. SOCS2 negatively regulates growth hormone action in vitro and in vivo. J Clin Invest 2005; 115:397-406. [PMID: 15690087 PMCID: PMC546423 DOI: 10.1172/jci22710] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 12/01/2004] [Indexed: 12/17/2022] Open
Abstract
Mice deficient in SOCS2 display an excessive growth phenotype characterized by a 30-50% increase in mature body size. Here we show that the SOCS2-/- phenotype is dependent upon the presence of endogenous growth hormone (GH) and that treatment with exogenous GH induced excessive growth in mice lacking both endogenous GH and SOCS2. This was reflected in terms of overall body weight, body and bone lengths, and the weight of internal organs and tissues. A heightened response to GH was also measured by examining GH-responsive genes expressed in the liver after exogenous GH administration. To further understand the link between SOCS2 and the GH-signaling cascade, we investigated the nature of these interactions using structure/function and biochemical interaction studies. Analysis of the 3 structural motifs of the SOCS2 molecule revealed that each plays a crucial role in SOCS2 function, with the conserved SOCS-box motif being essential for all inhibitory function. SOCS2 was found to bind 2 phosphorylated tyrosines on the GH receptor, and mutational analysis of these amino acids showed that both were essential for SOCS2 function. Together, the data provide clear evidence that SOCS2 is a negative regulator of GH signaling.
Collapse
Affiliation(s)
- Christopher J Greenhalgh
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research (WEHI) and the Cooperative Centre for Cellular Growth Factors, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Greenhalgh CJ, Rico-Bautista E, Lorentzon M, Thaus AL, Morgan PO, Willson TA, Zervoudakis P, Metcalf D, Street I, Nicola NA, Nash AD, Fabri LJ, Norstedt G, Ohlsson C, Flores-Morales A, Alexander WS, Hilton DJ. SOCS2 negatively regulates growth hormone action in vitro and in vivo. J Clin Invest 2005. [DOI: 10.1172/jci200522710] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Theiss AL, Fruchtman S, Lund PK. Growth factors in inflammatory bowel disease: the actions and interactions of growth hormone and insulin-like growth factor-I. Inflamm Bowel Dis 2004; 10:871-80. [PMID: 15626905 DOI: 10.1097/00054725-200411000-00021] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple growth hormones (GHs) and factors are relevant to inflammatory bowel disease (IBD) due to their trophic effects on epithelial cells to promote mucosal integrity, renewal, and repair, on mesenchymal cells to promote wound healing, and on intestinal immune cells to modulate inflammation. The anabolic effects of GHs and factors outside the intestine are relevant to minimizing nutritional insufficiency, catabolic state, and the inability to maintain body weight due to inflammation-induced malabsorption. GHs and factors can, however, have a dual role, whereby trophic effects can be beneficial but, if excessive, can promote complications including the increased risk of intestinal tumors/adenocarcinoma and fibrosis. This review focuses on GH and insulin-like growth factor (IGF-I), for which evidence suggests such a dual role may exist. The actions of GH and IGF-I on the healthy intestine are compared with effects during intestinal inflammation or associated complications. Interactions between these growth factors and others relevant to IBD are considered. The role of the newly discovered suppressors of cytokine signaling proteins, which may dictate the balance between beneficial and excessive actions of GH and IGF-I, is also addressed.
Collapse
Affiliation(s)
- Arianne L Theiss
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7545, USA.
| | | | | |
Collapse
|