1
|
Sakamoto W, Takami T. Plastid Inheritance Revisited: Emerging Role of Organelle DNA Degradation in Angiosperms. PLANT & CELL PHYSIOLOGY 2024; 65:484-492. [PMID: 37702423 DOI: 10.1093/pcp/pcad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Plastids are essential organelles in angiosperms and show non-Mendelian inheritance due to their evolution as endosymbionts. In approximately 80% of angiosperms, plastids are thought to be inherited from the maternal parent, whereas other species transmit plastids biparentally. Maternal inheritance can be generally explained by the stochastic segregation of maternal plastids after fertilization because the zygote is overwhelmed by the maternal cytoplasm. In contrast, biparental inheritance shows the transmission of organelles from both parents. In some species, maternal inheritance is not absolute and paternal leakage occurs at a very low frequency (∼10-5). A key process controlling the inheritance mode lies in the behavior of plastids during male gametophyte (pollen) development, with accumulating evidence indicating that the plastids themselves or their DNAs are eliminated during pollen maturation or at fertilization. Cytological observations in numerous angiosperm species have revealed several critical steps that mutually influence the degree of plastid transmission quantitatively among different species. This review revisits plastid inheritance from a mechanistic viewpoint. Particularly, we focus on a recent finding demonstrating that both low temperature and plastid DNA degradation mediated by the organelle exonuclease DEFECTIVE IN POLLEN ORGANELLE DNA DEGRADATION1 (DPD1) influence the degree of paternal leakage significantly in tobacco. Given these findings, we also highlight the emerging role of DPD1 in organelle DNA degradation.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-2 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, 2-20-2 Chuo, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
2
|
Togashi T, Parker GA, Horinouchi Y. Mitochondrial uniparental inheritance achieved after fertilization challenges the nuclear-cytoplasmic conflict hypothesis for anisogamy evolution. Biol Lett 2023; 19:20230352. [PMID: 37752851 PMCID: PMC10523090 DOI: 10.1098/rsbl.2023.0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
In eukaryotes, a fundamental phenomenon underlying sexual selection is the evolution of gamete size dimorphism between the sexes (anisogamy) from an ancestral gametic system with gametes of the same size in both mating types (isogamy). The nuclear-cytoplasmic conflict hypothesis has been one of the major theoretical hypotheses for the evolution of anisogamy. It proposes that anisogamy evolved as an adaptation for preventing nuclear-cytoplasmic conflict by minimizing male gamete size to inherit organelles uniparentally. In ulvophycean green algae, biparental inheritance of organelles is observed in isogamous species, as the hypothesis assumes. So we tested the hypothesis by examining whether cytoplasmic inheritance is biparental in Monostroma angicava, a slightly anisogamous ulvophycean that produces large male gametes. We tracked the fates of mitochondria in intraspecific crosses with PCR-RFLP markers. We confirmed that mitochondria are maternally inherited. However, paternal mitochondria enter the zygote, where their DNA can be detected for over 14 days. This indicates that uniparental inheritance is enforced by eliminating paternal mitochondrial DNA in the zygote, rather than by decreasing male gamete size to the minimum. Thus, uniparental cytoplasmic inheritance is achieved by an entirely different mechanism, and is unlikely to drive the evolution of anisogamy in ulvophyceans.
Collapse
Affiliation(s)
- Tatsuya Togashi
- Marine Biosystems Research Center, Chiba University, Kamogawa 299-5502, Japan
| | - Geoff A. Parker
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Yusuke Horinouchi
- Marine Biosystems Research Center, Chiba University, Kamogawa 299-5502, Japan
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Japan
| |
Collapse
|
3
|
Gamete dimorphism of the isogamous green alga (Chlamydomonas reinhardtii), is regulated by the mating type-determining gene, MID. Commun Biol 2022; 5:1333. [PMID: 36473948 PMCID: PMC9726906 DOI: 10.1038/s42003-022-04275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
The gametes of chlorophytes differ morphologically even in isogamy and are divided into two types (α and β) based on the mating type- or sex-specific asymmetric positioning of the mating structure (cell fusion apparatus) with respect to the flagellar beat plane and eyespot, irrespective of the difference in gamete size. However, the relationship between this morphological trait and the mating type or sex determination system is unclear. Using mating type-reversed strains of the isogamous alga Chlamydomonas reinhardtii, produced by deletion or introduction of the mating type-determining gene MID, we revealed that the positioning of the mating structure is associated with conversion of mating types (mt- and mt+), implying that this trait is regulated by MID. Moreover, the dominant mating type is associated with the type β phenotype, as in the chlorophyte species Ulva prolifera. Our findings may provide a genetic basis for mating type- or sex-specific asymmetric positioning of the chlorophyte mating structure.
Collapse
|
4
|
Inaba M, Fort A, Bringloe T, Mols-Mortensen A, Ni Ghriofa C, Sulpice R. Branding and tracing seaweed: Development of a high-resolution genetic kit to identify the geographic provenance of Alaria esculenta. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
5
|
Kao T, Wang T, Ku C. Rampant nuclear-mitochondrial-plastid phylogenomic discordance in globally distributed calcifying microalgae. THE NEW PHYTOLOGIST 2022; 235:1394-1408. [PMID: 35556250 PMCID: PMC9539906 DOI: 10.1111/nph.18219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Incongruent phylogenies have been widely observed between nuclear and plastid or mitochondrial genomes in terrestrial plants and animals. However, few studies have examined these patterns in microalgae or the discordance between the two organelles. Here we investigated the nuclear-mitochondrial-plastid phylogenomic incongruence in Emiliania-Gephyrocapsa, a group of cosmopolitan calcifying phytoplankton with enormous populations and recent speciations. We assembled mitochondrial and plastid genomes of 27 strains from across global oceans and temperature regimes, and analyzed the phylogenomic histories of the three compartments using concatenation and coalescence methods. Six major clades with varying morphology and distribution are well recognized in the nuclear phylogeny, but such relationships are absent in the mitochondrial and plastid phylogenies, which also differ substantially from each other. The rampant phylogenomic discordance is due to a combination of organellar capture (introgression), organellar genome recombination, and incomplete lineage sorting of ancient polymorphic organellar genomes. Hybridization can lead to replacements of whole organellar genomes without introgression of nuclear genes and the two organelles are not inherited as a single cytoplasmic unit. This study illustrates the convoluted evolution and inheritance of organellar genomes in isogamous haplodiplontic microalgae and provides a window into the phylogenomic complexity of marine unicellular eukaryotes.
Collapse
Affiliation(s)
- Tzu‐Tong Kao
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Tzu‐Haw Wang
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Chuan Ku
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| |
Collapse
|
6
|
Miyamura S, Nakayama T, Mitsuhashi F, Nagumo T, Sato T, Motomura T, Hori T. Sex-specific Positioning of the Mating Structure in Scale-bearing Gametes of Monostroma angicava and Collinsiella cava (Ulvophyceae, Chlorophyta): A Possible Widespread Difference between Male and Female Gametes. JOURNAL OF PHYCOLOGY 2021; 57:510-527. [PMID: 33150600 DOI: 10.1111/jpy.13096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/02/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The gametes of chlorophytes can be divided into two morphological types (types α and β) based on the position of the mating structure relative to the flagella and eyespot. To elucidate the relationship between the morphological types and the sexes, we studied spatial relationships between the flagellar apparatus-eyespot-mating structures in biflagellate male and female gametes and their fate after fertilization in the anisogamous (Monostroma angicava) and the slightly anisogamous species (Collinsiella cava) using field emission scanning electron microscopy and transmission electron microscopy. The smaller male and larger female gametes of M. angicava had two basal bodies arranged at a 180° angle and the cell surface coated with square-shaped body scales, except for the flagella and mating structures. The mating structure of the female gamete was located on the same side of the flagellar beat plane as the eyespot (type β), whereas that of the male gamete was located on the opposite side (type α). This mating structure arrangement was also confirmed in C. cava. The initial fusion when male and female gametes were mixed involved the mating structures. In a fusing pair of gametes, each flagellum of one gamete lay alongside one flagellum of the other gamete. As fusion proceeded, the gamete pair transformed into a quadriflagellate planozygote, in which the four basal bodies were arranged in a cruciate pattern. The eyespots were positioned side-by-side on the same side of the cell. These results suggest that the two morphological types of gametes are intimately correlated with the particular sexes.
Collapse
Affiliation(s)
- Shinichi Miyamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Takeshi Nakayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | | | - Tamotsu Nagumo
- Echigo Natural History Laboratory, Ojiya, Niigata, 947-9941, Japan
| | - Tomonori Sato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - Terumitsu Hori
- Laboratory for Ginkgo Sciences, 2-5-23 Higashi, Tsukuba, Ibaraki, 305-0046, Japan
| |
Collapse
|
7
|
Togashi T, Horinouchi Y, Parker GA. A comparative test of the gamete dynamics theory for the evolution of anisogamy in Bryopsidales green algae. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201611. [PMID: 33959330 PMCID: PMC8074922 DOI: 10.1098/rsos.201611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Gamete dynamics theory proposes that anisogamy arises by disruptive selection for gamete numbers versus gamete size and predicts that female/male gamete size (anisogamy ratio) increases with adult size and complexity. Evidence has been that in volvocine green algae, the anisogamy ratio correlates positively with haploid colony size. However, green algae show notable exceptions. We focus on Bryopsidales green algae. While some taxa have a diplontic life cycle in which a diploid adult (=fully grown) stage arises directly from the zygote, many taxa have a haplodiplontic life cycle in which haploid adults develop indirectly: the zygote first develops into a diploid adult (sporophyte) which later undergoes meiosis and releases zoospores, each growing into a haploid adult gametophyte. Our comparative analyses suggest that, as theory predicts: (i) male gametes are minimized, (ii) female gamete sizes vary, probably optimized by number versus survival as zygotes, and (iii) the anisogamy ratio correlates positively with diploid (but not haploid) stage complexity. However, there was no correlation between the anisogamy ratio and diploid adult stage size. Increased environmental severity (water depth) appears to drive increased diploid adult stage complexity and anisogamy ratio: gamete dynamics theory correctly predicts that anisogamy evolves with the (diploid) stage directly provisioned by the zygote.
Collapse
Affiliation(s)
- Tatsuya Togashi
- Marine Biosystems Research Center, Chiba University, Kamogawa 299-5502, Japan
| | - Yusuke Horinouchi
- Marine Biosystems Research Center, Chiba University, Kamogawa 299-5502, Japan
| | - Geoff A. Parker
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
8
|
Shen Y, Iwao T, Motomura T, Nagasato C. Cytoplasmic inheritance of mitochondria and chloroplasts in the anisogamous brown alga Mutimo cylindricus (Phaeophyceae). PROTOPLASMA 2021; 258:19-32. [PMID: 32862312 DOI: 10.1007/s00709-020-01540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Based on the morphology of gametes, sexual reproduction in brown algae is usually classified into three types: isogamy, anisogamy, and oogamy. In isogamy, chloroplasts and chloroplast DNA (chlDNA) in the sporophyte cells are inherited biparentally, while mitochondria (or mitochondrial DNA, mtDNA) is inherited maternally. In oogamy, chloroplasts and mitochondria are inherited maternally. However, the patterns of mitochondrial and chloroplast inheritance in anisogamy have not been clarified. Here, we examined derivation of mtDNA and chlDNA in the zygotes through strain-specific PCR analysis using primers based on single nucleotide polymorphism in the anisogamous brown alga Mutimo cylindricus. In 20-day-old sporophytes after fertilization, mtDNA and chlDNA derived from female gametes were detected, thus confirming the maternal inheritance of both organelles. Additionally, the behavior of mitochondria and chloroplasts in the zygotes was analyzed by examining the consecutive serial sections using transmission electron microscopy. Male mitochondria were isolated or compartmentalized by a double-membrane and then completely digested into a multivesicular structure 2 h after fertilization. Meanwhile, male chloroplasts with eyespots were observed even in 4-day-old, seven-celled sporophytes. The final fate of male chloroplasts could not be traced. Organelle DNA copy number was also examined in female and male gametes. The DNA copy number per chloroplast and mitochondria in male gametes was lower compared with female organelles. The degree of difference is bigger in mtDNA. Thus, changes in different morphology and DNA amount indicate that maternal inheritance of mitochondria and chloroplasts in this species may be based on different processes and timing after fertilization.
Collapse
Affiliation(s)
- Yuan Shen
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Toyoki Iwao
- Toba Fisheries Science Center, Toba, 517-0005, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan.
| |
Collapse
|
9
|
Abstract
Algae are photosynthetic eukaryotes whose taxonomic breadth covers a range of life histories, degrees of cellular and developmental complexity, and diverse patterns of sexual reproduction. These patterns include haploid- and diploid-phase sex determination, isogamous mating systems, and dimorphic sexes. Despite the ubiquity of sexual reproduction in algae, their mating-type-determination and sex-determination mechanisms have been investigated in only a limited number of representatives. These include volvocine green algae, where sexual cycles and sex-determining mechanisms have shed light on the transition from mating types to sexes, and brown algae, which are a model for UV sex chromosome evolution in the context of a complex haplodiplontic life cycle. Recent advances in genomics have aided progress in understanding sexual cycles in less-studied taxa including ulvophyte, charophyte, and prasinophyte green algae, as well as in diatoms.
Collapse
Affiliation(s)
- James Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA;
| | - Susana Coelho
- Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Université Paris 06, CNRS, CS 90074, F-29688 Roscoff, France;
| |
Collapse
|
10
|
Coelho SM, Gueno J, Lipinska AP, Cock JM, Umen JG. UV Chromosomes and Haploid Sexual Systems. TRENDS IN PLANT SCIENCE 2018; 23:794-807. [PMID: 30007571 PMCID: PMC6128410 DOI: 10.1016/j.tplants.2018.06.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 05/20/2023]
Abstract
The evolution of sex determination continues to pose major questions in biology. Sex-determination mechanisms control reproductive cell differentiation and development of sexual characteristics in all organisms, from algae to animals and plants. While the underlying processes defining sex (meiosis and recombination) are conserved, sex-determination mechanisms are highly labile. In particular, a flow of new discoveries has highlighted several fascinating features of the previously understudied haploid UV sex determination and related mating systems found in diverse photosynthetic taxa including green algae, bryophytes, and brown algae. Analyses integrating information from these systems and contrasting them with classical XY and ZW systems are providing exciting insights into both the universality and the diversity of sex-determining chromosomes across eukaryotes.
Collapse
Affiliation(s)
- Susana Margarida Coelho
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France.
| | - Josselin Gueno
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Agnieszka Paulina Lipinska
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Jeremy Mark Cock
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
11
|
Alsufyani T, Weiss A, Wichard T. Time Course Exo-Metabolomic Profiling in the Green Marine Macroalga Ulva (Chlorophyta) for Identification of Growth Phase-Dependent Biomarkers. Mar Drugs 2017; 15:md15010014. [PMID: 28075408 PMCID: PMC5295234 DOI: 10.3390/md15010014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/23/2016] [Accepted: 01/03/2017] [Indexed: 11/16/2022] Open
Abstract
The marine green macroalga Ulva (Chlorophyta) lives in a mutualistic symbiosis with bacteria that influence growth, development, and morphogenesis. We surveyed changes in Ulva’s chemosphere, which was defined as a space where organisms interact with each other via compounds, such as infochemicals, nutrients, morphogens, and defense compounds. Thereby, Ulva mutabilis cooperates with bacteria, in particular, Roseovarius sp. strain MS2 and Maribacter sp. strain MS6 (formerly identified as Roseobacter sp. strain MS2 and Cytophaga sp. strain MS6). Without this accompanying microbial flora, U. mutabilis forms only callus-like colonies. However, upon addition of the two bacteria species, in effect forming a tripartite community, morphogenesis can be completely restored. Under this strictly standardized condition, bioactive and eco-physiologically-relevant marine natural products can be discovered. Solid phase extracted waterborne metabolites were analyzed using a metabolomics platform, facilitating gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) analysis, combined with the necessary acquisition of biological metadata. Multivariate statistics of the GC-MS and LC-MS data revealed strong differences between Ulva’s growth phases, as well as between the axenic Ulva cultures and the tripartite community. Waterborne biomarkers, including glycerol, were identified as potential indicators for algal carbon source and bacterial-algal interactions. Furthermore, it was demonstrated that U. mutabilis releases glycerol that can be utilized for growth by Roseovarius sp. MS2.
Collapse
Affiliation(s)
- Taghreed Alsufyani
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena 07743, Germany.
| | - Anne Weiss
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena 07743, Germany.
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena 07743, Germany.
| |
Collapse
|
12
|
Scalco E, Amato A, Ferrante MI, Montresor M. The sexual phase of the diatom Pseudo-nitzschia multistriata: cytological and time-lapse cinematography characterization. PROTOPLASMA 2016; 253:1421-1431. [PMID: 26494151 DOI: 10.1007/s00709-015-0891-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
Pseudo-nitzschia is a thoroughly studied pennate diatom genus for ecological and biological reasons. Many species in this genus, including Pseudo-nitzschia multistriata, can produce domoic acid, a toxin responsible for amnesic shellfish poisoning. Physiological, phylogenetic and biological features of P. multistriata were studied extensively in the past. Life cycle stages, including the sexual phase, fundamental in diatoms to restore the maximum cell size and avoid miniaturization to death, have been well described for this species. P. multistriata is heterothallic; sexual reproduction is induced when strains of opposite mating type are mixed, and proceeds with cells producing two functionally anisogamous gametes each; however, detailed cytological information for this process is missing. By means of confocal laser scanning microscopy and nuclear staining, we followed the nuclear fate during meiosis, and using time-lapse cinematography, we timed every step of the sexual reproduction process from mate pairing to initial cell hatching. The present paper depicts cytological aspects during gametogenesis in P. multistriata, shedding light on the chloroplast behaviour during sexual reproduction, finely describing the timing of the sexual phases and providing reference data for further studies on the molecular control of this fundamental process.
Collapse
Affiliation(s)
- Eleonora Scalco
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Alberto Amato
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | | - Marina Montresor
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| |
Collapse
|
13
|
Miyamura S, Nagumo T. Sex-Specific Cell Fusion Pattern of Isogametes in Marine Green Alga, Acetabularia caliculus (Ulvophyceae, Chlorophyta). CYTOLOGIA 2016. [DOI: 10.1508/cytologia.81.215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Abstract
Why the DNA-containing organelles, chloroplasts, and mitochondria, are inherited maternally is a long standing and unsolved question. However, recent years have seen a paradigm shift, in that the absoluteness of uniparental inheritance is increasingly questioned. Here, we review the field and propose a unifying model for organelle inheritance. We argue that the predominance of the maternal mode is a result of higher mutational load in the paternal gamete. Uniparental inheritance evolved from relaxed organelle inheritance patterns because it avoids the spread of selfish cytoplasmic elements. However, on evolutionary timescales, uniparentally inherited organelles are susceptible to mutational meltdown (Muller's ratchet). To prevent this, fall-back to relaxed inheritance patterns occurs, allowing low levels of sexual organelle recombination. Since sexual organelle recombination is insufficient to mitigate the effects of selfish cytoplasmic elements, various mechanisms for uniparental inheritance then evolve again independently. Organelle inheritance must therefore be seen as an evolutionary unstable trait, with a strong general bias to the uniparental, maternal, mode.
Collapse
Affiliation(s)
- Stephan Greiner
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Johanna Sobanski
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| |
Collapse
|
15
|
Bendich AJ. DNA abandonment and the mechanisms of uniparental inheritance of mitochondria and chloroplasts. Chromosome Res 2014; 21:287-96. [PMID: 23681660 DOI: 10.1007/s10577-013-9349-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
For most eukaryotic organisms, the nuclear genomes of both parents are transmitted to the progeny following biparental inheritance. For mitochondria and chloroplasts, however, uniparental inheritance (UPI) is frequently observed. The maternal mode of inheritance for mitochondria in animals can be nearly absolute, suggesting an adaptive advantage for UPI. In other organisms, however, the mode of inheritance for mitochondria and chloroplasts can vary greatly even among strains of a species. Here, I review the data on the transmission of organellar DNA (orgDNA) from parent to progeny and the structure, copy number, and stability of orgDNA molecules. I propose that UPI is an incidental by-product of DNA abandonment, a process that lowers the metabolic cost of orgDNA repair.
Collapse
Affiliation(s)
- Arnold J Bendich
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Bendif EM, Probert I, Carmichael M, Romac S, Hagino K, de Vargas C. Genetic delineation between and within the widespread coccolithophore morpho-species Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyta). JOURNAL OF PHYCOLOGY 2014; 50:140-8. [PMID: 26988015 DOI: 10.1111/jpy.12147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 10/13/2013] [Indexed: 05/26/2023]
Abstract
Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho-species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal-cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiology of E. huxleyi, a developing model species, has been widely studied, but its genetic delineation from G. oceanica remains unclear due to a lack of resolution in classical genetic markers. Using nuclear (18S rDNA and 28S rDNA), mitochondrial (cox1, cox2, cox3, rpl16, and dam), and plastidial (16S rDNA, rbcL, tufA, and petA) DNA markers from 99 E. huxleyi and 44 G. oceanica strains, we conducted a multigene/multistrain survey to compare the suitability of different markers for resolving phylogenetic patterns within and between these two morpho-species. The nuclear genes tested did not provide sufficient resolution to discriminate between the two morpho-species that diverged only 291Kya. Typical patterns of incomplete lineage sorting were generated in phylogenetic analyses using plastidial genes. In contrast, full morpho-species delineation was achieved with mitochondrial markers and common intra-morpho-species phylogenetic patterns were observed despite differing rates of DNA substitution. Mitochondrial genes are thus promising barcodes for distinguishing these coccolithophore morpho-species, in particular in the context of environmental monitoring.
Collapse
Affiliation(s)
- El Mahdi Bendif
- CNRS UMR7144/UPMC, EPEP team, Station Biologique de Roscoff, Roscoff, 29682, France
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, Devon, PL1 2PB, UK
| | - Ian Probert
- CNRS/UPMC, FR2424, Station Biologique de Roscoff, Roscoff, 29682, France
| | - Margaux Carmichael
- CNRS UMR7144/UPMC, EPEP team, Station Biologique de Roscoff, Roscoff, 29682, France
| | - Sarah Romac
- CNRS UMR7144/UPMC, EPEP team, Station Biologique de Roscoff, Roscoff, 29682, France
| | - Kyoko Hagino
- Institute for Study of the Earth's Interior Okayama University, 827 Yamada, Misasa, Tottori, 682-0193, Japan
| | - Colomban de Vargas
- CNRS UMR7144/UPMC, EPEP team, Station Biologique de Roscoff, Roscoff, 29682, France
| |
Collapse
|
17
|
Jarvis P, López-Juez E. Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 2014; 14:787-802. [PMID: 24263360 DOI: 10.1038/nrm3702] [Citation(s) in RCA: 434] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chloroplasts are the organelles that define plants, and they are responsible for photosynthesis as well as numerous other functions. They are the ancestral members of a family of organelles known as plastids. Plastids are remarkably dynamic, existing in strikingly different forms that interconvert in response to developmental or environmental cues. The genetic system of this organelle and its coordination with the nucleocytosolic system, the import and routing of nucleus-encoded proteins, as well as organellar division all contribute to the biogenesis and homeostasis of plastids. They are controlled by the ubiquitin-proteasome system, which is part of a network of regulatory mechanisms that integrate plastid development into broader programmes of cellular and organismal development.
Collapse
Affiliation(s)
- Paul Jarvis
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | |
Collapse
|
18
|
Blanc-Mathieu R, Sanchez-Ferandin S, Eyre-Walker A, Piganeau G. Organellar inheritance in the green lineage: insights from Ostreococcus tauri. Genome Biol Evol 2013; 5:1503-11. [PMID: 23873918 PMCID: PMC3762196 DOI: 10.1093/gbe/evt106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Along the green lineage (Chlorophyta and Streptophyta), mitochondria and chloroplast are mainly uniparentally transmitted and their evolution is thus clonal. The mode of organellar inheritance in their ancestor is less certain. The inability to make clear phylogenetic inference is partly due to a lack of information for deep branching organisms in this lineage. Here, we investigate organellar evolution in the early branching green alga Ostreococcus tauri using population genomics data from the complete mitochondrial and chloroplast genomes. The haplotype structure is consistent with clonal evolution in mitochondria, while we find evidence for recombination in the chloroplast genome. The number of recombination events in the genealogy of the chloroplast suggests that recombination, and thus biparental inheritance, is not rare. Consistent with the evidence of recombination, we find that the ratio of the number of nonsynonymous to the synonymous polymorphisms per site is lower in chloroplast than in the mitochondria genome. We also find evidence for the segregation of two selfish genetic elements in the chloroplast. These results shed light on the role of recombination and the evolutionary history of organellar inheritance in the green lineage.
Collapse
Affiliation(s)
- Romain Blanc-Mathieu
- UPMC Univ Paris 06, UMR7232, Observatoire Océanologique, Banyuls-sur-Mer, France.
| | | | | | | |
Collapse
|
19
|
Scholz D, Westermann B. Mitochondrial fusion in Chlamydomonas reinhardtii zygotes. Eur J Cell Biol 2013; 92:80-6. [DOI: 10.1016/j.ejcb.2012.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/26/2012] [Accepted: 10/28/2012] [Indexed: 11/15/2022] Open
|
20
|
Maternal inheritance of mitochondrial genomes and complex inheritance of chloroplast genomes in Actinidia Lind.: evidences from interspecific crosses. Mol Genet Genomics 2013; 288:101-10. [PMID: 23337924 DOI: 10.1007/s00438-012-0732-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
Abstract
The inheritance pattern of chloroplast and mitochondria is a critical determinant in studying plant phylogenetics, biogeography and hybridization. To better understand chloroplast and mitochondrial inheritance patterns in Actinidia (traditionally called kiwifruit), we performed 11 artificial interspecific crosses and studied the ploidy levels, morphology, and sequence polymorphisms of chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) of parents and progenies. Sequence analysis showed that the mtDNA haplotypes of F1 hybrids entirely matched those of the female parents, indicating strictly maternal inheritance of Actinidia mtDNA. However, the cpDNA haplotypes of F1 hybrids, which were predominantly derived from the male parent (9 crosses), could also originate from the mother (1 cross) or both parents (1 cross), demonstrating paternal, maternal, and biparental inheritance of Actinidia cpDNA. The inheritance patterns of the cpDNA in Actinidia hybrids differed according to the species and genotypes chosen to be the parents, rather than the ploidy levels of the parent selected. The multiple inheritance modes of Actinidia cpDNA contradicted the strictly paternal inheritance patterns observed in previous studies, and provided new insights into the use of cpDNA markers in studies of phylogenetics, biogeography and introgression in Actinidia and other angiosperms.
Collapse
|
21
|
Crosby K, Smith DR. Does the mode of plastid inheritance influence plastid genome architecture? PLoS One 2012; 7:e46260. [PMID: 23029453 PMCID: PMC3459873 DOI: 10.1371/journal.pone.0046260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/31/2012] [Indexed: 01/24/2023] Open
Abstract
Plastid genomes show an impressive array of sizes and compactnesses, but the forces responsible for this variation are unknown. It has been argued that species with small effective genetic population sizes are less efficient at purging excess DNA from their genomes than those with large effective population sizes. If true, one may expect the primary mode of plastid inheritance to influence plastid DNA (ptDNA) architecture. All else being equal, biparentally inherited ptDNAs should have a two-fold greater effective population size than those that are uniparentally inherited, and thus should also be more compact. Here, we explore the relationship between plastid inheritance pattern and ptDNA architecture, and consider the role of phylogeny in shaping our observations. Contrary to our expectations, we found no significant difference in plastid genome size or compactness between ptDNAs that are biparentally inherited relative to those that are uniparentally inherited. However, we also found that there was significant phylogenetic signal for the trait of mode of plastid inheritance. We also found that paternally inherited ptDNAs are significantly smaller (n = 19, p = 0.000001) than those that are maternally, uniparentally (when isogamous), or biparentally inherited. Potential explanations for this observation are discussed.
Collapse
Affiliation(s)
- Kate Crosby
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
22
|
Kuroiwa T. 100 years since the discovery of non-Mendelian plastid phenotypes. JOURNAL OF PLANT RESEARCH 2010; 123:125-9. [PMID: 20135191 DOI: 10.1007/s10265-009-0283-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 10/19/2009] [Indexed: 05/08/2023]
Affiliation(s)
- Tsuneyoshi Kuroiwa
- Research Information Center for Extremophile, Graduate School of Science, Rikkyo University, 3-34-1 Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| |
Collapse
|