1
|
Ma R, Huang W, Hu Q, Tian G, An J, Fang T, Liu J, Hou J, Zhao M, Sun L. Tandemly duplicated MYB genes are functionally diverged in the regulation of anthocyanin biosynthesis in soybean. PLANT PHYSIOLOGY 2024; 194:2549-2563. [PMID: 38235827 DOI: 10.1093/plphys/kiae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/13/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Gene duplications have long been recognized as a driving force in the evolution of genes, giving rise to novel functions. The soybean (Glycine max) genome is characterized by a large number of duplicated genes. However, the extent and mechanisms of functional divergence among these duplicated genes in soybean remain poorly understood. In this study, we revealed that 4 MYB genes (GmMYBA5, GmMYBA2, GmMYBA1, and Glyma.09g235000)-presumably generated by tandem duplication specifically in the Phaseoleae lineage-exhibited a stronger purifying selection in soybean compared to common bean (Phaseolus vulgaris). To gain insights into the diverse functions of these tandemly duplicated MYB genes in anthocyanin biosynthesis, we examined the expression, transcriptional activity, induced metabolites, and evolutionary history of these 4 MYB genes. Our data revealed that Glyma.09g235000 is a pseudogene, while the remaining 3 MYB genes exhibit strong transcriptional activation activity, promoting anthocyanin biosynthesis in different soybean tissues. GmMYBA5, GmMYBA2, and GmMYBA1 induced anthocyanin accumulation by upregulating the expression of anthocyanin pathway-related genes. Notably, GmMYBA5 showed a lower capacity for gene induction compared to GmMYBA2 and GmMYBA1. Metabolomics analysis further demonstrated that GmMYBA5 induced distinct anthocyanin accumulation in Nicotiana benthamiana leaves and soybean hairy roots compared to GmMYBA2 and GmMYBA1, suggesting their functional divergence leading to the accumulation of different metabolites accumulation following gene duplication. Together, our data provide evidence of functional divergence within the MYB gene cluster following tandem duplication, which sheds light on the potential evolutionary directions of gene duplications during legume evolution.
Collapse
Affiliation(s)
- Ruirui Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wenxuan Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Quan Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Guo Tian
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie An
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ting Fang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jia Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jingjing Hou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Lianjun Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Wang X, Teng C, Lyu K, Li Q, Peng W, Fan L, Lyu S, Fan Y. Application of AtMYB75 as a reporter gene in the study of symbiosis between tomato and Funneliformis mosseae. MYCORRHIZA 2023:10.1007/s00572-023-01110-y. [PMID: 37198421 DOI: 10.1007/s00572-023-01110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Composite plants containing transgenic hairy roots produced with Agrobacterium rhizogenes-mediated transformation have become an important method to study the interaction between plants and arbuscular mycorrhizal fungi (AMF). Not all hairy roots induced by A. rhizogenes are transgenic, however, which leads to requirement of a binary vector to carry a reporter gene to distinguish transgenic roots from non-transformed hairy roots. The beta-glucuronidase gene (GUS) and fluorescent protein gene often are used as reporter markers in the process of hairy root transformation, but they require expensive chemical reagents or imaging equipment. Alternatively, AtMYB75, an R2R3 MYB transcription factor from Arabidopsis thaliana, recently has been used as a reporter gene in hairy root transformation in some leguminous plants and can cause anthocyanin accumulation in transgenic hairy roots. Whether AtMYB75 can be used as a reporter gene in the hairy roots of tomato and if the anthocyanins accumulating in the roots will affect AMF colonization, however, are still unknown. In this study, the one-step cutting method was used for tomato hairy root transformation by A.rhizogenes. It is faster and has a higher transformation efficiency than the conventional method. AtMYB75 was used as a reporter gene in tomato hairy root transformation. The results showed that the overexpression of AtMYB75 caused anthocyanin accumulation in the transformed hairy roots. Anthocyanin accumulation in the transgenic hairy roots did not affect their colonization by the arbuscular mycorrhizal fungus, Funneliformis mosseae strain BGC NM04A, and there was no difference in the expression of the AMF colonization marker gene SlPT4 in AtMYB75 transgenic roots and wild-type roots. Hence, AtMYB75 can be used as a reporter gene in tomato hairy root transformation and in the study of symbiosis between tomato and AMF.
Collapse
Affiliation(s)
- Xiuyuan Wang
- College of Agriculture, Liaocheng University, Liaocheng, 252000, China
| | - Chong Teng
- College of Agriculture, Liaocheng University, Liaocheng, 252000, China
| | - Kaidi Lyu
- College of Agriculture, Liaocheng University, Liaocheng, 252000, China
| | - Qianqian Li
- College of Agriculture, Liaocheng University, Liaocheng, 252000, China
| | - Wentao Peng
- College of Agriculture, Liaocheng University, Liaocheng, 252000, China
| | - Lijuan Fan
- Jinan Laiwu Vocational Secondary Professional School, Jinan, 271100, China
| | - Shanhua Lyu
- College of Agriculture, Liaocheng University, Liaocheng, 252000, China.
| | - Yinglun Fan
- College of Agriculture, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
3
|
Kumar A, Lin H, Li Q, Ruan Y, Cousins D, Li F, Gao S, Jackson K, Wen J, Murray JD, Xu P. Anthocyanin pigmentation as a quantitative visual marker for arbuscular mycorrhizal fungal colonization of Medicago truncatula roots. THE NEW PHYTOLOGIST 2022; 236:1988-1998. [PMID: 36128658 DOI: 10.1111/nph.18504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Visualization of root colonization by arbuscular mycorrhizal fungi (AMF) is the most elementary experiment in the field of mycorrhizal symbiosis. The most widely used approach for evaluating levels of AMF colonization is staining with trypan blue or ink, which is scored using the time-consuming grid intersection method. Here we demonstrate the use of an anthocyanin-based visual marker system for visualizing AMF colonization of Medicago truncatula roots. Expression of MtLAP1, a transcription factor which regulates the production of anthocyanins, from the AMF-induced Kunitz Protease Inhibitor 106 promoter, allowed the visualization of arbuscules in live plant tissues without microscopy or staining. This marker system allowed straightforward qualitative evaluation of the ram1, vpy and dmi3 AMF phenotypes using Agrobacterium rhizogenes hairy-root transformation. For the strigolactone biosynthesis mutant carotenoid cleavage dioxygenase 8a and a novel mutant scooby, which show quantitative AMF symbiotic phenotypes, the amount of anthocyanins in the roots estimated by spectrophotometry correlated very well with colonization levels estimated by staining and scoring using the grid intersection method. The LAP1-based marker system therefore provides a highly efficient approach for mutant screening and monitoring of AMF colonization in live tissues by eye, or for quantitative assessment using a simple and quick photometric assay.
Collapse
Affiliation(s)
- Anil Kumar
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Hui Lin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Qiuju Li
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Yiting Ruan
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Donna Cousins
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Fuyu Li
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Shu Gao
- Shanghai Engineering Research Center of Plant Germplasm Resource, College of Life Science, Shanghai Normal University, Shanghai, 200234, China
| | - Kirsty Jackson
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jiangqi Wen
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jeremy D Murray
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ping Xu
- Shanghai Engineering Research Center of Plant Germplasm Resource, College of Life Science, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
4
|
Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN. Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation. PLANTS (BASEL, SWITZERLAND) 2021; 11:51. [PMID: 35009056 PMCID: PMC8747350 DOI: 10.3390/plants11010051] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 05/27/2023]
Abstract
CRISPR/Cas-mediated genome editing is a powerful tool of plant functional genomics. Hairy root transformation is a rapid and convenient approach for obtaining transgenic roots. When combined, these techniques represent a fast and effective means of studying gene function. In this review, we outline the current state of the art reached by the combination of these approaches over seven years. Additionally, we discuss the origins of different Agrobacterium rhizogenes strains that are widely used for hairy root transformation; the components of CRISPR/Cas vectors, such as the promoters that drive Cas or gRNA expression, the types of Cas nuclease, and selectable and screenable markers; and the application of CRISPR/Cas genome editing in hairy roots. The modification of the already known vector pKSE401 with the addition of the rice translational enhancer OsMac3 and the gene encoding the fluorescent protein DsRed1 is also described.
Collapse
Affiliation(s)
- Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elena L. Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elizaveta D. Guseva
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| |
Collapse
|
5
|
A Root Tip-Specific Expressing Anthocyanin Marker for Direct Identification of Transgenic Tissues by the Naked Eye in Symbiotic Studies. PLANTS 2021; 10:plants10030605. [PMID: 33806858 PMCID: PMC8004629 DOI: 10.3390/plants10030605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
The Agrobacterium rhizogenes hairy root transformation system is widely used in symbiotic studies of model legumes. It typically relies on fluorescent reporters, such as DsRed, for identification of transgenic roots. The MtLAP1 transcription factor has been utilized as a reporter system in Medicago truncatula based on production of anthocyanin pigment. Here, we describe a version of this reporter driven by a root-cap specific promoter for direct observation of anthocyanin accumulation in root tips, which allows the identification of transgenic hairy roots by the naked eye. Results from our analysis suggest that the reporter had no significant effects on nodulation of M. truncatula. This approach, by virtue of its strong and specific expression in root cap cells, greatly reduces false positives and false negatives, and its use of an easily scored visible pigment should allow greater versatility and efficiency in root biology studies.
Collapse
|
6
|
Chuang YF, Phipps AJ, Lin FL, Hecht V, Hewitt AW, Wang PY, Liu GS. Approach for in vivo delivery of CRISPR/Cas system: a recent update and future prospect. Cell Mol Life Sci 2021; 78:2683-2708. [PMID: 33388855 PMCID: PMC11072787 DOI: 10.1007/s00018-020-03725-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system provides a groundbreaking genetic technology that allows scientists to modify genes by targeting specific genomic sites. Due to the relative simplicity and versatility of the CRISPR/Cas system, it has been extensively applied in human genetic research as well as in agricultural applications, such as improving crops. Since the gene editing activity of the CRISPR/Cas system largely depends on the efficiency of introducing the system into cells or tissues, an efficient and specific delivery system is critical for applying CRISPR/Cas technology. However, there are still some hurdles remaining for the translatability of CRISPR/Cas system. In this review, we summarized the approaches used for the delivery of the CRISPR/Cas system in mammals, plants, and aquacultures. We further discussed the aspects of delivery that can be improved to elevate the potential for CRISPR/Cas translatability.
Collapse
Affiliation(s)
- Yu-Fan Chuang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Andrew J Phipps
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Fan-Li Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Valerie Hecht
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China.
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia.
- Aier Eye Institute, Changsha, Hunan, China.
| |
Collapse
|
7
|
Fan Y, Wang X, Li H, Liu S, Jin L, Lyu Y, Shi M, Liu S, Yang X, Lyu S. Anthocyanin, a novel and user-friendly reporter for convenient, non-destructive, low cost, directly visual selection of transgenic hairy roots in the study of rhizobia-legume symbiosis. PLANT METHODS 2020; 16:94. [PMID: 32647533 PMCID: PMC7339386 DOI: 10.1186/s13007-020-00638-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/03/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Agrobacterium rhizogenes-mediated hairy root transformation provides a powerful tool for investigating the functions of plant genes involved in rhizobia-legume symbiosis. However, in the traditional identification methods of transgenic hairy roots based on reporter genes, an expensive chemical substrate or equipment is required. RESULTS Here, we report a novel, low cost, and robust reporter for convenient, non-destructive, and directly visual selection of transgenic hairy roots by naked eye, which can be used in the study of rhizobia-legume symbiosis. The reporter gene AtMyb75 in Arabidopsis, encoding an R2R3 type MYB transcription factor, was ectopically expressed in hairy roots-mediated by A. rhizogenes, which induced purple/red colored anthocyanin accumulation in crop species like soybean (Glycine max (L.) Merr.) and two model legume species, Lotus japonicas and Medicago truncatula. Transgenic hairy roots of legumes containing anthocyanin can establish effective symbiosis with rhizobia. We also demonstrated the reliability of AtMyb75 as a reporter gene by CRISPR/Cas9-targeted mutagenesis of the soybean resistance to nodulation Rfg1 gene in the soybean PI377578 (Nod-) inoculated with Sinorhizobium fredii USDA193. Without exception, mature nitrogen-fixation nodules, were formed on purple transgenic hairy roots containing anthocyanin. CONCLUSIONS Anthocyanin is a reliable, user-friendly, convenient, non-destructive, low cost, directly visual reporter for studying symbiotic nitrogen-fixing nodule development and could be widely applied in broad leguminous plants.
Collapse
Affiliation(s)
- Yinglun Fan
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Xiuyuan Wang
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Haiyun Li
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Shuang Liu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Liangshen Jin
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Yanyan Lyu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Mengdi Shi
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Sirui Liu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Xinyue Yang
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Shanhua Lyu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| |
Collapse
|