1
|
Frohn S, Haas FB, Chavez BG, Dreyer BH, Reiss EV, Ziplys A, Weichert H, Hiltemann S, Ugalde JM, Meyer AJ, D'Auria JC, Rensing SA, Schippers JHM. Evolutionary Conserved and Divergent Responses to Copper Zinc Superoxide Dismutase Inhibition in Plants. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39400938 DOI: 10.1111/pce.15198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
After an initial evolution in a reducing environment, life got successively challenged by reactive oxygen species (ROS), especially during the great oxidation event (GOE) that followed the development of photosynthesis. Therefore, ROS are deeply intertwined into the physiological, morphological and transcriptional responses of most present-day organisms. Copper-zinc superoxide dismutases (CuZnSODs) evolved during the GOE and are present in charophytes and extant land plants, but nearly absent from chlorophytes. The chemical inhibitor of CuZnSOD, lung cancer screen 1 (LCS-1), could greatly facilitate the study of SODs in diverse plants. Here, we determined the impact of chemical inhibition of plant CuZnSOD activity, on plant growth, transcription and metabolism. We followed a comparative approach by using different plant species, including Marchantia Polymorpha and Physcomitrium patens, representing bryophytes, the sister lineage to vascular plants, and Arabidopsis thaliana. We show that LCS-1 causes oxidative stress in plants and that the inhibition of CuZnSODs provoked a similar core response that mainly impacted glutathione homoeostasis in all plant species analysed. That said, Physcomitrium and Arabidopsis, which contain multiple CuZnSOD isoforms showed a more complex and exacerbated response. In addition, an untargeted metabolomics approach revealed a specific metabolic signature for each plant species. Our comparative analysis exposes a conserved core response at the physiological and transcriptional level towards LCS-1, while the metabolic response largely varies. These differences correlate with the number and localization of the CuZnSOD isoforms present in each species.
Collapse
Affiliation(s)
- Stephanie Frohn
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Benjamin G Chavez
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Bernd H Dreyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Erik V Reiss
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Anne Ziplys
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Heiko Weichert
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Saskia Hiltemann
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - José M Ugalde
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, Bonn, Germany
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, Bonn, Germany
| | - John C D'Auria
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| |
Collapse
|
2
|
Liu H, Liu Z, Qin A, Zhou Y, Sun S, Liu Y, Hu M, Yang J, Sun X. Mitochondrial ATP Synthase beta-Subunit Affects Plastid Retrograde Signaling in Arabidopsis. Int J Mol Sci 2024; 25:7829. [PMID: 39063070 PMCID: PMC11277312 DOI: 10.3390/ijms25147829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Plastid retrograde signaling plays a key role in coordinating the expression of plastid genes and photosynthesis-associated nuclear genes (PhANGs). Although plastid retrograde signaling can be substantially compromised by mitochondrial dysfunction, it is not yet clear whether specific mitochondrial factors are required to regulate plastid retrograde signaling. Here, we show that mitochondrial ATP synthase beta-subunit mutants with decreased ATP synthase activity are impaired in plastid retrograde signaling in Arabidopsis thaliana. Transcriptome analysis revealed that the expression levels of PhANGs were significantly higher in the mutants affected in the AT5G08670 gene encoding the mitochondrial ATP synthase beta-subunit, compared to wild-type (WT) seedlings when treated with lincomycin (LIN) or norflurazon (NF). Further studies indicated that the expression of nuclear genes involved in chloroplast and mitochondrial retrograde signaling was affected in the AT5G08670 mutant seedlings treated with LIN. These changes might be linked to the modulation of some transcription factors (TFs), such as LHY (Late Elongated Hypocotyl), PIF (Phytochrome-Interacting Factors), MYB, WRKY, and AP2/ERF (Ethylene Responsive Factors). These findings suggest that the activity of mitochondrial ATP synthase significantly influences plastid retrograde signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xuwu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (H.L.); (Z.L.); (A.Q.); (Y.Z.); (S.S.); (Y.L.); (M.H.); (J.Y.)
| |
Collapse
|
3
|
Zhou Y, Zheng R, Peng Y, Chen J, Zhu X, Xie K, Su Q, Huang R, Zhan S, Peng D, Zhao K, Liu ZJ. Bioinformatic Assessment and Expression Profiles of the AP2/ERF Superfamily in the Melastoma dodecandrum Genome. Int J Mol Sci 2023; 24:16362. [PMID: 38003550 PMCID: PMC10671166 DOI: 10.3390/ijms242216362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
AP2/ERF transcription factors play crucial roles in various biological activities, including plant growth, development, and responses to biotic and abiotic stressors. However, limited research has been conducted on the AP2/ERF genes of Melastoma dodecandrum for breeding of this potential fruit crop. Leveraging the recently published whole genome sequence, we conducted a comprehensive assessment of this superfamily and explored the expression patterns of AP2/ERF genes at a genome-wide level. A significant number of genes, totaling 218, were discovered to possess the AP2 domain sequence and displayed notable structural variations among five subfamilies. An uneven distribution of these genes was observed on 12 pseudochromosomes as the result of gene expansion facilitated by segmental duplications. Analysis of cis-acting elements within promoter sites and 87.6% miRNA splicing genes predicted their involvement in multiple hormone responses and abiotic stresses through transcriptional and post-transcriptional regulations. Transcriptome analysis combined with qRT-PCR results indicated that certain candidate genes are involved in tissue formation and the response to developmental changes induced by IAA hormones. Overall, our study provides valuable insights into the evolution of ERF genes in angiosperms and lays a solid foundation for future breeding investigations aimed at improving fruit quality and enhancing adaptation to barren land environments.
Collapse
Affiliation(s)
- Yuzhen Zhou
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Ruiyue Zheng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Yukun Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Jiemin Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Xuanyi Zhu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Kai Xie
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Qiuli Su
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Ruiliu Huang
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Suying Zhan
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Donghui Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| |
Collapse
|
4
|
Chen Y, Cai X, Tang B, Xie Q, Chen G, Chen X, Hu Z. SlERF.J2 reduces chlorophyll accumulation and inhibits chloroplast biogenesis and development in tomato leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111578. [PMID: 36608875 DOI: 10.1016/j.plantsci.2022.111578] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Chlorophyll metabolism and chloroplast biogenesis in tomato (Solanum lycopersicum) leaves contribute to photosynthesis; however, their molecular mechanisms are poorly understood. In this study, we found that overexpression of SlERF.J2 (ethylene transcription factor) resulted in a decrease in leaf chlorophyll content and reduced accumulation of starch and soluble sugar. The slerf.j2 knockout mutant showed no apparent change. Further observation of tissue sections and transmission electron microscopy (TEM) showed that SlERF.J2 was involved in chlorophyll accumulation and chloroplast formation. RNA-seq of mature SlERF.J2-OE leaves showed that many genes involved in chlorophyll biosynthesis and chloroplast formation were significantly downregulated compared with those in WT leaves. Genome global scanning of the ERF TF binding site combined with RNA-seq differential gene expression and qRT-PCR detection analysis showed that COP1 was a potential target gene of SlERF.J2. Tobacco transient expression technology, a dual-luciferase reporter system and Y1H technology were employed to verify that SlERF.J2 could bind to the COP1 promoter. Notably, overexpression of SlERF.J2 in Nr mutants resulted in impaired chloroplast biogenesis and development. Taken together, our findings demonstrated that SlERF.J2 plays an essential role in chlorophyll accumulation and chloroplast formation, laying a foundation for enhancing plant photosynthesis.
Collapse
Affiliation(s)
- Yanan Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Xi Cai
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Boyan Tang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Qiaoli Xie
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Xuqing Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| |
Collapse
|
5
|
DsDBF1, a Type A-5 DREB Gene, Identified and Characterized in the Moss Dicranum scoparium. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010090. [PMID: 36676039 PMCID: PMC9862540 DOI: 10.3390/life13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Plant dehydration-responsive element binding (DREB) transcription factors (TFs) play important roles during stress tolerance by regulating the expression of numerous genes involved in stresses. DREB TFs have been extensively studied in a variety of angiosperms and bryophytes. To date, no information on the identification and characterization of DREB TFs in Dicranum scoparium has been reported. In this study, a new DBF1 gene from D. scoparium was identified by cloning and sequencing. Analysis of the conserved domain and physicochemical properties revealed that DsDBF1 protein has a classic AP2 domain encoding a 238 amino acid polypeptide with a molecular mass of 26 kDa and a pI of 5.98. Subcellular prediction suggested that DsDBF1 is a nuclear and cytoplasmic protein. Phylogenetic analysis showed that DsDBF1 belongs to group A-5 DREBs. Expression analysis by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) revealed that DsDBF1 was significantly upregulated in response to abiotic stresses such as desiccation/rehydration, exposure to paraquat, CdCl2, high and freezing temperatures. Taken together, our data suggest that DsDBF1 could be a promising gene candidate to improve stress tolerance in crop plants, and the characterization of TFs of a stress tolerant moss such as D. scoparium provides a better understanding of plant adaptation mechanisms.
Collapse
|
6
|
Wang S, Zhang S. Selection of the Reference Gene for Expression Normalization in Salsola ferganica under Abiotic Stress. Genes (Basel) 2022; 13:genes13040571. [PMID: 35456377 PMCID: PMC9029158 DOI: 10.3390/genes13040571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
Salsola ferganica is a natural desert herbaceous plant in the arid area of western and northwestern China. Because of its salt tolerance and drought resistance, it is of great significance in desert afforestation and sand-fixing capacity. There has been much research on the genes involved in plants under desert stresses in recent years. The application of the best internal reference genes for standardization was a critical procedure in analyzing the gene expression under different types. Even so, the reference gene has not been reported in the application of gene expression normalization of S. ferganica. In this study, nine reference genes (TUA-1726, TUA-1760, TUB, GAPDH, ACT, 50S, HSC70, APT, and U-box) in S. ferganica were adopted and analyzed under six different treatments (ABA, heat, cold, NaCl, methyl viologen (MV), and PEG). The applicability of candidate genes was evaluated by statistical software, including geNorm, NormFinder, BestKeeper, and RefFinder, based on their stability values in all the treatments. These results indicated that the simultaneous selection of two stable reference genes would fully standardize the optimization of the normalization research. To verify the feasibility of the above internal reference genes, the CT values of AP2/ERF transcription factor family genes were standardized using the most (ACT) and least (GAPDH) stable reference genes in S. ferganica seedlings under six abiotic stresses. The research showed that HSC70 and U-box were the most appropriate reference genes in ABA stressed samples, and ACT and U-box genes were the optimal references for heat-stressed samples. TUA-1726 and U-box showed the smallest value in gene expression levels of cold treatment. The internal reference groups of the best applicability for the other samples were U-box and ACT under NaCl treatment, ACT and TUA-1726 under MV stress, HSC70 and TUB under PEG treatment, and ACT in all samples. ACT and U-box showed higher stability than the other genes based on the comprehensive stability ranking of RefFinder, as determined by the geometric mean in this study. These results will contribute to later gene expression studies in other closely related species and provide an important foundation for gene expression analysis in S. ferganica.
Collapse
Affiliation(s)
- Shuran Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| | - Sheng Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
- College of Forestry, Northwest A&F University, Xianyang 712100, China
- Correspondence:
| |
Collapse
|
7
|
Singh D, Yadav R, Kaushik S, Wadhwa N, Kapoor S, Kapoor M. Transcriptome Analysis of ppdnmt2 and Identification of Superoxide Dismutase as a Novel Interactor of DNMT2 in the Moss Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2020; 11:1185. [PMID: 32849734 PMCID: PMC7419982 DOI: 10.3389/fpls.2020.01185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/21/2020] [Indexed: 05/07/2023]
Abstract
DNMT2 is a DNA/tRNA cytosine methyltransferase that is highly conserved in structure and function in eukaryotes. In plants however, limited information is available on the function of this methyltransferase. We have previously reported that in the moss Physcomitrella patens, DNMT2 plays a crucial role in stress recovery and tRNAAsp transcription/stability under salt stress. To further investigate the role of PpDNMT2 at genome level, in this study we have performed RNA sequencing of ppdnmt2. Transcriptome analysis reveals a number of genes and pathways to function differentially and suggests a close link between PpDNMT2 function and osmotic and ionic stress tolerance. We propose PpDNMT2 to play a pivotal role in regulating salt tolerance by affecting molecular networks involved in stress perception and signal transduction that underlie maintenance of ion homeostasis in cells. We also examined interactome of PpDNMT2 using affinity purification (AP) coupled to mass spectrometry (AP-MS). Quantitative proteomic analysis reveals several chloroplast proteins involved in light reactions and carbon assimilation and proteins involved in stress response and some not implicated in stress to co-immunoprecipitate with PpDNMT2. Comparison between transcriptome and interactome datasets has revealed novel association between PpDNMT2 activity and the antioxidant enzyme Superoxide dismutase (SOD), protein turnover mediated by the Ubiquitin-proteasome system and epigenetic gene regulation. PpDNMT2 possibly exists in complex with CuZn-SODs in vivo and the two proteins also directly interact in the yeast nucleus as observed by yeast two-hybrid assay. Taken together, the work presented in this study sheds light on diverse roles of PpDNMT2 in maintaining molecular and physiological homeostasis in P. patens. This is a first report describing transcriptome and interactome of DNMT2 in any land plant.
Collapse
Affiliation(s)
- Darshika Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Radha Yadav
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Shubham Kaushik
- Vproteomics, Valerian Chem Private Limited Green Park Mains, New Delhi, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Meenu Kapoor
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
- *Correspondence: Meenu Kapoor,
| |
Collapse
|