1
|
Vengatharajuloo V, Goh HH, Hassan M, Govender N, Sulaiman S, Afiqah-Aleng N, Harun S, Mohamed-Hussein ZA. Gene Co-Expression Network Analysis Reveals Key Regulatory Genes in Metisa plana Hormone Pathways. INSECTS 2023; 14:503. [PMID: 37367319 DOI: 10.3390/insects14060503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023]
Abstract
Metisa plana Walker (Lepidoptera: Psychidae) is a major oil palm pest species distributed across Southeast Asia. M. plana outbreaks are regarded as serious ongoing threats to the oil palm industry due to their ability to significantly reduce fruit yield and subsequent productivity. Currently, conventional pesticide overuses may harm non-target organisms and severely pollute the environment. This study aims to identify key regulatory genes involved in hormone pathways during the third instar larvae stage of M. plana gene co-expression network analysis. A weighted gene co-expression network analysis (WGCNA) was conducted on the M. plana transcriptomes to construct a gene co-expression network. The transcriptome datasets were obtained from different development stages of M. plana, i.e., egg, third instar larvae, pupa, and adult. The network was clustered using the DPClusO algorithm and validated using Fisher's exact test and receiver operating characteristic (ROC) analysis. The clustering analysis was performed on the network and 20 potential regulatory genes (such as MTA1-like, Nub, Grn, and Usp) were identified from ten top-most significant clusters. Pathway enrichment analysis was performed to identify hormone signalling pathways and these pathways were identified, i.e., hormone-mediated signalling, steroid hormone-mediated signalling, and intracellular steroid hormone receptor signalling as well as six regulatory genes Hnf4, Hr4, MED14, Usp, Tai, and Trr. These key regulatory genes have a potential as important targets in future upstream applications and validation studies in the development of biorational pesticides against M. plana and the RNA interference (RNAi) gene silencing method.
Collapse
Affiliation(s)
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Nisha Govender
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Suhaila Sulaiman
- FGV R&D Sdn Bhd, FGV Innovation Center, PT23417 Lengkuk Teknologi, Bandar Baru Enstek, Nilai 71760, Negeri Sembilan, Malaysia
| | - Nor Afiqah-Aleng
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
2
|
Abdullah-Zawawi MR, Govender N, Harun S, Muhammad NAN, Zainal Z, Mohamed-Hussein ZA. Multi-Omics Approaches and Resources for Systems-Level Gene Function Prediction in the Plant Kingdom. PLANTS (BASEL, SWITZERLAND) 2022; 11:2614. [PMID: 36235479 PMCID: PMC9573505 DOI: 10.3390/plants11192614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
In higher plants, the complexity of a system and the components within and among species are rapidly dissected by omics technologies. Multi-omics datasets are integrated to infer and enable a comprehensive understanding of the life processes of organisms of interest. Further, growing open-source datasets coupled with the emergence of high-performance computing and development of computational tools for biological sciences have assisted in silico functional prediction of unknown genes, proteins and metabolites, otherwise known as uncharacterized. The systems biology approach includes data collection and filtration, system modelling, experimentation and the establishment of new hypotheses for experimental validation. Informatics technologies add meaningful sense to the output generated by complex bioinformatics algorithms, which are now freely available in a user-friendly graphical user interface. These resources accentuate gene function prediction at a relatively minimal cost and effort. Herein, we present a comprehensive view of relevant approaches available for system-level gene function prediction in the plant kingdom. Together, the most recent applications and sought-after principles for gene mining are discussed to benefit the plant research community. A realistic tabulation of plant genomic resources is included for a less laborious and accurate candidate gene discovery in basic plant research and improvement strategies.
Collapse
Affiliation(s)
- Muhammad-Redha Abdullah-Zawawi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Nisha Govender
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Sarahani Harun
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Zamri Zainal
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| |
Collapse
|
3
|
Zainal-Abidin RA, Harun S, Vengatharajuloo V, Tamizi AA, Samsulrizal NH. Gene Co-Expression Network Tools and Databases for Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2022; 11:1625. [PMID: 35807577 PMCID: PMC9269215 DOI: 10.3390/plants11131625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/05/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Transcriptomics has significantly grown as a functional genomics tool for understanding the expression of biological systems. The generated transcriptomics data can be utilised to produce a gene co-expression network that is one of the essential downstream omics data analyses. To date, several gene co-expression network databases that store correlation values, expression profiles, gene names and gene descriptions have been developed. Although these resources remain scattered across the Internet, such databases complement each other and support efficient growth in the functional genomics area. This review presents the features and the most recent gene co-expression network databases in crops and summarises the present status of the tools that are widely used for constructing the gene co-expression network. The highlights of gene co-expression network databases and the tools presented here will pave the way for a robust interpretation of biologically relevant information. With this effort, the researcher would be able to explore and utilise gene co-expression network databases for crops improvement.
Collapse
Affiliation(s)
- Rabiatul-Adawiah Zainal-Abidin
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Serdang 43400, Selangor, Malaysia; (R.-A.Z.-A.); (A.-A.T.)
| | - Sarahani Harun
- Centre for Bioinformatics Research, Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Vinothienii Vengatharajuloo
- Centre for Bioinformatics Research, Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Amin-Asyraf Tamizi
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Serdang 43400, Selangor, Malaysia; (R.-A.Z.-A.); (A.-A.T.)
- Department of Plant Science, Kulliyyah of Science, International Islamic Universiti Malaysia (IIUM), Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Nurul Hidayah Samsulrizal
- Department of Plant Science, Kulliyyah of Science, International Islamic Universiti Malaysia (IIUM), Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| |
Collapse
|
4
|
Zainal-Abidin RA, Afiqah-Aleng N, Abdullah-Zawawi MR, Harun S, Mohamed-Hussein ZA. Protein–Protein Interaction (PPI) Network of Zebrafish Oestrogen Receptors: A Bioinformatics Workflow. Life (Basel) 2022; 12:life12050650. [PMID: 35629318 PMCID: PMC9143887 DOI: 10.3390/life12050650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Protein–protein interaction (PPI) is involved in every biological process that occurs within an organism. The understanding of PPI is essential for deciphering the cellular behaviours in a particular organism. The experimental data from PPI methods have been used in constructing the PPI network. PPI network has been widely applied in biomedical research to understand the pathobiology of human diseases. It has also been used to understand the plant physiology that relates to crop improvement. However, the application of the PPI network in aquaculture is limited as compared to humans and plants. This review aims to demonstrate the workflow and step-by-step instructions for constructing a PPI network using bioinformatics tools and PPI databases that can help to predict potential interaction between proteins. We used zebrafish proteins, the oestrogen receptors (ERs) to build and analyse the PPI network. Thus, serving as a guide for future steps in exploring potential mechanisms on the organismal physiology of interest that ultimately benefit aquaculture research.
Collapse
Affiliation(s)
| | - Nor Afiqah-Aleng
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
- Correspondence: (N.A.-A.); (Z.-A.M.-H.)
| | | | - Sarahani Harun
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Zeti-Azura Mohamed-Hussein
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Correspondence: (N.A.-A.); (Z.-A.M.-H.)
| |
Collapse
|
5
|
Identification of Potential Genes Encoding Protein Transporters in Arabidopsis thaliana Glucosinolate (GSL) Metabolism. Life (Basel) 2022; 12:life12030326. [PMID: 35330077 PMCID: PMC8953324 DOI: 10.3390/life12030326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/24/2022] Open
Abstract
Several species in Brassicaceae produce glucosinolates (GSLs) to protect themselves against pests. As demonstrated in A. thaliana, the reallocation of defence compounds, of which GSLs are a major part, is highly dependent on transport processes and serves to protect high-value tissues such as reproductive tissues. This study aimed to identify potential GSL-transporter proteins (TPs) using a network-biology approach. The known A. thaliana GSL genes were retrieved from the literature and pathway databases and searched against several co-expression databases to generate a gene network consisting of 1267 nodes and 14,308 edges. In addition, 1151 co-expressed genes were annotated, integrated, and visualised using relevant bioinformatic tools. Based on three criteria, 21 potential GSL genes encoding TPs were selected. The AST68 and ABCG40 potential GSL TPs were chosen for further investigation because their subcellular localisation is similar to that of known GSL TPs (SULTR1;1 and SULTR1;2) and ABCG36, respectively. However, AST68 was selected for a molecular-docking analysis using AutoDOCK Vina and AutoDOCK 4.2 with the generated 3D model, showing that both domains were well superimposed on the homologs. Both molecular-docking tools calculated good binding-energy values between the sulphate ion and Ser419 and Val172, with the formation of hydrogen bonds and van der Waals interactions, respectively, suggesting that AST68 was one of the sulphate transporters involved in GSL biosynthesis. This finding illustrates the ability to use computational analysis on gene co-expression data to screen and characterise plant TPs on a large scale to comprehensively elucidate GSL metabolism in A. thaliana. Most importantly, newly identified potential GSL transporters can serve as molecular tools in improving the nutritional value of crops.
Collapse
|
6
|
Harun S, Afiqah-Aleng N, Karim MB, Altaf Ul Amin M, Kanaya S, Mohamed-Hussein ZA. Potential Arabidopsis thaliana glucosinolate genes identified from the co-expression modules using graph clustering approach. PeerJ 2021; 9:e11876. [PMID: 34430080 PMCID: PMC8349163 DOI: 10.7717/peerj.11876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/06/2021] [Indexed: 01/10/2023] Open
Abstract
Background Glucosinolates (GSLs) are plant secondary metabolites that contain nitrogen-containing compounds. They are important in the plant defense system and known to provide protection against cancer in humans. Currently, increasing the amount of data generated from various omics technologies serves as a hotspot for new gene discovery. However, sometimes sequence similarity searching approach is not sufficiently effective to find these genes; hence, we adapted a network clustering approach to search for potential GSLs genes from the Arabidopsis thaliana co-expression dataset. Methods We used known GSL genes to construct a comprehensive GSL co-expression network. This network was analyzed with the DPClusOST algorithm using a density of 0.5. 0.6. 0.7, 0.8, and 0.9. Generating clusters were evaluated using Fisher’s exact test to identify GSL gene co-expression clusters. A significance score (SScore) was calculated for each gene based on the generated p-value of Fisher’s exact test. SScore was used to perform a receiver operating characteristic (ROC) study to classify possible GSL genes using the ROCR package. ROCR was used in determining the AUC that measured the suitable density value of the cluster for further analysis. Finally, pathway enrichment analysis was conducted using ClueGO to identify significant pathways associated with the GSL clusters. Results The density value of 0.8 showed the highest area under the curve (AUC) leading to the selection of thirteen potential GSL genes from the top six significant clusters that include IMDH3, MVP1, T19K24.17, MRSA2, SIR, ASP4, MTO1, At1g21440, HMT3, At3g47420, PS1, SAL1, and At3g14220. A total of Four potential genes (MTO1, SIR, SAL1, and IMDH3) were identified from the pathway enrichment analysis on the significant clusters. These genes are directly related to GSL-associated pathways such as sulfur metabolism and valine, leucine, and isoleucine biosynthesis. This approach demonstrates the ability of the network clustering approach in identifying potential GSL genes which cannot be found from the standard similarity search.
Collapse
Affiliation(s)
- Sarahani Harun
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Nor Afiqah-Aleng
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohammad Bozlul Karim
- Graduate School of Science and Technology & NAIST Data Science Center, Nara Institute of Science and Technology, Nara, Japan
| | - Md Altaf Ul Amin
- Graduate School of Science and Technology & NAIST Data Science Center, Nara Institute of Science and Technology, Nara, Japan
| | - Shigehiko Kanaya
- Graduate School of Science and Technology & NAIST Data Science Center, Nara Institute of Science and Technology, Nara, Japan
| | - Zeti-Azura Mohamed-Hussein
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia.,Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
7
|
Lima LW, Nardi S, Santoro V, Schiavon M. The Relevance of Plant-Derived Se Compounds to Human Health in the SARS-CoV-2 (COVID-19) Pandemic Era. Antioxidants (Basel) 2021; 10:antiox10071031. [PMID: 34202330 PMCID: PMC8300636 DOI: 10.3390/antiox10071031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Dietary selenium (Se)-compounds accumulated in plants are essential for human metabolism and normal physiological processes. Inorganic and organic Se species can be readily absorbed by the human body, but are metabolized differently and thus exhibit distinct mechanisms of action. They can act as antioxidants or serve as a source of Se for the synthesis of selenoproteins. Selenocysteine, in particular, is incorporated at the catalytic center of these proteins through a specific insertion mechanism and, due to its electronic features, enhances their catalytic activity against biological oxidants. Selenite and other Se-organic compounds may also act as direct antioxidants in cells due to their strong nucleophilic properties. In addition, Se-amino acids are more easily subjected to oxidation than the corresponding thiols/thioethers and can bind redox-active metal ions. Adequate Se intake aids in preventing several metabolic disorders and affords protection against viral infections. At present, an epidemic caused by a novel coronavirus (SARS-CoV-2) threatens human health across several countries and impacts the global economy. Therefore, Se-supplementation could be a complementary treatment to vaccines and pharmacological drugs to reduce the viral load, mutation frequency, and enhance the immune system of populations with low Se intake in the diet.
Collapse
Affiliation(s)
| | - Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy;
| | - Veronica Santoro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO, Italy;
| | - Michela Schiavon
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO, Italy;
- Correspondence: ; Tel.: +1-1670-8520
| |
Collapse
|