1
|
Romasco T, De Bortoli Jr N, Paulo De Bortoli J, Jorge Jayme S, Piattelli A, Di Pietro N. Primary stability evaluation of different morse cone implants in low-density artificial bone blocks: A comparison between high-and low-speed drilling. Heliyon 2024; 10:e35225. [PMID: 39170202 PMCID: PMC11336439 DOI: 10.1016/j.heliyon.2024.e35225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
This study aimed to evaluate various biomechanical parameters associated with the primary stability of Maestro and Due Cone implants placed in low-density artificial bones, prepared using high-speed drilling with irrigation and low-speed drilling without irrigation. The insertion torque (IT), removal torque (RT), and implant stability quotient (ISQ) values were recorded for Maestro and Due Cone implants placed in low-density polyurethane blocks (10 and 20 pounds per cubic foot (PCF) with and without a cortical layer) prepared using high-speed and low-speed with or without irrigation using a saline solution, respectively. A three-way ANOVA model and Tukey's post-hoc test were conducted, presenting data as means and standard deviations. P-values equal to or less than 0.05 were considered statistically significant. No statistically significant differences in IT, RT, and ISQ between drilling speeds were observed. However, Maestro implants exhibited lower IT and RT values after high- and low-speed drilling across almost all polyurethane blocks, significantly evident in the 20 PCF density block for IT and in the 20 PCF density block with the cortical layer for the RT with low-speed drilling (IT: 47.33 ± 10.02 Ncm and 16.00 ± 12.49 Ncm for Due Cone and Maestro implants, respectively, with p < 0.01; RT: 44.67 ± 22.81 Ncm and 20.01 ± 4.36 Ncm for Due Cone and Maestro implants, respectively, with p < 0.05) and among the same implant types inserted in different bone densities. Additionally, the study found that for all bone densities and drilling speeds, both implants registered ISQ values exceeding 60, except for the lowest-density polyurethane block. Overall, it can be inferred that low-speed drilling without irrigation achieved biomechanical parameters similar to conventional drilling with both implant types, even with lower IT values in the case of Maestro implants. These findings suggest a promising potential use of low-speed drilling without irrigation in specific clinical scenarios, particularly when focusing on preparation depth or when ensuring proper irrigation is challenging.
Collapse
Affiliation(s)
- Tea Romasco
- Center for Advanced Studies and Technology-CAST, “G. D'Annunzio” University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D'Annunzio” University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| | - Nilton De Bortoli Jr
- Department of Oral Implantology, Associação Paulista Dos Cirurgiões Dentistas-APCD, São Bernardo Do Campo, 02011-000, Brazil
| | - Joao Paulo De Bortoli
- Biomaterials Division, New York University College of Dentistry, New York, 10010, NY, USA
| | - Sergio Jorge Jayme
- Department of Dental Materials and Prosthetics, School of Dentistry of Ribeirão Preto, University of São Paulo, 14040-904, Ribeirão Preto, SP, Brazil
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International, University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131, Rome, Italy
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, Av. de Los Jerónimos 135, 30107, Guadalupe de Maciascoque, Spain
| | - Natalia Di Pietro
- Center for Advanced Studies and Technology-CAST, “G. D'Annunzio” University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, “G. D'Annunzio” University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|
2
|
Li L, Wang P, Liang H, Jin J, Zhang Y, Shi J, Zhang Y, He S, Mao H, Xue B, Lai J, Zhu L, Jiang Q. Design of a Haversian system-like gradient porous scaffold based on triply periodic minimal surfaces for promoting bone regeneration. J Adv Res 2023; 54:89-104. [PMID: 36632888 DOI: 10.1016/j.jare.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/14/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION The bone ingrowth depth in the porous scaffolds is greatly affected by the structural design, notably the pore size, pore geometry, and the pore distribution. To enhance the bone regeneration capability of scaffolds, the bionic design can be regarded as a potential solution. OBJECTIVES We proposed a Haversian system-like gradient structure based on the triply periodic minimal surface architectures with pore size varying from the edge to the center. And its effects in promoting bone regeneration were evaluated in the study. METHODS The gradient scaffold was designed using the triply periodic minimal surface architectures. The mechanical properties were analyzed by the finite element simulation and confirmed using the universal machine. The fluid characteristics were calculated by the computational fluid dynamics analysis. The bone regeneration process was simulated using a in silico computational model containing the main biological, physical, and chemical variation during the bone growth process. Finally, the in vitro and in vivo studies were carried out to verify the actual osteogenic effect. RESULTS Compared to the uniform scaffold, the biomimetic gradient scaffold demonstrated better performance in stress conduction and reduced stress shielding effects. The fluid features were appropriate for cell migration and flow diffusion, and the permeability was in the same order of magnitude with the natural bone. The bone ingrowth simulation exhibited improved angiogenesis and bone regeneration. Higher expression of the osteogenesis-related genes, higher alkaline phosphatase activity, and increased mineralization could be observed on the gradient scaffold in the in vitro study. The 12-week in vivo study proved that the gradient scaffold had deeper bone inserting depth and a more stable bone-scaffold interface. CONCLUSION The Haversian system-like gradient structure can effectively promote the bone regeneration. This structural design can be used as a new solution for the clinical application of prosthesis design.
Collapse
Affiliation(s)
- Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital Affiliated to Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing 210000, China; Jiangsu Engineering Research Center for 3D Bioprinting, No. 321 Zhongshan Road, Nanjing 210000, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital Affiliated to Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing 210000, China; Jiangsu Engineering Research Center for 3D Bioprinting, No. 321 Zhongshan Road, Nanjing 210000, China
| | - Huixin Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital Affiliated to Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing 210000, China; Jiangsu Engineering Research Center for 3D Bioprinting, No. 321 Zhongshan Road, Nanjing 210000, China
| | - Jing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital Affiliated to Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing 210000, China
| | - Yibo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital Affiliated to Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing 210000, China
| | - Jianping Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital Affiliated to Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing 210000, China
| | - Yun Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
| | - Siyuan He
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
| | - Hongli Mao
- College of Materials Science and Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| | - Bin Xue
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, No. 2 Hankou Road, Nanjing 210093, China
| | - Jiancheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305-6104, USA
| | - Liya Zhu
- School of Electrical and Automation Engineering, Nanjing Normal University, No.2 Xuelin Road, Nanjing 210023, China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital Affiliated to Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing 210000, China; Jiangsu Engineering Research Center for 3D Bioprinting, No. 321 Zhongshan Road, Nanjing 210000, China.
| |
Collapse
|
3
|
Jones SE, Nichols L, Elder SH, Priddy LB. Laser microgrooving and resorbable blast texturing for enhanced surface function of titanium alloy for dental implant applications. BIOMEDICAL ENGINEERING ADVANCES 2023; 5:100090. [PMID: 37424696 PMCID: PMC10327652 DOI: 10.1016/j.bea.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Long-term dental implant success is dependent on biocompatibility and osseointegration between the bone and the implant. Surface modifications such as laser-induced microgrooving which increase contact area can enhance osseointegration by establishing and directing a stable attachment between the implant surface and peri-implant bone. The objective of this study was to evaluate pre-osteoblast proliferation, morphology, and differentiation on titanium alloy (Ti64) surfaces-Laser-Lok© (LL), resorbable blast textured (RBT), and machined (M)-compared to tissue culture plastic (TCP) control. We hypothesized the LL surfaces would facilitate increased cellular alignment compared to all other groups, and LL and RBT surfaces would demonstrate enhanced proliferation and differentiation compared to M and TCP surfaces. Surface roughness was quantified using a surface profilometer, and water contact angle was measured to evaluate the hydrophilicity of the surfaces. Cellular function was assessed using quantitative viability and differentiation assays and image analyses, along with qualitative fluorescent (viability and cytoskeletal) imaging and scanning electron microscopy. No differences in surface roughness were observed between groups. Water contact angle indicated LL was the least hydrophilic surface, with RBT and M surfaces exhibiting greater hydrophilicity. Cell proliferation on day 2 was enhanced on both LL and RBT surfaces compared to M, and all three groups had higher cell numbers on day 2 compared to day 1. Cell orientation was driven by the geometry of the surface modification, as cells were more highly aligned on LL surfaces compared to TCP (on day 2) and RBT (on day 3). At day 21, cell proliferation was greater on LL, RBT, and TCP surfaces compared to M, though no differences in osteogenic differentiation were observed. Collectively, our results highlight the efficacy of laser microgrooved and resorbable blast textured surface modifications of Ti64 for enhancing cellular functions, which may facilitate improved osseointegration of dental implants.
Collapse
Affiliation(s)
| | | | | | - Lauren B. Priddy
- Corresponding author: Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS 39762, USA. (L.B. Priddy)
| |
Collapse
|
4
|
Kresakova L, Medvecky L, Vdoviakova K, Varga M, Danko J, Totkovic R, Spakovska T, Vrzgula M, Giretova M, Briancin J, Šimaiová V, Kadasi M. Long-Bone-Regeneration Process in a Sheep Animal Model, Using Hydroxyapatite Ceramics Prepared by Tape-Casting Method. Bioengineering (Basel) 2023; 10:bioengineering10030291. [PMID: 36978682 PMCID: PMC10044976 DOI: 10.3390/bioengineering10030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
This study was designed to investigate the effects of hydroxyapatite (HA) ceramic implants (HA cylinders, perforated HA plates, and nonperforated HA plates) on the healing of bone defects, addressing biocompatibility, biodegradability, osteoconductivity, osteoinductivity, and osteointegration with the surrounding bone tissue. The HA ceramic implants were prepared using the tape-casting method, which allows for shape variation in samples after packing HA paste into 3D-printed plastic forms. In vitro, the distribution and morphology of the MC3T3E1 cells grown on the test discs for 2 and 9 days were visualised with a fluorescent live/dead staining assay. The growth of the cell population was clearly visible on the entire ceramic surfaces and very good osteoblastic cell adhesion and proliferation was observed, with no dead cells detected. A sheep animal model was used to perform in vivo experiments with bone defects created on the metatarsal bones, where histological and immunohistochemical tissue analysis as well as X-ray and CT images were applied. After 6 months, all implants showed excellent biocompatibility with the surrounding bone tissue with no observed signs of inflammatory reaction. The histomorphological findings revealed bone growth immediately over and around the implants, indicating the excellent osteoconductivity of the HA ceramic implants. A number of islands of bone tissue were observed towards the centres of the HA cylinders. The highest degree of biodegradation, bioresorption, and new bone formation was observed in the group in which perforated HA plates were applied. The results of this study suggest that HA cylinders and HA plates may provide a promising material for the functional long-bone-defect reconstruction and further research.
Collapse
Affiliation(s)
- Lenka Kresakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Lubomir Medvecky
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia
| | - Katarina Vdoviakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Maros Varga
- Hospital AGEL Kosice-Saca, Lucna 57, 040 15 Kosice, Slovakia
| | - Ján Danko
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Roman Totkovic
- Hospital AGEL Kosice-Saca, Lucna 57, 040 15 Kosice, Slovakia
| | | | - Marko Vrzgula
- Department of Anatomy, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Trieda SNP 1, 040 11 Kosice, Slovakia
| | - Maria Giretova
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia
| | | | - Veronika Šimaiová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Marian Kadasi
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| |
Collapse
|
5
|
Histological and Biological Response to Different Types of Biomaterials: A Narrative Single Research Center Experience over Three Decades. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137942. [PMID: 35805602 PMCID: PMC9265446 DOI: 10.3390/ijerph19137942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022]
Abstract
Background: In more than three decades of work of the Retrieval Bank of the Laboratory for Undemineralized Hard Tissue Histology of the University of Chieti-Pescara in Italy, many types of biomaterials were received and evaluated. The present retrospective review aimed to evaluate the histological and biological aspects of the evaluated bone substitute biomaterials. Methods: In the present study, the authors prepared a retrospective analysis after the screening of some databases (PubMed, Scopus, and EMBASE) to find papers published from the Retrieval Bank of the Laboratory for Undermineralized Hard Tissue Histology of the University of Chieti-Pescara analyzing only the papers dealing with bone substitute biomaterials and scaffolds, in the form of granules and block grafts, for bone regeneration procedures. Results: Fifty-two articles were found, including in vitro, in vivo, and clinical studies of different biomaterials. These articles were evaluated and organized in tables for a better understanding. Conclusions: Over three decades of studies have made it possible to assess the quality of many bone substitute biomaterials, helping to improve the physicochemical and biological properties of the biomaterials used in daily clinical practice.
Collapse
|
6
|
Proposal for a New Bioactive Kinetic Screw in an Implant, Using a Numerical Model. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A new biomechanism, Bioactive Kinetic Screw (BKS) for screws and bone implants created by the first author, is presented using a bone dental implant screw, in which the bone particles, blood, cells, and protein molecules removed during bone drilling are used as a homogeneous autogenous transplant in the same implant site, aiming to obtain primary and secondary bone stability, simplifying the surgical procedure, and improving the healing process. The new BKS is based on complex geometry. In this work, we describe the growth factor (GF) delivery properties and the in situ optimization of the use of the GF in the fixation of bone screws through a dental implant. To describe the drilling process, an explicit dynamic numerical model was created, where the results show a significant impact of the drilling process on the bone material. The simulation demonstrates that the space occupied by the screw causes stress and deformation in the bone during the perforation and removal of the particulate bone, resulting in the accumulation of material removed within the implant screw, filling the limit hole of the drill grooves present on the new BKS.
Collapse
|
7
|
Lu W, Zhou C, Ma Y, Li J, Chen Y, Jiang J, Dong L, He F. Improved osseointegration of strontium-modified titanium implant by regulating angiogenesis and macrophage polarization. Biomater Sci 2022; 10:2198-2214. [DOI: 10.1039/d1bm01488a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strotium (Sr) has shown strong osteogenic potential and thereby been widely incorporated into dental and orthopedic implants. However, the improved osseointegration of strontium-modified titanium implant through regulation of angiogenesis and macrophage...
Collapse
|
8
|
Zhang Y, Wang P, Jin J, Li L, He SY, Zhou P, Jiang Q, Wen C. In silico and in vivo studies of the effect of surface curvature on the osteoconduction of porous scaffolds. Biotechnol Bioeng 2021; 119:591-604. [PMID: 34723387 DOI: 10.1002/bit.27976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023]
Abstract
Recent evidence shows that the curvature of porous scaffold plays a significant role in guiding tissue regeneration. However, the underlying mechanism remains controversial to date. In this study, we developed an in silico model to simulate the effect of surface curvature on the osteoconduction of scaffold implants, which comprises the primary aspects of bone regeneration. Selective laser melting was used to manufacture a titanium scaffold with channels representative of different strut curvatures for in vivo assessment. The titanium scaffold was implanted in the femur condyles of rabbits to validate the mathematical model. Simulation results suggest that the curvature affected the distribution of growth factors and subsequently induced the migration of osteoblast lineage cells and bone deposition to the locations with higher curvature. The predictions of the mathematical model are in good agreement with the in vivo assessment results, in which newly formed bone first appeared adjacent to the vertices of the major axes in elliptical channels. The mechanism of curvature-guided osteoconduction may provide a guide for the design optimization of scaffold implants to achieve enhanced bone ingrowth.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Peng Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Department of Sports Medicine and Adult Reconstructive Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiyong Jin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Lan Li
- Department of Sports Medicine and Adult Reconstructive Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Si-Yuan He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ping Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Cuie Wen
- School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Gehrke SA, Júnior JA, Eirles Treichel TL, Dedavid BA. Biomechanical and histological evaluation of four different implant macrogeometries in the early osseointegration process: An in vivo animal study. J Mech Behav Biomed Mater 2021; 125:104935. [PMID: 34736028 DOI: 10.1016/j.jmbbm.2021.104935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022]
Abstract
This study aims to evaluate the effects of implant macrogeometry on the early period of the osseointegration process, comparing four different implant models through biomechanical and histological analysis after implantation in rabbit tibiae. Twenty New Zealand rabbits were used, evaluated at two different times (21 and 28 days) after installation of the implant. Eighty implants with different macrogeometries were used, forming four groups (n = 20 per group): cylindrical implants Ø4.1 mm and 8 mm in length (STRc group); cylindrical-conical implants Ø4.1 mm and 8 mm in length (STRt group); tapered implants Ø4.3 mm and 8 mm in length (NOBt group); and tapered implants with healing chambers Ø4.0 mm and 8 mm in length (MAEt group). Ten samples from each group were analyzed at each proposed time. The initial implant stability quotient (ISQ) was measured by resonance frequency analysis, both at the time of installation and at the time of sacrifice. In the histological sections, the percentage of bone-implant contact (BIC%), newly formed bone, osteoid matrix, and medullary spaces were measured in the pre-determined cortical and medullary bone portion for each sample. The three tapered implant groups (STRt, NOBt, and MAEt) showed higher values for the analyzed parameters in the early osseointegration period, in comparison with the cylindrical implant group (STRc). In all parameters, the three tapered groups showed no difference (p > 0.05); however, all three tapered groups presented significant differences, when compared to the cylindrical group (p < 0.05). No correlation was detected between the parameters analyzed. Within the limitations of the present study, in all parameters analyzed, the tapered implants demonstrated greater results when compared to the cylindrical implants.
Collapse
Affiliation(s)
- Sergio Alexandre Gehrke
- Department of Biotechnology, Universidad Católica de Murcia, 30107, Murcia, Spain; Department of Research, Biotecnos - Technology and Science, 11100, Montevideo, Uruguay.
| | | | | | - Berenice Anina Dedavid
- Department of Materials Engineering, Pontificia Universidade Católica do Rio Grande do Sul, 90619-900, Porto Alegre, Brazil.
| |
Collapse
|
10
|
Pei X, Wu L, Lei H, Zhou C, Fan H, Li Z, Zhang B, Sun H, Gui X, Jiang Q, Fan Y, Zhang X. Fabrication of customized Ti6AI4V heterogeneous scaffolds with selective laser melting: Optimization of the architecture for orthopedic implant applications. Acta Biomater 2021; 126:485-495. [PMID: 33766797 DOI: 10.1016/j.actbio.2021.03.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
Orthopedic implants with heterogeneous porous structures were known as ideal bone osteointegration. This research introduced the selective laser melting (SLM), finite element analysis (FEA), and a hydrothermal process (HT) for manufacturing a three-level heterogeneous porous structure. The macroporous structure was designed via CAD and micropores were tuned via laser power regulation. A nano-size layer of hydroxyapatite crystals was coated by an HT process. The mechanical properties were reinforced via a core-shell structure with core reinforcement. The existence of micropores and nano-hydroxyapatite coating enhanced the in vitro proliferation of preosteoblasts and osteogenic cellular behaviors of rBMSCs. Thus, the three-level heterogeneous porous titanium implants could inspire researchers with potential clue of cyto-implant interaction mechanism, therefore building ideal orthopedic implants with accelerated osteointegration. STATEMENT OF SIGNIFICANCE: Porous structures of titanium implants play an important role in bone tissue regeneration; The geometrical environment influence cell behaviour and bone tissue ingrowth in all macro-/micro-/nanoscale. In this study, a novel method to fabricate heterogeneous scaffolds and its macro-/micro-/nanoscopic structures were studied. A CAD model was used to obtain the macroscopic structure and the insufficient laser power was introduced for porous microstructure. Therefore, a layer of nano hydroxyapatite was coated via hydrothermal process. Cytoproliferation and cytodifferentiation results indicated that a integrity of regular/irregular, macro-/micro-/nanoscale porous structure had advance in recruiting stem cells and promoting differentiation. This research is beneficial to the development of bone implants with better bone regeneration ability.
Collapse
|
11
|
Charbonnier B, Hadida M, Marchat D. Additive manufacturing pertaining to bone: Hopes, reality and future challenges for clinical applications. Acta Biomater 2021; 121:1-28. [PMID: 33271354 DOI: 10.1016/j.actbio.2020.11.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
For the past 20 years, the democratization of additive manufacturing (AM) technologies has made many of us dream of: low cost, waste-free, and on-demand production of functional parts; fully customized tools; designs limited by imagination only, etc. As every patient is unique, the potential of AM for the medical field is thought to be considerable: AM would allow the division of dedicated patient-specific healthcare solutions entirely adapted to the patients' clinical needs. Pertinently, this review offers an extensive overview of bone-related clinical applications of AM and ongoing research trends, from 3D anatomical models for patient and student education to ephemeral structures supporting and promoting bone regeneration. Today, AM has undoubtably improved patient care and should facilitate many more improvements in the near future. However, despite extensive research, AM-based strategies for bone regeneration remain the only bone-related field without compelling clinical proof of concept to date. This may be due to a lack of understanding of the biological mechanisms guiding and promoting bone formation and due to the traditional top-down strategies devised to solve clinical issues. Indeed, the integrated holistic approach recommended for the design of regenerative systems (i.e., fixation systems and scaffolds) has remained at the conceptual state. Challenged by these issues, a slower but incremental research dynamic has occurred for the last few years, and recent progress suggests notable improvement in the years to come, with in view the development of safe, robust and standardized patient-specific clinical solutions for the regeneration of large bone defects.
Collapse
|
12
|
Liddell RS, Ajami E, Li Y, Bajenova E, Yang Y, Davies JE. The influence of implant design on the kinetics of osseointegration and bone anchorage homeostasis. Acta Biomater 2021; 121:514-526. [PMID: 33271359 DOI: 10.1016/j.actbio.2020.11.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/05/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Titanium implants have shown considerable success in terms of achieving quick and long-lasting stability in bone through the process of osseointegration. Further work aims to improve implant success rates by modifying implant design on the nano-, micro-, and macro- scales with the goal of achieving higher levels of bone anchorage more quickly. However, the most frequently used methods of analysis do not investigate bone anchorage as a whole but as a series of discrete points, potentially missing relevant insight which could inform the effects of topography on these 3 scale ranges. Herein we utilize an asymptotic curve fitting method to obtain a biologically relevant description of reverse torque data and compare the anchorage of 12 different implant groups. Implant surface topography had a significant effect on the rate and degree of anchorage achieved during the initial bone formation period of osseointegration but was not found to influence the relative change in anchorage during bony remodeling. Threaded implants significantly decreased the time required to reach peak anchorage compared to non-threaded implants and implants with micro-topographically complex surfaces required greater torque to be removed than implants without such features. Nanotopography increased overall anchorage and decreased the time required to reach peak anchorage but to a lesser degree than microtopography or macrogeometry respectively. The curve fitting method utilized in the present study allows for a more integrated analysis of bone anchorage and permits investigation of osseointegration with respect to time, which may lead to a more targeted approach to implant design.
Collapse
Affiliation(s)
- Robert S Liddell
- Dental Research Institute, Faculty of Dentistry, University of Toronto 124 Edward Street, Toronto, Ontario, Canada, M5G 1G6
| | - Elnaz Ajami
- Zimmer Biomet Dental, Palm Beach Gardens, Florida, United States of America, 33410
| | - Yunqing Li
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9
| | - Elena Bajenova
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9
| | - Yuan Yang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9
| | - John E Davies
- Dental Research Institute, Faculty of Dentistry, University of Toronto 124 Edward Street, Toronto, Ontario, Canada, M5G 1G6; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9.
| |
Collapse
|
13
|
Myakinin A, Turlybekuly A, Pogrebnjak A, Mirek A, Bechelany M, Liubchak I, Oleshko O, Husak Y, Korniienko V, Leśniak-Ziółkowska K, Dogadkin D, Banasiuk R, Moskalenko R, Pogorielov M, Simka W. In vitro evaluation of electrochemically bioactivated Ti6Al4V 3D porous scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111870. [PMID: 33579496 DOI: 10.1016/j.msec.2021.111870] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022]
Abstract
Triply periodic minimal surfaces (TPMS) are known for their advanced mechanical properties and are wrinkle-free with a smooth local topology. These surfaces provide suitable conditions for cell attachment and proliferation. In this study, the in vitro osteoinductive and antibacterial properties of scaffolds with different minimal pore diameters and architectures were investigated. For the first time, scaffolds with TPMS architecture were treated electrochemically by plasma electrolytic oxidation (PEO) with and without silver nanoparticles (AgNPs) to enhance the surface bioactivity. It was found that the scaffold architecture had a greater impact on the osteoblast cell activity than the pore size. Through control of the architecture type, the collagen production by osteoblast cells increased by 18.9% and by 43.0% in the case of additional surface PEO bioactivation. The manufactured scaffolds demonstrated an extremely low quasi-elastic modulus (comparable with trabecular and cortical bone), which was 5-10 times lower than that of bulk titanium (6.4-11.4 GPa vs 100-105 GPa). The AgNPs provided antibacterial properties against both gram-positive and gram-negative bacteria and had no significant impact on the osteoblast cell growth. Complex experimental results show the in vitro effectiveness of the PEO-modified TPMS architecture, which could positively impact the clinical applications of porous bioactive implants.
Collapse
Affiliation(s)
- Alexandr Myakinin
- D. Serikbayev East Kazakhstan State Technical University, F02K6B2 Oskemen, Kazakhstan
| | | | - Alexander Pogrebnjak
- Sumy State University, Medical Institute, 40018 Sumy, Ukraine; al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Adam Mirek
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, CNRS, ENSCM, 34095 Montpellier CEDEX 5, France; Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, 02-109 Warsaw, Poland
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, CNRS, ENSCM, 34095 Montpellier CEDEX 5, France
| | - Iryna Liubchak
- Sumy State University, Medical Institute, 40018 Sumy, Ukraine
| | | | - Yevheniia Husak
- Sumy State University, Medical Institute, 40018 Sumy, Ukraine
| | | | | | - Dmitry Dogadkin
- D. Serikbayev East Kazakhstan State Technical University, F02K6B2 Oskemen, Kazakhstan
| | - Rafał Banasiuk
- NanoWave, 02-676 Warsaw, Poland; Institute of Biotechnology and Molecular Medicine, 80-172 Gdansk, Poland
| | | | - Maksym Pogorielov
- Sumy State University, Medical Institute, 40018 Sumy, Ukraine; NanoPrime, 32-900 Dębica, Poland
| | - Wojciech Simka
- Silesian University of Technology, Faculty of Chemistry, 44-100 Gliwice, Poland; NanoPrime, 32-900 Dębica, Poland.
| |
Collapse
|
14
|
Li MJ, Kung PC, Chang YW, Tsou NT. Healing Pattern Analysis for Dental Implants Using the Mechano-Regulatory Tissue Differentiation Model. Int J Mol Sci 2020; 21:E9205. [PMID: 33276683 PMCID: PMC7730039 DOI: 10.3390/ijms21239205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Our aim is to reveal the influence of the geometry designs on biophysical stimuli and healing patterns. The design guidelines for dental implants can then be provided. (2) Methods: A two-dimensional axisymmetric finite element model was developed based on mechano-regulatory algorithm. The history of tissue differentiation around eight selected implants can be predicted. The performance of the implants was evaluated by bone area (BA), bone-implant contact (BIC); (3) Results: The predicted healing patterns have very good agreement with the experimental observation. Many features observed in literature, such as soft tissues covering on the bone-implant interface; crestal bone loss; the location of bone resorption bumps, were reproduced by the model and explained by analyzing the solid and fluid biophysical stimuli and (4) Conclusions: The results suggested the suitable depth, the steeper slope of the upper flanks, and flat roots of healing chambers can improve the bone ingrowth and osseointegration. The mechanism related to solid and fluid biophysical stimuli were revealed. In addition, the model developed here is efficient, accurate and ready to extend to any geometry of dental implants. It has potential to be used as a clinical application for instant prediction/evaluation of the performance of dental implants.
Collapse
Affiliation(s)
| | | | | | - Nien-Ti Tsou
- Department of Materials Science and Engineering, National Chiao Tung University, Hsin-chu 30010, Taiwan; (M.-J.L.); (P.-C.K.); (Y.-W.C.)
| |
Collapse
|
15
|
Siller IG, Epping NM, Lavrentieva A, Scheper T, Bahnemann J. Customizable 3D-Printed (Co-)Cultivation Systems for In Vitro Study of Angiogenesis. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4290. [PMID: 32992945 PMCID: PMC7579111 DOI: 10.3390/ma13194290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022]
Abstract
Due to the ever-increasing resolution of 3D printing technology, additive manufacturing is now even used to produce complex devices for laboratory applications. Personalized experimental devices or entire cultivation systems of almost unlimited complexity can potentially be manufactured within hours from start to finish-an enormous potential for experimental parallelization in a highly controllable environment. This study presents customized 3D-printed co-cultivation systems, which qualify for angiogenesis studies. In these systems, endothelial and mesenchymal stem cells (AD-MSC) were indirectly co-cultivated-that is, both cell types were physically separated through a rigid, 3D-printed barrier in the middle, while still sharing the same cell culture medium that allows for the exchange of signalling molecules. Biochemical-based cytotoxicity assays initially confirmed that the 3D printing material does not exert any negative effects on cells. Since the material also enables phase contrast and fluorescence microscopy, the behaviour of cells could be observed over the entire cultivation via both. Microscopic observations and subsequent quantitative analysis revealed that endothelial cells form tubular-like structures as angiogenic feature when indirectly co-cultured alongside AD-MSCs in the 3D-printed co-cultivation system. In addition, further 3D-printed devices are also introduced that address different issues and aspire to help in varying experimental setups. Our results mark an important step forward for the integration of customized 3D-printed systems as self-contained test systems or equipment in biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany; (I.G.S.); (N.-M.E.); (A.L.); (T.S.)
| |
Collapse
|
16
|
Titanium Implants Coated with a Bifunctional Molecule with Antimicrobic Activity: A Rabbit Study. MATERIALS 2020; 13:ma13163613. [PMID: 32824141 PMCID: PMC7475867 DOI: 10.3390/ma13163613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022]
Abstract
Background: Various surface treatments have been tested for titanium implants aiming at increasing their surface biocompatibility and their biological characteristics, but also the efficiency of the implant surface will have to be improved to drastically decrease peri-implantite and mucosite. In fact, the peri-implantitis and peri-implant mucositis have a high incidence in clinical practice. The nanofabrication techniques that offer the possibility to achieve the implant surface that reduces bacterial colonization could influence the osteointegration. The aim of this research was to evaluate the bone response to titanium implants coated with a bifunctional molecule with antimicrobic activity consisting of a combination of silver ions covalently bound to titanium dioxide nanoparticles. Methods: A total of 36 implants were inserted into 18 older New Zealand white male rabbits. They had two different surfaces. The implants Control group was characterized by an acid-etched and sandblasted surface treatment, and the Test implants had an acid-etched and sandblasted surface coated with a silver ion covalently bound to titanium dioxide nanoparticles in the solution. Results: No statistically significant difference of the bone density was evidenced between Control and Test implants at two weeks (p-value = 0.623), four weeks (p-value = 0.339), and eight weeks (p-value = 0.461). Moreover, no statistically significant difference of the bone-implant contact percentage was evidenced between Control and Test implants at two weeks (p-value = 0.938), four weeks (p-value = 0.307), and eight weeks (p-value = 0.294). The effectiveness of the present investigation demonstrated no adverse effects on osseointegration, and no statistically significant differences were observed in the bone density and percentage of bone-implant contact between Test and Control implants at all the experimental time points (two, four, and eight weeks). Conclusions: Titanium implants coated with the silver-anatase solution bind very well to the bone and did not have an adverse effect on the bone tissue in a rabbit model. These facts suggest possible clinical applications for the silver composition.
Collapse
|
17
|
Histological and Histomorphometrical Evaluation of a New Implant Macrogeometry. A Sheep Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103477. [PMID: 32429405 PMCID: PMC7277453 DOI: 10.3390/ijerph17103477] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Decompression or healing chambers between the threads have been proposed to improve and accelerate the osseointegration process of dental implants. The aim of the present work was to test, in an in vivo sheep study, if healing chambers between the threads could produce a better osseointegration process. Thirty titanium implants (15 conventional design (control) and 15 implants with healing chambers (test)) were inserted in a random fashion in the tibia of 3 sheep. The animals were euthanized after 30 days of healing, and the retrieved specimens treated to obtain thin ground sections. Histological observations showed that the quantity of newly formed bone growing in an apical direction was lower in the control group (1095 µm) when compared to the Test group (1658 µm). This difference was statistically significant. Moreover, a layer of osteogenic matrix was present around the portion of implants immersed in the marrow spaces. This osteogenic tissue was thicker in the test group. In conclusion, the present study confirmed the very good results in implants with healing chambers that presented a higher percentage of new bone formation.
Collapse
|
18
|
Callens SJP, Uyttendaele RJC, Fratila-Apachitei LE, Zadpoor AA. Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. Biomaterials 2019; 232:119739. [PMID: 31911284 DOI: 10.1016/j.biomaterials.2019.119739] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022]
Abstract
Recent evidence clearly shows that cells respond to various physical cues in their environments, guiding many cellular processes and tissue morphogenesis, pathology, and repair. One aspect that is gaining significant traction is the role of local geometry as an extracellular cue. Elucidating how geometry affects cell and tissue behavior is, indeed, crucial to design artificial scaffolds and understand tissue growth and remodeling. Perhaps the most fundamental descriptor of local geometry is surface curvature, and a growing body of evidence confirms that surface curvature affects the spatiotemporal organization of cells and tissues. While well-defined in differential geometry, curvature remains somewhat ambiguously treated in biological studies. Here, we provide a more formal curvature framework, based on the notions of mean and Gaussian curvature, and summarize the available evidence on curvature guidance at the cell and tissue levels. We discuss the involved mechanisms, highlighting the interplay between tensile forces and substrate curvature that forms the foundation of curvature guidance. Moreover, we show that relatively simple computational models, based on some application of curvature flow, are able to capture experimental tissue growth remarkably well. Since curvature guidance principles could be leveraged for tissue regeneration, the implications for geometrical scaffold design are also discussed. Finally, perspectives on future research opportunities are provided.
Collapse
Affiliation(s)
- Sebastien J P Callens
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, the Netherlands.
| | - Rafael J C Uyttendaele
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, the Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, the Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, the Netherlands
| |
Collapse
|
19
|
Tebyanian H, Norahan MH, Eyni H, Movahedin M, Mortazavi SJ, Karami A, Nourani MR, Baheiraei N. Effects of collagen/β-tricalcium phosphate bone graft to regenerate bone in critically sized rabbit calvarial defects. J Appl Biomater Funct Mater 2019; 17:2280800018820490. [PMID: 30832532 DOI: 10.1177/2280800018820490] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bone defects remain a significant health issue and a major cause of morbidity in elderly patients. Composites based on collagen/calcium phosphate have been widely used for bone repair in clinical applications, owing to their comparability to bone extracellular matrix. This study aimed to evaluate the effects of a scaffold of collagen/calcium phosphate (COL/β-TCP) on bone formation to assess its potential use as a bone substitute to repair bone defects. Bilateral full-thickness critically sized calvarial defects (8 mm in diameter) were created in New Zealand white rabbits and treated with COL/β-TCP or COL scaffolds. One defect was also left unfilled as a control. Bone regeneration was assessed through histological evaluation using hematoxylin and eosin and Masson's trichrome staining after 4 and 8 weeks. Alizarin Red staining was also utilized to observe the mineralization process. Our findings indicated that COL/β-TCP implantation could better enhance bone regeneration than COL and exhibited both new bone growth and scaffold material degradation.
Collapse
Affiliation(s)
- Hamid Tebyanian
- 1 Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hossein Eyni
- 3 Department of Anatomical Science, faculty of medical sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- 3 Department of Anatomical Science, faculty of medical sciences, Tarbiat Modares University, Tehran, Iran
| | - Sm Javad Mortazavi
- 4 Joint Reconstruction Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Karami
- 1 Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Nourani
- 5 Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nafiseh Baheiraei
- 6 Tissue Engineering & Applied Cell Sciences Division, Department of hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
20
|
Yi Y, Men Y, Jing D, Luo W, Zhang S, Feng JQ, Liu J, Ge W, Wang J, Zhao H. 3-dimensional visualization of implant-tissue interface with the polyethylene glycol associated solvent system tissue clearing method. Cell Prolif 2019; 52:e12578. [PMID: 30714253 PMCID: PMC6536405 DOI: 10.1111/cpr.12578] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/14/2018] [Accepted: 12/28/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Dental implants are major treatment options for restoring teeth loss. Biological processes at the implant-tissue interface are critical for implant osseointegration. Superior mechanical properties of the implant constitute a major challenge for traditional histological techniques. It is imperative to develop new technique to investigate the implant-tissue interface. MATERIALS AND METHODS Our laboratory developed the polyethylene glycol (PEG)-associated solvent system (PEGASOS) tissue clearing method. By immersing samples into various chemical substances, bones and teeth could be turned to transparent with intact internal structures and endogenous fluorescence being preserved. We combined the PEGASOS tissue clearing method with transgenic mouse line and other labelling technique to investigate the angiogenesis and osteogenesis processes occurring at the implant-bone interface. RESULTS Clearing treatment turned tissue highly transparent and implant could be directly visualized without sectioning. Implant, soft/hard tissues and fluorescent labels were simultaneously imaged in decalcified or non-decalcified mouse mandible samples without disturbing their interfaces. Multi-channel 3-dimensional image stacks at high resolution were acquired and quantified. The processes of angiogenesis and osteogenesis surrounding titanium or stainless steel implants were investigated. CONCLUSIONS Both titanium and stainless steel implants support angiogenesis at comparable levels. Successful osseointegration and calcium precipitation occurred only surrounding titanium, but not stainless steel implants. PEGASOS tissue clearing method provides a novel approach for investigating the interface between implants and hard tissue.
Collapse
Affiliation(s)
- Yating Yi
- State Key Laboratory of Oral Diseases, West China School of StomatologySichuan UniversityChengduChina
- Department of Restorative Sciences, College of DentistryTexas A&M UniversityDallasTexas
| | - Yi Men
- Department of Restorative Sciences, College of DentistryTexas A&M UniversityDallasTexas
| | - Dian Jing
- State Key Laboratory of Oral Diseases, West China School of StomatologySichuan UniversityChengduChina
- Department of Restorative Sciences, College of DentistryTexas A&M UniversityDallasTexas
| | - Wenjing Luo
- Department of Restorative Sciences, College of DentistryTexas A&M UniversityDallasTexas
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, West China School of StomatologySichuan UniversityChengduChina
- Department of Restorative Sciences, College of DentistryTexas A&M UniversityDallasTexas
| | - Jian Q. Feng
- Department of Biomedical Sciences, College of DentistryTexas A&M UniversityDallasTexas
| | - Jin Liu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Woo‐Ping Ge
- Children’s Research InstituteUniversity of Texas Southwestern Medical CentreDallasTexas
| | - Jun Wang
- State Key Laboratory of Oral Diseases, West China School of StomatologySichuan UniversityChengduChina
| | - Hu Zhao
- Department of Restorative Sciences, College of DentistryTexas A&M UniversityDallasTexas
| |
Collapse
|
21
|
Biomimetic Surfaces Coated with Covalently Immobilized Collagen Type I: An X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy, Micro-CT and Histomorphometrical Study in Rabbits. Int J Mol Sci 2019; 20:ijms20030724. [PMID: 30744023 PMCID: PMC6387268 DOI: 10.3390/ijms20030724] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022] Open
Abstract
Background: The process of osseointegration of dental implants is characterized by healing phenomena at the level of the interface between the surface and the bone. Implant surface modification has been introduced in order to increase the level of osseointegration. The purpose of this study is to evaluate the influence of biofunctional coatings for dental implants and the bone healing response in a rabbit model. The implant surface coated with collagen type I was analyzed through X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), micro-CT and histologically. Methods: The sandblasted and double acid etched surface coated with collagen type I, and uncoated sandblasted and double acid etched surface were evaluated by X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM) analysis in order evaluate the different morphology. In vivo, a total of 36 implants were positioned in rabbit articular femoral knee-joint, 18 fixtures for each surface. Micro-CT scans, histological and histomorphometrical analysis were conducted at 15, 30 and 60 days. Results: A histological statistical differences were evident at 15, 30 and 60 days (p < 0.001). Both implant surfaces showed a close interaction with newly formed bone. Mature bone appeared in close contact with the surface of the fixture. The AFM outcome showed a similar roughness for both surfaces. Conclusion: However, the final results showed that a coating of collagen type I on the implant surface represents a promising procedure able to improve osseointegration, especially in regions with a low bone quality.
Collapse
|
22
|
Gariboldi MI, Butler R, Best SM, Cameron RE. Engineering vasculature: Architectural effects on microcapillary-like structure self-assembly. PLoS One 2019; 14:e0210390. [PMID: 30620757 PMCID: PMC6324810 DOI: 10.1371/journal.pone.0210390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/21/2018] [Indexed: 01/24/2023] Open
Abstract
One of the greatest obstacles to clinical translation of bone tissue engineering is the inability to effectively and efficiently vascularize scaffolds. The goal of this work was to explore systematically whether architecture, at a scale of hundreds of microns, can be used to direct the growth of microcapillary-like structures into the core of scaffolds. Biphasic bioceramic patterned architectures were produced using silicone molds of 3D printed parts. Grooves and ridges were designed to have widths of 330 μm and 660 μm, with periodicities respectively of 1240 μm and 630 μm. Groove depth was varied between 150 μm and 585 μm. Co-cultures of human dermal microvascular endothelial cells (HDMECs) and human osteoblasts (hOBs) were used to grow microcapillary-like structures on substrates. Bioceramic architecture was found to significantly affect microcapillary-like structure location and orientation. Microcapillary-like structures were found to form predominantly in grooves or between convexities. For all patterned samples, the CD31 (endothelial cell marker) signal was at least 2.5 times higher along grooves versus perpendicular to grooves. In addition, the average signal was at least two times higher within grooves than outside grooves for all samples. Grooves with a width of 330 μm and a depth of 300 μm resulted in the formation of individual, highly aligned microcapillary-like structures with lengths around 5 mm. Extensive literature has focused on the role of nano- and micro-topography (on the scale below tens of microns) on cellular response. However, the idea that architecture at a scale much larger than a cell could be used to modulate angiogenesis has not been systematically investigated. This work shows the crucial influence of architecture on microcapillary-like structure self-assembly at the scale of hundreds of microns. Elucidating the precise correspondence between architecture and microcapillary-like structure organization will ultimately allow the engineering of microvasculature by tuning local scaffold design to achieve desirable microvessel properties.
Collapse
Affiliation(s)
- Maria Isabella Gariboldi
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, United Kingdom
| | - Richard Butler
- Imaging Facility, Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Serena M. Best
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, United Kingdom
| | - Ruth E. Cameron
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Evaluation of Fibrin Clot Attachment on Titanium Laser-Conditioned Surface Using Scanning Electron Microscopy. J Craniofac Surg 2019; 29:2277-2281. [PMID: 29570521 DOI: 10.1097/scs.0000000000004519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES The study aimed to evaluate the effects of different titanium surface treatments on blood clot extension (bce). METHODS A total of 54 titanium disks with machined surface (M), laser-conditioned surface (L), and grit-blasted surface (S) were used in the present study. The surface characteristics such as contact angles and the microroughness were determined on each group (n = 4). To evaluate the bce, 0.1 mL of human blood was dropped onto the surface of each specimen and left for 7 minutes at room temperature. After fixation, dehydration, and gold sputtering treatments, the specimens were observed under scanning electron microscope. The bce values were expressed as percentage of specimen surface covered by blood clot. RESULTS The surface roughness (Ra ± standard deviation [SD]) was 0.75 ± 0.02 μm for M, 0.25 ± 0.02 μm for L, and 1.30 ± 0.03 μm for S. The contact angles measured in static conditions (WCA ± SD) were 71 ± 5.4° for M, 107 ± 6.6° for L, and 91 ± 7.2° for S. Regarding the bce (bce ± SD) of M samples (65.5 ± 4.3%) was statistically lower compared with both L (83.4 ± 5.1%) and S samples (72.4 ± 4.7%) (P < 0.05). Meanwhile, the L group showed the higher bce value. CONCLUSION The present results suggest that the laser-conditioned surface may increase the wettability and bce.
Collapse
|
24
|
Scarano A, Carinci F, Lorusso F, Festa F, Bevilacqua L, Santos de Oliveira P, Maglione M. Ultrasonic vs Drill Implant Site Preparation: Post-Operative Pain Measurement Through VAS, Swelling and Crestal Bone Remodeling: A Randomized Clinical Study. MATERIALS 2018; 11:ma11122516. [PMID: 30544962 PMCID: PMC6316965 DOI: 10.3390/ma11122516] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022]
Abstract
Background: Piezosurgery is a surgical procedure that is able to perform osteotomies by a micrometric and selective cut of the bone tissue. The objective of this investigation was to evaluate two different techniques; an ultrasonic device, and a drill approach for implant site preparation. Methods: A total of fifty patients were recruited for the randomized clinical trial to receive dental implants for fixed prosthetic restoration in the posterior mandible and were allotted to two groups. In Group A the implant site was prepared following a drilling technique, while in Group B the implant site was prepared using an ultrasonic device; moreover, the operative duration was recorded. Postoperative pain and swelling were evaluated at 1, 2, 4, and 6 days. The crestal bone resorption was measured at 3 months from implant placement by a three-dimensional tomography evaluation. Results: The findings suggest that osteotomies performed by an ultrasonic device cause less pain and swelling. On the other hand, the piezoelectric preparation was characterized by a significative increase in the operative time. No statistical differences in crestal bone resorption were evident in the two different approaches. Conclusions: According to the outcome of the study, ultrasonic implant bed preparation can be used with success in implantology and could be considered a suitable alternative to traditional drilling techniques for dental fixture placement.
Collapse
Affiliation(s)
- Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences and CeSi Met, University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Francesco Carinci
- Department of Maxillofacial Surgery, University of Ferrara, 44121, Ferrara, Italy.
| | - Felice Lorusso
- Department of Medical, Oral and Biotechnological Sciences and CeSi Met, University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Felice Festa
- Department of Medical, Oral and Biotechnological Sciences and CeSi Met, University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Lorenzo Bevilacqua
- Department of Medical Sciences, University of Trieste, 34127, Trieste, Italy.
| | - Pablo Santos de Oliveira
- Department of Oral Implantology, Dental Research Division, College Ingà, UNINGÁ, Cachoeiro de Itapemirim 29312, Brazil.
| | - Michele Maglione
- Department of Medical Sciences, University of Trieste, 34127, Trieste, Italy.
| |
Collapse
|
25
|
Three-Dimensional Architecture and Mechanical Properties of Bovine Bone Mixed with Autologous Platelet Liquid, Blood, or Physiological Water: An In Vitro Study. Int J Mol Sci 2018; 19:ijms19041230. [PMID: 29670035 PMCID: PMC5979420 DOI: 10.3390/ijms19041230] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 01/04/2023] Open
Abstract
In recent years, several techniques and material options have been investigated and developed for bone defect repair and regeneration. The progress in studies of composite graft materials and autologous platelet-derived growth factors for bone regeneration in dentistry and their biological and biomechanical properties has improved clinical strategies and results. The aim of this study was to evaluate the three-dimensional architecture and mechanical properties of three different combinations of composite bovine graft, adding autologous platelet liquid (APL), blood, or physiological water. One experimental group for each combination of biomaterials was created. In particular, in Group I, the bovine graft was mixed with APL; in Group II, it was mixed with blood, and in Group III, the biomaterial graft was combined with physiological water. Then, the composite biomaterials were evaluated by scanning electron microscopy (SEM), and a compression-loading test was conducted. The evaluation showed a statistical significance (p < 0.01) of the elastic regime of deformation resistance, in which the combination of APL with bone graft resulted in an 875% increase in the mechanical resistance. The protocol of APL mixed with bovine bone graft produced a composite sticky graft block that was capable of increasing the mechanical properties in order to improve its clinical use in the treatment of the maxillary bone defects.
Collapse
|
26
|
Bone Response to Two Dental Implants with Different Sandblasted/Acid-Etched Implant Surfaces: A Histological and Histomorphometrical Study in Rabbits. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8724951. [PMID: 29445746 PMCID: PMC5763083 DOI: 10.1155/2017/8724951] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 01/24/2023]
Abstract
Background Scientific evidence in the field of implant dentistry of the past 20 years established that titanium rough surfaces have shown improved osseointegration rates. In a majority of dental implants, the surface microroughness was obtained by grit blasting and/or acid etching. The aim of the study was to evaluate in vivo two different highly hydrophilic surfaces at different experimental times. Methods Calcium-modified (CA) and SLActive surfaces were evaluated and a total of 18 implants for each type of surface were positioned into the rabbit articular femoral knee-joint in a split model experiment, and they were evaluated histologically and histomorphometrically at 15, 30, and 60 days of healing. Results Bone-implant contact (BIC) at the two-implant surfaces was significantly different in favor of the CA surface at 15 days (p = 0.027), while SLActive displayed not significantly higher values at 30 (p = 0.51) and 60 days (p = 0.061). Conclusion Both implant surfaces show an intimate interaction with newly formed bone.
Collapse
|
27
|
Ghensi P, Bressan E, Gardin C, Ferroni L, Soldini MC, Mandelli F, Soldini C, Zavan B. The Biological Properties of OGI Surfaces Positively Act on Osteogenic and Angiogenic Commitment of Mesenchymal Stem Cells. MATERIALS 2017; 10:ma10111321. [PMID: 29149082 PMCID: PMC5706268 DOI: 10.3390/ma10111321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 01/04/2023]
Abstract
Osteogenesis process displays a fundamental role during dental implant osteointegration. In the present work, we studied the influence of Osteon Growth Induction (OGI) surface properties on the angiogenic and osteogenic behaviors of Mesenchymal Stem cells (MSC). MSC derived from dental pulp and HUVEC (Human Umbilical Vein Endothelial Cells) were grown in on OGI titanium surfaces, and cell proliferation and DNA synthesis were evaluated by MTT [3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide] test and DNA quantification. Gene expression has been performed in order to evaluate the presence of mRNA related to endothelial and osteogenesis markers. Moreover, morphological and biochemical analyses of osteogenesis commitments has been performed. On OGI surfaces, MSC and HUVEC are able to proliferate. Gene expression profiler confirms that MSC on OGI surfaces are able to express endothelial and osteogenic markers, and that these expression are higher compared the expression on control surfaces. In conclusion On OGI surfaces proliferation, expression and morphological analyses of angiogenesis-associated markers in MSC are promoted. This process induces an increasing on their osteogenesis commitment.
Collapse
Affiliation(s)
- Paolo Ghensi
- Department of Neurosciences, Dental School, University of Padova, Via Giustiniani 2, 35100 Padova, Italy.
- Centre for Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy.
| | - Eriberto Bressan
- Department of Neurosciences, Dental School, University of Padova, Via Giustiniani 2, 35100 Padova, Italy.
| | - Chiara Gardin
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58, 35100 Padova, Italy.
| | - Letizia Ferroni
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58, 35100 Padova, Italy.
| | - Maria Costanza Soldini
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy.
| | | | - Claudio Soldini
- Department of Neurosciences, Dental School, University of Padova, Via Giustiniani 2, 35100 Padova, Italy.
- CLC Scientific, via Vecchia Ferriera 18, 36100 Vicenza, Italy.
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58, 35100 Padova, Italy.
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy.
| |
Collapse
|
28
|
Zhou XY, Wu SY, Zhang ZC, Wang F, Yang YL, Li M, Wei XZ. Low-intensity pulsed ultrasound promotes endothelial cell-mediated osteogenesis in a conditioned medium coculture system with osteoblasts. Medicine (Baltimore) 2017; 96:e8397. [PMID: 29069035 PMCID: PMC5671868 DOI: 10.1097/md.0000000000008397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Angiogenesis plays an important role during bone regeneration. Low-intensity pulsed ultrasound (LIPUS) has been proven to accelerate the process of bone fracture healing. However, the mechanism of the effect of LIPUS on bone regeneration is still unclear. In the present study, we used human umbilical vein endothelial cell (HUVEC) and human osteosarcoma cell (MG-63) to investigate the effect of LIPUS stimulation in an endothelial cell-osteoblast coculture system. At the same time, we used transwell and in vitro angiogenesis assay to observe how LIPUS affects endothelial cells. The results demonstrated that LIPUS could significantly increase the migratory ability and promote tube formation in angiogenesis of HUVECs. Furthermore, LIPUS could significantly elevate the expression of osteogenesis-related genes on osteoblasts such as Runt-related transcription factor 2, alkaline phosphatase, Osteorix, and Cyclin-D1, indicating the pro-osteogenesis effect of LIPUS in our coculture system. In conclusion, endothelial cell is involved in LIPUS-accelerated bone regeneration, the positive effect of LIPUS may be transferred via endothelial cells surrounding fracture healing site.
Collapse
Affiliation(s)
- Xiao-Yi Zhou
- Department of Orthopedic Surgery, Changhai Hospital
| | - Sui-Yi Wu
- Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | | | - Fei Wang
- Department of Orthopedic Surgery, Changhai Hospital
| | - Yi-Lin Yang
- Department of Orthopedic Surgery, Changhai Hospital
| | - Ming Li
- Department of Orthopedic Surgery, Changhai Hospital
| | | |
Collapse
|
29
|
Cheng A, Cohen DJ, Kahn A, Clohessy RM, Sahingur K, Newton JB, Hyzy SL, Boyan BD, Schwartz Z. Laser Sintered Porous Ti-6Al-4V Implants Stimulate Vertical Bone Growth. Ann Biomed Eng 2017; 45:2025-2035. [PMID: 28409291 DOI: 10.1007/s10439-017-1831-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022]
Abstract
The objective of this study was to examine the ability of 3D implants with trabecular-bone-inspired porosity and micro-/nano-rough surfaces to enhance vertical bone ingrowth. Porous Ti-6Al-4V constructs were fabricated via laser-sintering and processed to obtain micro-/nano-rough surfaces. Male and female human osteoblasts were seeded on constructs to analyze cell morphology and response. Implants were then placed on rat calvaria for 10 weeks to assess vertical bone ingrowth, mechanical stability and osseointegration. All osteoblasts showed higher levels of osteocalcin, osteoprotegerin, vascular endothelial growth factor and bone morphogenetic protein 2 on porous constructs compared to solid laser-sintered controls. Porous implants placed in vivo resulted in an average of 3.1 ± 0.6 mm3 vertical bone growth and osseointegration within implant pores and had significantly higher pull-out strength values than solid implants. New bone formation and pull-out strength was not improved with the addition of demineralized bone matrix putty. Scanning electron images and histological results corroborated vertical bone growth. This study indicates that Ti-6Al-4V implants fabricated by additive manufacturing to have porosity based on trabecular bone and post-build processing to have micro-/nano-surface roughness can support vertical bone growth in vivo, and suggests that these implants may be used clinically to increase osseointegration in challenging patient cases.
Collapse
Affiliation(s)
- Alice Cheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.,Department of Biomedical Engineering, Peking University, Beijing, China
| | - David J Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Adrian Kahn
- Department of Oral Surgery, University of Tel-Aviv, Tel Aviv, Israel
| | - Ryan M Clohessy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Kaan Sahingur
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Joseph B Newton
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Sharon L Hyzy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Barbara D Boyan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA. .,Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA. .,School of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.,Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
30
|
Osteoinductive potential and bone-bonding ability of ProRoot MTA, MTA Plus and Biodentine in rabbit intramedullary model: Microchemical characterization and histological analysis. Dent Mater 2017; 33:e221-e238. [PMID: 28233601 DOI: 10.1016/j.dental.2017.01.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To study the in vivo osteoinductive potential, bone-bonding ability (bioactivity) and bone biomineralization of current hydraulic calcium silicate cements used as graft materials and placed in contact with medullary bone. METHODS ProRoot MTA, MTA Plus and Biodentine were used to fill surgical bone defects (2-mm diameter through the entire cortical thickness to reach the medullary bone) in the tibia of mature male rabbits. Tibiae were retrieved after 30days and submitted to histological analysis and microchemical characterization using Optical Microscopy (OM) and Environmental Scanning Electron Microscopy with Energy Dispersive X-ray analysis (ESEM-EDX). Bone neoformation and histomorphometric evaluations, degree of mineralization (by Ca/P, Ca/N and P/N ratios) and the diffusion of material elements were studied. RESULTS Bone neoformation was observed in response to all materials. No sign of necrosis were found on the walls of the pre-existing cortical bone. No osteoclasts and no formation of fibrous tissue were evident. Sign of angiogenesis were present. EDX (element content, line profile and element mapping) showed the increase in Ca and P and decrease in C, S and N from the mature bone towards the mineralizing interface. Ca/P, Ca/N and P/N ratios showed differences in the degree of mineralization/maturation stage of bone. MTA Plus and ProRoot MTA exhibited close contact with the pre-existing bone and good bone-bonding with neoformed bone juxtaposed on the medullary side of the materials without interposed connective tissue or resorption lacunae or gaps. The materials showed a dense appearance with 100% of residual materials and no colonization by fluids and cells. No migration of Bi or Al material elements to the newly formed bone was found. Biodentine showed newly formed trabecular bone with marrow spaces and sparse traces of residual material (≈9%). SIGNIFICANCE The in vivo osteoinductive properties with dynamic biomineralization processes around these calcium silicate materials extruded in medullary bone in appropriate animal model have been demonstrated by ESEM-EDX in association with OM. Good biocompatibility was evident as only slight inflammatory infiltrate and no sign of necrosis at the interface with the pre-existing bone were found. MTA Plus and ProRoot MTA exhibited bioactive potential as they can bond to bone directly without interposed connective tissue. Biodentine was replaced by newly formed bone. CLINICAL SIGNIFICANCE The results of the study demonstrate the capacity of calcium silicate cements to allow osteoid matrix deposition by activated osteoblasts and favour its biomineralization, and to achieve a direct bond between the (bioactive) materials surface and the mineralized bone matrix.
Collapse
|