1
|
Jin C, Adachi N, Yoshimoto Y, Sasabuchi A, Kawashima N, Ota MS, Iseki S. Fibroblast growth factor signalling regulates the development of tooth root. J Anat 2024; 244:1067-1077. [PMID: 38258312 PMCID: PMC11095309 DOI: 10.1111/joa.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Fibroblast growth factor (FGF) signalling plays a crucial role in the morphogenesis of multiple tissues including teeth. While the role of the signal has been studied in tooth crown development, little is known about root development. Of several FGF ligands involved in hard tissue formation, we suggest that FGF18 regulates the development of murine tooth roots. We implanted FGF18-soaked heparin beads into the lower first molar tooth buds at postnatal day 6 (P6), followed by transplantation under the kidney capsule. After 3 weeks, FGF18 significantly facilitated root elongation and periodontal tissue formation compared to the control. In situ hybridisation showed that Fgf18 transcripts were initially localised in the dental pulp along Hertwig's epithelial root sheath at P6 and P10 and subsequently in the dental follicle cells at P14. Fgf receptors were expressed in various dental tissues during these stages. In vitro analysis using the dental pulp stem cells revealed that FGF18 inhibited cell proliferation and decreased expression levels of osteogenic markers, Runx2, Alpl and Sp7. Consistently, after 1 week of kidney capsule transplantation, FGF18 application did not induce the expression of Sp7 and Bsp, but upregulated Periostin in the apical region of dental mesenchyme in the grafted molar. These findings suggest that FGF18 facilitates molar root development by regulating the calcification of periodontal tissues.
Collapse
Affiliation(s)
- Chengxue Jin
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Noritaka Adachi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Yoshimoto
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Aino Sasabuchi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masato S Ota
- Laboratory of Anatomy, Physiology and Food Biological Science, Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
2
|
Morita T, Matsumoto S, Baba O. Expression of secretory calcium-binding phosphoprotein (scpp) genes in medaka during the formation and replacement of pharyngeal teeth. BMC Oral Health 2023; 23:744. [PMID: 37821862 PMCID: PMC10568847 DOI: 10.1186/s12903-023-03498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Analyses of tooth families and tooth-forming units in medaka with regard to tooth replacement cycles and the localization of odontogenic stem cell niches in the pharyngeal dentition clearly indicate that continuous tooth replacement is maintained. The secretory calcium-binding phosphoprotein (scpp) gene cluster is involved in the formation of mineralized tissues, such as dental and bone tissues, and the genes encoding multiple SCPPs are conserved in fish, amphibians, reptiles, and mammals. In the present study, we examined the expression patterns of several scpp genes in the pharyngeal teeth of medaka to elucidate their roles during tooth formation and replacement. METHODS Himedaka (Japanese medaka, Oryzias latipes) of both sexes (body length: 28 to 33 mm) were used in this study. Real-time quantitative reverse transcription-polymerase chain reaction (PCR) (qPCR) data were evaluated using one-way analysis of variance for multi-group comparisons, and the significance of differences was determined by Tukey's comparison test. The expression of scpp genes was examined using in situ hybridization (ISH) with a digoxigenin-labeled, single-stranded antisense probe. RESULTS qPCR results showed that several scpp genes were strongly expressed in pharyngeal tissues. ISH analysis revealed specific expression of scpp1, scpp5, and sparc in tooth germ, and scpp5 was continually expressed in the odontoblasts of teeth attached to pedicles, but not in the osteoblasts of pedicles. In addition, many scpp genes were expressed in inner dental epithelium (ide), but not in odontoblasts, and scpp2 consistently showed epithelial-specific expression in the functional teeth. Taken together, these data indicate that specific expression of scpp2 and scpp5 may play a critical role in pharyngeal tooth formation in medaka. CONCLUSION We characterized changes in the expression patterns of scpp genes in medaka during the formation and replacement of pharyngeal teeth.
Collapse
Affiliation(s)
- Tsuyoshi Morita
- Department of Oral and Maxillofacial Anatomy, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima-shi, Tokushima, 770-8504, Japan.
| | - Shin Matsumoto
- Oral Surgery Department, St. Luke's International Hospital, 9-1, Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Otto Baba
- Department of Oral and Maxillofacial Anatomy, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima-shi, Tokushima, 770-8504, Japan
| |
Collapse
|
3
|
Cao L, Su H, Si M, Xu J, Chang X, Lv J, Zhai Y. Tissue Engineering in Stomatology: A Review of Potential Approaches for Oral Disease Treatments. Front Bioeng Biotechnol 2021; 9:662418. [PMID: 34820359 PMCID: PMC8606749 DOI: 10.3389/fbioe.2021.662418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/01/2021] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering is an emerging discipline that combines engineering and life sciences. It can construct functional biological structures in vivo or in vitro to replace native tissues or organs and minimize serious shortages of donor organs during tissue and organ reconstruction or transplantation. Organ transplantation has achieved success by using the tissue-engineered heart, liver, kidney, and other artificial organs, and the emergence of tissue-engineered bone also provides a new approach for the healing of human bone defects. In recent years, tissue engineering technology has gradually become an important technical method for dentistry research, and its application in stomatology-related research has also obtained impressive achievements. The purpose of this review is to summarize the research advances of tissue engineering and its application in stomatology. These aspects include tooth, periodontal, dental implant, cleft palate, oral and maxillofacial skin or mucosa, and oral and maxillofacial bone tissue engineering. In addition, this article also summarizes the commonly used cells, scaffolds, and growth factors in stomatology and discusses the limitations of tissue engineering in stomatology from the perspective of cells, scaffolds, and clinical applications.
Collapse
Affiliation(s)
- Lilan Cao
- School of Stomatology, Henan University, Kaifeng, China
| | - Huiying Su
- School of Stomatology, Henan University, Kaifeng, China
| | - Mengying Si
- School of Stomatology, Henan University, Kaifeng, China
| | - Jing Xu
- School of Stomatology, Henan University, Kaifeng, China
| | - Xin Chang
- School of Stomatology, Henan University, Kaifeng, China
| | - Jiajia Lv
- School of Stomatology, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Kaifeng, China
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Kaifeng, China
| |
Collapse
|
4
|
Kano T, Morita T, Sumida K, Yumoto H, Baba O. Expression of fibroblast growth factor receptor1, -2c, and -3c transcripts in mouse molars after tooth eruption. Anat Sci Int 2021; 96:301-309. [PMID: 33433858 DOI: 10.1007/s12565-020-00594-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022]
Abstract
A previous study suggested that fibroblast growth factor (FGF) signaling plays an important role in dentin formation during tooth development. In this study, to examine dentin formation after tooth eruption involving secondary and tertiary dentin, we analyzed the expression patterns and expressing cells of Fgfr1, -2c, and -3c in mouse maxillary first molars (M1). Since it is difficult to recover the mRNAs from mineralized tissues, we tested methods for extraction after fixation and decalcification of teeth. We successfully obtained consistent results with quantitative real-time PCR (qPCR) using β-actin transcripts for validation. qPCR for Dentin sialo phosphoprotein (Dspp), Fgfr1, -2c, and -3c transcripts was performed on mice at ages of 2-20 weeks. The results showed that the highest expression levels of Dspp and Fgfr2c occurred at 2 weeks old followed by lower expression levels after 4 weeks old. However, the expression levels of Fgfr1 and Fgfr3c were constant throughout the experimental period. By in situ hybridization, Dspp, Fgfr1, and Fgfr3c transcripts were detected in odontoblasts at ages of 2 and 4 weeks. In addition, Dspp and Fgfr1 transcripts were detected in odontoblasts facing reactionary dentin at 8 weeks old. These results suggest that FGF-FGFR signaling might be involved in the regulation of odontoblasts even after tooth eruption, including secondary and tertiary dentin formation. Moreover, our modified method for extracting mRNA from mineralized tissues after fixation and decalcification successfully produced consistent results.
Collapse
Affiliation(s)
- Tsuyoshi Kano
- Department of Oral and Maxillofacial Anatomy, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima-shi, Tokushima, 770-8504, Japan
| | - Tsuyoshi Morita
- Department of Oral and Maxillofacial Anatomy, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima-shi, Tokushima, 770-8504, Japan.
| | - Kaori Sumida
- Department of Oral and Maxillofacial Anatomy, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima-shi, Tokushima, 770-8504, Japan
| | - Hiromichi Yumoto
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Otto Baba
- Department of Oral and Maxillofacial Anatomy, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima-shi, Tokushima, 770-8504, Japan
| |
Collapse
|
5
|
Hao Y, Tang S, Yuan Y, Liu R, Chen Q. Roles of FGF8 subfamily in embryogenesis and oral‑maxillofacial diseases (Review). Int J Oncol 2019; 54:797-806. [PMID: 30628659 DOI: 10.3892/ijo.2019.4677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/19/2018] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factors (FGFs) are diffusible polypeptides released by a variety of cell types. FGF8 subfamily members regulate embryonic development processes through controlling progenitor cell growth and differentiation, and are also functional in adults in tissue repair to maintain tissue homeostasis. FGF8 family members exhibit unique binding affinities with FGF receptors and tissue distribution patterns. Increasing evidence suggests that, by regulating multiple cellular signaling pathways, alterations in the FGF8 subfamily are involved in craniofacial development, odontogenesis, tongue development and salivary gland branching morphogenesis. Aberrant FGF signaling transduction, caused by mutations as well as abnormal expression or isoform splicing, plays an important role in the development of oral diseases. Targeting FGF8 subfamily members provides a new promising strategy for the treatment of oral diseases. The aim of this review was to summarize the aberrant regulations of FGF8 subfamily members and their potential implications in oral‑maxillofacial diseases.
Collapse
Affiliation(s)
- Yilong Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shuya Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|