1
|
Yuan H, Xie B, Yu X, Lin C, Li M, Zhang Y, Zou X, Lu M, Zhao M, Wen X. A potential role of p75NTR in the regulation of circadian rhythm and incremental growth lines during tooth development. Front Physiol 2022; 13:981311. [PMID: 36213234 PMCID: PMC9539461 DOI: 10.3389/fphys.2022.981311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Tooth morphogenesis and the formation of hard tissues have been reported to be closely related to circadian rhythms. This study investigates the spatiotemporal expression and relationship of p75NTR with core clock genes, mineralization-related or odontogenesis-related genes, and aims to derive the potential role of p75NTR in regulating circadian rhythm and incrementality growth line formation during tooth development. Materials and methods: The dynamic morphology of the rat dental germ was observed at seven stages (E14.5 d, E16.5 d, E18.5 d, P.N. 4 d, P.N. 7 d, P.N. 10 d, and P.N. 15 d). Next, the expressions of p75NTR and other target factors were traced. The ectomesenchymal stem cells (EMSCs) were isolated from the E18.5d rat dental germs and synchronized using 50% of fetal bovine serum. Then, they were cultured in light/light (L.L.), dark/dark (D.D.), and light/dark (L.D.) conditions for 48 h. The total RNA was collected every 4 h, and the circadian rhythm dynamics of target factors were observed. To reveal the mechanism further, p75NTR was down-regulated in p75NTRExIII−/− mice and up-regulated in immortalized mouse dental apical papilla progenitor cells. The change tendencies of other target factors were also detected. Results: The clock genes Bmal1, Clock, Per1, and Per2 were all expressed in tooth germs before the formation of dental hard tissues and demonstrated a regular oscillating expression pattern in EMSCs from dental germs. Their expression was affected by the L.D. stimulus, and most of them were promoted by D.D. conditions. p75NTR presented a similar expression pattern and a positive or negative relationship with most clock genes, mineralization-related and odontogenesis-related factors, such as brain and muscle ARNT-like protein-1 (Bmal1), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), MSH-like 1 (MSX1), dentin matrix acidic phosphoprotein 1 (Dmp1), and dentin sialophosphoprotein (Dspp). Moreover, the arrangement, morphology, and even boundary in pre-odontoblast/pre-ameloblast layers were disordered in the p75NTRExIII−/− mice. Conclusion: Circadian rhythm was found to affect tooth development. p75NTR might play a crucial role in regulating clock genes in the mineralization and formation of the dental hard tissues. p75NTR is actively involved in the odontoblast-ameloblast junction and cell polarity establishment during tooth morphogenesis.
Collapse
Affiliation(s)
- Hongyan Yuan
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Bo Xie
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Xia Yu
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Lin
- Department of Oral Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Meng Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yixin Zhang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Xuqiang Zou
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Mingjie Lu
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Manzhu Zhao
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
- *Correspondence: Xiujie Wen, ; Manzhu Zhao,
| | - Xiujie Wen
- Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Xiujie Wen, ; Manzhu Zhao,
| |
Collapse
|
2
|
Vitek NS, McDaniel SF, Bloch JI. Microevolutionary variation in molar morphology of Onychomys leucogaster decoupled from genetic structure. Evolution 2022; 76:2032-2048. [PMID: 35872621 DOI: 10.1111/evo.14576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 01/22/2023]
Abstract
In neutral models of quantitative trait evolution, both genetic and phenotypic divergence scale as random walks, producing a correlation between the two measures. However, complexity in the genotype-phenotype map may alter the correlation between genotypic and phenotypic divergence, even when both are evolving neutrally or nearly so. Understanding this correlation between phenotypic and genetic variation is critical for accurately interpreting the fossil record. This study compares the geographic structure and scaling of morphological variation of the shape of the first lower molar of 77 individuals of the northern grasshopper mouse Onychomys leucogaster to genome-wide SNP variation in the same sample. We found strong genetic structure but weak or absent morphological structure indicating that the scaling of each type of variation is decoupled from one another. Low PST values relative to FST values are consistent with a lack of morphological divergence in contrast to genetic divergence between groups. This lack of phenotypic structure and the presence of notable within-sample phenotypic variance are consistent with uniform selection or constraints on molar shape across a wide geographic and environmental range. Over time, this kind of decoupling may result in patterns of phenotypic stasis masking underlying genetic patterns.
Collapse
Affiliation(s)
- Natasha S Vitek
- Department of Biology, University of Florida, Gainesville, Florida, 32611.,Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611.,Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794
| | - Stuart F McDaniel
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Jonathan I Bloch
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611
| |
Collapse
|
3
|
Boughner JC, Marchiori DF, Packota GV. Unexpected variation of human molar size patterns. J Hum Evol 2021; 161:103072. [PMID: 34628299 DOI: 10.1016/j.jhevol.2021.103072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022]
Abstract
A tenet of mammalian, including primate dental evolution, is the Inhibitory Cascade Model, where first molar (M1) size predicts in a linear cline the size and onset time of the second (M2) and third (M3) molars: a larger M1 portends a progressively smaller and later-developing M2 and M3. In contemporary modern Homo sapiens, later-developing M3s are less likely to erupt properly. The Inhibitory Cascade Model is also used to predict molar sizes of extinct taxa, including fossil Homo. The extent to which Inhibitory Cascade Model predictions hold in contemporary H. sapiens molars is unclear, including whether this tenet informs about molar initiation, development, and eruption. We tested these questions here. In our radiographic sample of 323 oral quadrants and molar rows from contemporary humans based on mesiodistal crown lengths, we observed the distribution of molar proportions with a central tendency around parity (M1 = M2 = M3) that parsed into 13 distinct molar size ratio patterns. These patterns presented at different frequencies (e.g., M1 > M2 > M3 in about one-third of cases) that reflected whether the molar row was located in the maxilla or mandible and included both linear (e.g., M1 < M2 < M3) and nonlinear molar size ratio progressions (e.g., M1 > M2 < M3). Up to four patterns were found in the same subject's mouth. Lastly, M1 size alone does not predict M3 size, developmental timing, or eruption; rather, M2 size is integral to predicting M3 size. Our study indicates that human molar size is genetically 'softwired' and sensitive to factors local to the human upper jaw vs. lower jaw. The lack of a single stereotypical molar size ratio for contemporary H. sapiens suggests that predictions of fossil H. sapiens molar sizes using the Inhibitory Cascade Model must be made with caution.
Collapse
Affiliation(s)
- Julia C Boughner
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Denver F Marchiori
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Garnet V Packota
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Health Sciences Building, Saskatoon, SK, S7N 5E5, Canada
| |
Collapse
|
4
|
Lin C, Ruan N, Li L, Chen Y, Hu X, Chen Y, Hu X, Zhang Y. FGF8-mediated signaling regulates tooth developmental pace during odontogenesis. J Genet Genomics 2021; 49:40-53. [PMID: 34500094 DOI: 10.1016/j.jgg.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
The developing human and mouse teeth constitute an ideal model system to study the regulatory mechanism underlying organ growth control since their teeth share highly conserved and well-characterized developmental processes and their developmental tempo varies notably. In the current study, we manipulated heterogenous recombination between human and mouse dental tissues and demonstrate that the dental mesenchyme dominates the tooth developmental tempo and FGF8 could be a critical player during this developmental process. Forced activation of FGF8 signaling in the dental mesenchyme of mice promoted cell proliferation, prevented cell apoptosis via p38 and perhaps PI3K-Akt intracellular signaling, and impelled the transition of the cell cycle from G1- to S-phase in the tooth germ, resulting in the slowdown of the tooth developmental pace. Our results provide compelling evidence that extrinsic signals can profoundly affect tooth developmental tempo and the dental mesenchymal FGF8 could be a pivotal factor in controlling the developmental pace in a non-cell-autonomous manner during mammalian odontogenesis.
Collapse
Affiliation(s)
- Chensheng Lin
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - Ningsheng Ruan
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - Linjun Li
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - Yibin Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - Xiaoxiao Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Xuefeng Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China.
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China.
| |
Collapse
|
5
|
Ko D(J, Kelly T, Thompson L, Uppal JK, Rostampour N, Webb MA, Zhu N, Belev G, Mondal P, Cooper DML, Boughner JC. Timing of Mouse Molar Formation Is Independent of Jaw Length Including Retromolar Space. J Dev Biol 2021; 9:jdb9010008. [PMID: 33809066 PMCID: PMC8006249 DOI: 10.3390/jdb9010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 11/30/2022] Open
Abstract
For humans and other mammals to eat effectively, teeth must develop properly inside the jaw. Deciphering craniodental integration is central to explaining the timely formation of permanent molars, including third molars which are often impacted in humans, and to clarifying how teeth and jaws fit, function and evolve together. A factor long-posited to influence molar onset time is the jaw space available for each molar organ to form within. Here, we tested whether each successive molar initiates only after a minimum threshold of space is created via jaw growth. We used synchrotron-based micro-CT scanning to assess developing molars in situ within jaws of C57BL/6J mice aged E10 to P32, encompassing molar onset to emergence. We compared total jaw, retromolar and molar lengths, and molar onset times, between upper and lower jaws. Initiation time and developmental duration were comparable between molar upper and lower counterparts despite shorter, slower-growing retromolar space in the upper jaw, and despite size differences between upper and lower molars. Timing of molar formation appears unmoved by jaw length including space. Conditions within the dental lamina likely influence molar onset much more than surrounding jaw tissues. We theorize that molar initiation is contingent on sufficient surface area for the physical reorganization of dental epithelium and its invagination of underlying mesenchyme.
Collapse
Affiliation(s)
- Daisy (Jihyung) Ko
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (D.K.); (T.K.); (L.T.); (J.K.U.); (N.R.); (D.M.L.C.)
| | - Tess Kelly
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (D.K.); (T.K.); (L.T.); (J.K.U.); (N.R.); (D.M.L.C.)
| | - Lacey Thompson
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (D.K.); (T.K.); (L.T.); (J.K.U.); (N.R.); (D.M.L.C.)
| | - Jasmene K. Uppal
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (D.K.); (T.K.); (L.T.); (J.K.U.); (N.R.); (D.M.L.C.)
| | - Nasim Rostampour
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (D.K.); (T.K.); (L.T.); (J.K.U.); (N.R.); (D.M.L.C.)
| | - Mark Adam Webb
- Canadian Light Source, University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada; (M.A.W.); (N.Z.); (G.B.)
| | - Ning Zhu
- Canadian Light Source, University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada; (M.A.W.); (N.Z.); (G.B.)
| | - George Belev
- Canadian Light Source, University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada; (M.A.W.); (N.Z.); (G.B.)
| | - Prosanta Mondal
- Clinical Research Support Unit, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| | - David M. L. Cooper
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (D.K.); (T.K.); (L.T.); (J.K.U.); (N.R.); (D.M.L.C.)
| | - Julia C. Boughner
- Department of Anatomy, Physiology & Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (D.K.); (T.K.); (L.T.); (J.K.U.); (N.R.); (D.M.L.C.)
- Correspondence:
| |
Collapse
|
6
|
|
7
|
Stojanowski CM, Paul KS, Seidel AC, Duncan WN, Guatelli‐Steinberg D. Quantitative genetic analyses of postcanine morphological crown variation. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:606-631. [DOI: 10.1002/ajpa.23778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/20/2018] [Accepted: 12/26/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Christopher M. Stojanowski
- Center for Bioarchaeological Research School of Human Evolution and Social Change, Arizona State University Tempe Arizona
| | - Kathleen S. Paul
- Center for Bioarchaeological Research School of Human Evolution and Social Change, Arizona State University Tempe Arizona
| | - Andrew C. Seidel
- Center for Bioarchaeological Research School of Human Evolution and Social Change, Arizona State University Tempe Arizona
| | - William N. Duncan
- Department of Sociology and Anthropology East Tennessee State University Johnson City Tennessee
| | | |
Collapse
|
8
|
Billet G, Bardin J. Serial Homology and Correlated Characters in Morphological Phylogenetics: Modeling the Evolution of Dental Crests in Placentals. Syst Biol 2018; 68:267-280. [DOI: 10.1093/sysbio/syy071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023] Open
Affiliation(s)
- Guillaume Billet
- CR2P, UMR 7207, Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, 8 rue Buffon 75005 Paris, France
| | - Jérémie Bardin
- CR2P, UMR 7207, Sorbonne Université, MNHN, CNRS, T.46-56, E.5, case 104, 4 place Jussieu, 75252 Paris cedex 05, France
| |
Collapse
|
9
|
Pineda‐Munoz S, Lazagabaster IA, Alroy J, Evans AR. Inferring diet from dental morphology in terrestrial mammals. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12691] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Silvia Pineda‐Munoz
- Department of Paleobiology National Museum of Natural History Smithsonian Institution Washington DC 20560‐0121 USA
- Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia
| | - Ignacio A. Lazagabaster
- Institute of Human Origins Arizona State University Tempe AZ 85282 USA
- School of Human Evolution and Social Change Arizona State University Tempe AZ 85282 USA
| | - John Alroy
- Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia
| | - Alistair R. Evans
- School of Biological Sciences Monash University Clayton Vic 3800 Australia
- Geosciences Museum Victoria Melbourne Vic 3100 Australia
| |
Collapse
|
10
|
Couzens AMC, Evans AR, Skinner MM, Prideaux GJ. The role of inhibitory dynamics in the loss and reemergence of macropodoid tooth traits. Evolution 2016; 70:568-85. [DOI: 10.1111/evo.12866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 12/22/2015] [Accepted: 01/02/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Aidan M. C. Couzens
- School of Biological Sciences; Flinders University; Bedford Park, South Australia 5042 Australia
| | - Alistair R. Evans
- School of Biological Sciences; Monash University; Victoria 3800 Australia
- Geosciences; Museum Victoria; Melbourne Victoria 3001 Australia
| | - Matthew M. Skinner
- School of Anthropology and Conservation; University of Kent; Kent CT2 7NZ United Kingdom
- Department of Human Evolution; Max Planck Institute for Evolutionary Anthropology; Leipzig 04103 Germany
| | - Gavin J. Prideaux
- School of Biological Sciences; Flinders University; Bedford Park, South Australia 5042 Australia
| |
Collapse
|