1
|
Akbar M, Wandy A, Soraya GV, Goysal Y, Lotisna M, Basri MI. Sudomotor dysfunction in diabetic peripheral neuropathy (DPN) and its testing modalities: A literature review. Heliyon 2023; 9:e18184. [PMID: 37539131 PMCID: PMC10393629 DOI: 10.1016/j.heliyon.2023.e18184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/04/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Long term consequences of diabetes mellitus (DM) may include multi-organ complications such as retinopathy, cardiovascular disease, neuronal, and kidney damage. One of the most prevalent complication is diabetic peripheral neuropathy (DPN), occurring in half of all diabetics, and is the main cause of disability globally with profound impact on a patient's quality of life. Small fiber neuropathy (SFN) can develop in the pre-diabetes stage preceding large fiber damage in DPN. Asymptomatic SFN is difficult to diagnose in early stages, with sudomotor dysfunction considered one of the earliest manifestations of autonomic neuropathy. Early detection is crucial as it can prevent potential cardiovascular events. Although punch skin biopsy is the gold-standard method for SFN diagnosis, implementation as routine screening is hindered due to its invasive, impractical, and time-consuming nature. Other sudomotor testing modalities, most of which evaluate the postganglionic cholinergic sympathetic nervous system, have been developed with varying sensitivity and specificity for SFN diagnosis. Here, we provide an overview on the general mechanism of DPN, the importance of sudomotor assessment for early detection of autonomic dysfunction in DPN, the benefits and disadvantages of current testing modalities, factors that may affect testing, and the importance of future discoveries on sudomotor testing for successful DPN diagnosis.
Collapse
Affiliation(s)
- Muhammad Akbar
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Alvian Wandy
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Gita Vita Soraya
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Yudy Goysal
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Mimi Lotisna
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Iqbal Basri
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
2
|
Tran HT, Kong Y, Talati A, Posada-Quintero H, Chon KH, Chen IP. The use of electrodermal activity in pulpal diagnosis and dental pain assessment. Int Endod J 2023; 56:356-368. [PMID: 36367715 PMCID: PMC10044487 DOI: 10.1111/iej.13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
AIMS To explore whether electrodermal activity (EDA) can serve as a complementary tool for pulpal diagnosis (Aim 1) and an objective metric to assess dental pain before and after local anaesthesia (Aim 2). METHODOLOGY A total of 53 subjects (189 teeth) and 14 subjects (14 teeth) were recruited for Aim 1 and Aim 2, respectively. We recorded EDA using commercially available devices, PowerLab and Galvanic Skin Response (GSR) Amplifier, in conjunction with cold and electric pulp testing (EPT). Participants rated their level of sensation on a 0-10 visual analogue scale (VAS) after each test. We recorded EPT-stimulated EDA activity before and after the administration of local anaesthesia for participants who required root canal treatment (RCT) due to painful pulpitis. The raw data were converted to the time-varying index of sympathetic activity (TVSymp), a sensitive and specific parameter of EDA. Statistical analysis was performed using Python 3.6 and its Scikit-post hoc library. RESULTS Electrodermal activity was upregulated by the stimuli of cold and EPT testing in the normal pulp. TVSymp signals were significantly increased in vital pulp compared to necrotic pulp by both cold test and EPT. Teeth that exhibited intensive sensitivity to cold with or without lingering pain had increased peak numbers of TVSymp than teeth with mild sensation to cold. Pre- and post-anaesthesia EDA activity and VAS scores were recorded in patients with painful pulpitis. Post-anaesthesia EDA signals were significantly lower compared to pre-anaesthesia levels. Approximately 71% of patients (10 of 14 patients) experienced no pain during treatment and reported VAS score of 0 or 1. The majority of patients (10 of 14) showed a reduction of TVSymp after the administration of anaesthesia. Two of three patients who experienced increased pain during RCT (post-treatment VAS > pre-treatment VAS) exhibited increased post-anaesthesia TVSymp. CONCLUSIONS Our data show promising results for using EDA in pulpal diagnosis and for assessing dental pain. Whilst our testing was limited to subjects who had adequate communication skills, our future goal is to be able to use this technology to aid in the endodontic diagnosis of patients who have limited communication ability.
Collapse
Affiliation(s)
- Hanh T Tran
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - Youngsun Kong
- Department of Biomedical Engineering, School of Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Ankur Talati
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - Hugo Posada-Quintero
- Department of Biomedical Engineering, School of Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Ki H Chon
- Department of Biomedical Engineering, School of Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| |
Collapse
|
3
|
Sebastião R, Bento A, Brás S. Analysis of Physiological Responses during Pain Induction. SENSORS (BASEL, SWITZERLAND) 2022; 22:9276. [PMID: 36501978 PMCID: PMC9738626 DOI: 10.3390/s22239276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Pain is a complex phenomenon that arises from the interaction of multiple neuroanatomic and neurochemical systems with several cognitive and affective processes. Nowadays, the assessment of pain intensity still relies on the use of self-reports. However, recent research has shown a connection between the perception of pain and exacerbated stress response in the Autonomic Nervous System. As a result, there has been an increasing analysis of the use of autonomic reactivity with the objective to assess pain. In the present study, the methods include pre-processing, feature extraction, and feature analysis. For the purpose of understanding and characterizing physiological responses of pain, different physiological signals were, simultaneously, recorded while a pain-inducing protocol was performed. The obtained results, for the electrocardiogram (ECG), showed a statistically significant increase in the heart rate, during the painful period compared to non-painful periods. Additionally, heart rate variability features demonstrated a decrease in the Parasympathetic Nervous System influence. The features from the electromyogram (EMG) showed an increase in power and contraction force of the muscle during the pain induction task. Lastly, the electrodermal activity (EDA) showed an adjustment of the sudomotor activity, implying an increase in the Sympathetic Nervous System activity during the experience of pain.
Collapse
Affiliation(s)
- Raquel Sebastião
- IEETA, DETI, LASI, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Bento
- DFis, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana Brás
- IEETA, DETI, LASI, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Sirucek L, Price RC, Gandhi W, Hoeppli ME, Fahey E, Qu A, Becker S, Schweinhardt P. Endogenous opioids contribute to the feeling of pain relief in humans. Pain 2021; 162:2821-2831. [PMID: 34793405 PMCID: PMC8600541 DOI: 10.1097/j.pain.0000000000002285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 11/25/2022]
Abstract
Endogenous opioids mediate the pleasurable responses to positively reinforcing stimuli such as palatable food. Yet, the reduction or omission of a negative experience can also be rewarding (negative reinforcement). As such, pain relief leads to negative reinforcement and evokes a pleasant feeling in humans. Although it has been shown that the feeling of pleasure associated with positive reinforcement is at least partly mediated through endogenous opioids, it is currently unknown whether similar neurochemical mechanisms are involved in the pleasant feeling evoked by pain relief. In this study, 27 healthy participants completed 2 identical experimental sessions, 1 with placebo and 1 with naltrexone, an endogenous opioid antagonist. Pain relief was induced by superficial cooling after heat stimulation of capsaicin-sensitized skin. Participants rated the relief and pleasantness in response to the cooling. Endogenous opioid blockade by naltrexone decreased relief and pleasantness ratings compared with placebo (P = 0.0027). This study provides evidence that endogenous opioids play a role in mediating the pleasant feeling of pain relief in humans. Clinically, the rewarding nature of pain relief and its underlying mechanisms require consideration because of their potential reinforcing effects on behaviors that might be beneficial short-term but maladaptive long-term.
Collapse
Affiliation(s)
- Laura Sirucek
- Department of Chiropractic Medicine, Integrative Spinal Research, Balgrist University Hospital, University of Zurich (UZH), Zurich, Switzerland
- University of Zurich (UZH), Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich (UZH), Zurich, Switzerland
| | - Rebecca Christine Price
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Wiebke Gandhi
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
- School of Psychology and Clinical Language Science, Centre of Integrative Neuroscience and Neurodynamics, University of Reading, Reading, United Kingdom
| | - Marie-Eve Hoeppli
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Emma Fahey
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Annie Qu
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Susanne Becker
- Department of Chiropractic Medicine, Integrative Spinal Research, Balgrist University Hospital, University of Zurich (UZH), Zurich, Switzerland
- University of Zurich (UZH), Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich (UZH), Zurich, Switzerland
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Petra Schweinhardt
- Department of Chiropractic Medicine, Integrative Spinal Research, Balgrist University Hospital, University of Zurich (UZH), Zurich, Switzerland
- University of Zurich (UZH), Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich (UZH), Zurich, Switzerland
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
In anticipation of pain: expectancy modulates corticospinal excitability, autonomic response, and pain perception. Pain 2021; 162:2287-2296. [PMID: 34256382 DOI: 10.1097/j.pain.0000000000002222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/21/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Pain is a ubiquitous experience encompassing perceptual, autonomic, and motor responses. Expectancy is known to amplify the perceived and autonomic components of pain, but its effects on motor responses are poorly understood. Understanding expectancy modulation of corticospinal excitability has important implications regarding deployment of adaptive and maladaptive protective behaviours in anticipation of pain. We developed a protocol to compare corticospinal excitability to expected high pain, expected low pain, and critically low pain when high pain was expected. Expecting high pain suppressed corticospinal excitability and heightened perceptual and autonomic responses to the low-pain stimulus, as with increased noxious stimulation (ie, expected high pain). Multilevel modelling revealed that perceived pain mediated the effect of both noxious stimulation and this expectancy-modulated pain on autonomic responses, but corticospinal excitability did not. These results demonstrate that merely expecting pain influenced all pain components. Findings shed new light on the aetiology of expectancy-modulated pain, whereby expecting pain mobilises the motor system to protect the body from harm by a protective withdrawal reflex, associated with reduced corticospinal excitability, and activates similar processes as increased nociceptive stimulation. This has significant practical implications for the treatment of pain, particularly in scenarios where avoidance of pain-related movement contributes to its maintenance.
Collapse
|
6
|
Susam B, Riek N, Akcakaya M, Xu X, de Sa V, Nezamfar H, Diaz D, Craig K, Goodwin M, Huang J. Automated Pain Assessment in Children using Electrodermal Activity and Video Data Fusion via Machine Learning. IEEE Trans Biomed Eng 2021; 69:422-431. [PMID: 34242161 DOI: 10.1109/tbme.2021.3096137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pain assessment in children continues to challenge clinicians and researchers, as subjective experiences of pain require inference through observable behaviors, both involuntary and deliberate. The presented approach supplements the subjective self-report-based method by fusing electrodermal activity (EDA) recordings with video facial expressions to develop an objective pain assessment metric. Such an approach is specifically important for assessing pain in children who are not capable of providing accurate self-pain reports, requiring nonverbal pain assessment. We demonstrate the performance of our approach using data recorded from children in post-operative recovery following laparoscopic appendectomy. We examined separately and combined the usefulness of EDA and video facial expression data as predictors of childrens self-reports of pain following surgery through recovery. Findings indicate that EDA and facial expression data independently provide above chance sensitivities and specificities, but their fusion for classifying clinically significant pain vs. clinically nonsignificant pain achieved substantial improvement, yielding 90.91% accuracy, with 100% sensitivity and 81.82% specificity. The multimodal measures capitalize upon different features of the complex pain response. Thus, this paper presents both evidence for the utility of a weighted maximum likelihood algorithm as a novel feature selection method for EDA and video facial expression data and an accurate and objective automated classification algorithm capable of discriminating clinically significant pain from clinically nonsignificant pain in children.
Collapse
|
7
|
Virtual reality: physiological and behavioral mechanisms to increase individual pain tolerance limits. Pain 2021; 161:2010-2021. [PMID: 32345915 DOI: 10.1097/j.pain.0000000000001900] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/17/2020] [Indexed: 01/29/2023]
Abstract
ABSTRACT Immersive virtual reality (VR) consists of immersion in artificial environments through the use of real-time render technologies and the latest generation devices. The users feel just as immersed as they would feel in an everyday life situation, and this sense of presence seems to have therapeutic potentials. However, the VR mechanisms remain only partially known. This study is novel in that, for the first time in VR research, appropriate controls for VR contexts, immersive characteristics (ie, control VR), and multifaceted objective and subjective outcomes were included in a within-subject study design conducted on healthy participants. Participants received heat thermal stimulations to determine how VR can increase individual heat-pain tolerance limits (primary outcome) measured in degrees Celsius and seconds while recording concurrent autonomic responses. We also assessed changes in pain unpleasantness, mood, situational anxiety, and level of enjoyment (secondary outcomes). The VR induced a net gain in heat-pain tolerance limits that was paralleled by an increase of the parasympathetic responses. VR improved mood, situational anxiety, and pain unpleasantness when participants perceived the context as enjoyable, but these changes did not influence the increases in pain tolerance limits. Distraction increased pain tolerance limits but did not induce such mood and physiological changes. Immersive VR has been anecdotally applied to improve acute symptoms in contexts such as battlefield, emergency, and operating rooms. This study provides a mechanistic framework for VR as a low-risk, nonpharmacological intervention, which regulates autonomic, affective (mood and situational anxiety), and evaluative (subjective pain and enjoyment ratings) responses associated with acute pain.
Collapse
|
8
|
Soldatelli MD, Siepmann T, Illigens BMW, Souza dos Santos V, Lucena da S Torres I, Fregni F, Caumo W. Mapping of predictors of the disengagement of the descending inhibitory pain modulation system in fibromyalgia: an exploratory study. Br J Pain 2021; 15:221-233. [PMID: 34055343 PMCID: PMC8138619 DOI: 10.1177/2049463720920760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The main symptoms of fibromyalgia comprise diffuse pain, disability, depressive symptoms, catastrophizing, sleep disruption and fatigue, associated with dysfunction of the descending pain-modulating system (DPMS). OBJECTIVES We aimed to identify patterns of main symptoms of fibromyalgia and neuroplasticity biomarkers (i.e. brain-derived neurotrophic factor (BDNF) and S100B protein) in non-responders to the conditioned pain modulation task (CPM-task) induced by immersion of hand in cold water (0-1°C). Furthermore, we evaluated if these patterns predict responsiveness to CPM-task. METHODS This cross-sectional study included 117 women with fibromyalgia ((n = 60) non-responders and (n = 57) responders), with age ranging from 30 to 65 years old. We analysed changes in numerical pain scale (NPS-10) during the CPM-task using a standardized protocol. RESULTS A hierarchical multivariate logistic regression analysis was used to construct a propensity score-adjusted index to identify non-responders compared to responders to CPM-task. The following variables were retained in the models: analgesic use four or more times per week, heat pain threshold (HPT), poor sleep quality, pain catastrophizing, serum levels of BDNF, number of psychiatric diagnoses and the impact of symptoms of fibromyalgia on quality of life. Receiver operator characteristics (ROC) analysis showed non-responders can be discriminated from responders by a composite index of more frequent symptoms of fibromyalgia and neuroplasticity markers (area under the curve (AUC) = 0.83, sensitivity = 100% and specificity = 98%). CONCLUSION Patterns of fibromyalgia symptoms and neuroplasticity markers may be helpful to predict responsiveness to the CPM-task which might help personalize treatment and thereby contribute to the care of patients with fibromyalgia.
Collapse
Affiliation(s)
- Matheus Dorigatti Soldatelli
- Graduate Program in Medical Science,
School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre,
Brazil
- Center for Clinical Research and
Management Education, Division of Health Care Sciences, Dresden International
University, Dresden, Germany
- Laboratory of Pain and Neuromodulation,
School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre,
Brazil
| | - Timo Siepmann
- Center for Clinical Research and
Management Education, Division of Health Care Sciences, Dresden International
University, Dresden, Germany
- Department of Neurology, University
Hospital Carl Gustav Carus Technische Universitat, Dresden, Germany
| | - Ben Min-Woo Illigens
- Center for Clinical Research and
Management Education, Division of Health Care Sciences, Dresden International
University, Dresden, Germany
- Department of Neurology, Beth Israel
Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vinicius Souza dos Santos
- Laboratory of Pain and Neuromodulation,
School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre,
Brazil
| | - Iraci Lucena da S Torres
- Graduate Program in Medical Science,
School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre,
Brazil
- Pain and Palliative Care Service at
Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Felipe Fregni
- Department of Neurology, Beth Israel
Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Wolnei Caumo
- Graduate Program in Medical Science,
School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre,
Brazil
- Laboratory of Pain and Neuromodulation,
School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre,
Brazil
- Pain and Palliative Care Service at
Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Surgery Department, School of Medicine,
Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
9
|
Scheuren PS, Rosner J, Curt A, Hubli M. Pain-autonomic interaction: A surrogate marker of central sensitization. Eur J Pain 2020; 24:2015-2026. [PMID: 32794307 DOI: 10.1002/ejp.1645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Central sensitization represents a key pathophysiological mechanism underlying the development of neuropathic pain, often manifested clinically as mechanical allodynia and hyperalgesia. Adopting a mechanism-based treatment approach relies highly on the ability to assess the presence of central sensitization. The aim of the study was to investigate potential pain-autonomic readouts to operationalize experimentally induced central sensitization in the area of secondary hyperalgesia. METHODS Pinprick evoked potentials (PEPs) and sympathetic skin responses (SSRs) were recorded in 20 healthy individuals. Three blocks of PEP and SSR recordings were performed before and after heat-induced secondary hyperalgesia. All measurements were also performed before and after a control condition. Multivariate analyses were performed using linear mixed-effect regression models to examine the effect of experimentally induced central sensitization on PEP and SSR parameters (i.e. amplitudes, latencies and habituation) and on pinprick pain ratings. RESULTS The noxious heat stimulation induced robust mechanical hyperalgesia with a significant increase in PEP and SSR amplitudes (p < 0.001) in the area of secondary hyperalgesia. Furthermore, PEP and SSR habituation were reduced (p < 0.001) after experimentally induced central sensitization. CONCLUSIONS The findings demonstrate that combined recordings of PEPs and SSRs are sensitive to objectify experimentally induced central sensitization and may have a great potential to reveal its presence in clinical pain conditions. Corroborating current pain phenotyping with pain-autonomic markers has the potential to unravel central sensitization along the nociceptive neuraxis and might provide a framework for mechanistically founded therapies. SIGNIFICANCE Our findings provide evidence that combined recordings of sympathetic skin responses (SSRs) and pinprick evoked potentials (PEPs) might be able to unmask central sensitization induced through a well-established experimental pain model in healthy individuals. As such, these novel readouts of central sensitization might attain new insights towards complementing clinical pain phenotyping.
Collapse
Affiliation(s)
- Paulina S Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Lee IS, Necka EA, Atlas LY. Distinguishing pain from nociception, salience, and arousal: How autonomic nervous system activity can improve neuroimaging tests of specificity. Neuroimage 2020; 204:116254. [PMID: 31604122 PMCID: PMC6911655 DOI: 10.1016/j.neuroimage.2019.116254] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022] Open
Abstract
Pain is a subjective, multidimensional experience that is distinct from nociception. A large body of work has focused on whether pain processing is supported by specific, dedicated brain circuits. Despite advances in human neuroscience and neuroimaging analysis, dissociating acute pain from other sensations has been challenging since both pain and non-pain stimuli evoke salience and arousal responses throughout the body and in overlapping brain circuits. In this review, we discuss these challenges and propose that brain-body interactions in pain can be leveraged in order to improve tests for pain specificity. We review brain and bodily responses to pain and nociception and extant efforts toward identifying pain-specific brain networks. We propose that autonomic nervous system activity should be used as a surrogate measure of salience and arousal to improve these efforts and enable researchers to parse out pain-specific responses in the brain, and demonstrate the feasibility of this approach using example fMRI data from a thermal pain paradigm. This new approach will improve the accuracy and specificity of functional neuroimaging analyses and help to overcome current difficulties in assessing pain specific responses in the human brain.
Collapse
Affiliation(s)
- In-Seon Lee
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth A Necka
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Hyperalgesia when observing pain-related images is a genuine bias in perception and enhances autonomic responses. Sci Rep 2019; 9:15266. [PMID: 31649286 PMCID: PMC6813318 DOI: 10.1038/s41598-019-51743-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 10/03/2019] [Indexed: 01/03/2023] Open
Abstract
Observing pain in others can enhance our own pain. Two aspects of this effect remain unknown or controversial: first, whether it depends on the 'painfulness' of the visual stimulus; second, whether it reflects a genuine bias in perception or rather a bias in the memory encoding of the percept. Pain ratings and vegetative skin responses were recorded while 21 healthy volunteers received electric nociceptive shocks under three experimental conditions: (i) observing a painful contact between the body and a harmful object; (ii) observing a non-painful body contact, (iii) observing a control scene where the body and the object are not in contact. Pain reports and vegetative responses were enhanced exclusively when the subjects observed a painful body contact. The effect on perception was immediate, abated 3 sec after the shock, and positively correlated with the magnitude of vegetative arousal. This suggests that (a) hyperalgesia during observation of painful scenes was induced by their pain-related nature, and not by the simple body contact, and (b) hyperalgesia emerged from a very rapid bias in the perceptual encoding of the stimulus, and was not the result of a retrospective bias in memory recollection. Observing pain-depicting scenes can modify the processing of concomitant somatic stimuli, increasing their arousal value and shifting perception toward more painful levels.
Collapse
|
12
|
Susam BT, Akcakaya M, Nezamfar H, Diaz D, Xu X, de Sa VR, Craig KD, Huang JS, Goodwin MS. Automated Pain Assessment using Electrodermal Activity Data and Machine Learning. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:372-375. [PMID: 30440413 DOI: 10.1109/embc.2018.8512389] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Objective pain assessment is required for appropriate pain management in the clinical setting. However, clinical gold standard pain assessment is based on subjective methods. Automated pain detection from physiological data may provide important objective information to better standardize pain assessment. Specifically, electrodermal activity (EDA) can identify features of stress and anxiety induced by varying pain levels. However, notable variability in EDA measurement exists and research to date has demonstrated sensitivity but lack of specificity in pain assessment. In this paper, we use timescale decomposition (TSD) to extract salient features from EDA signals to identify an accurate and automated EDA pain detection algorithm to sensitively and specifically distinguish pain from no-pain conditions.
Collapse
|
13
|
Dussán-Sarria JA, da Silva NRJ, Deitos A, Stefani LC, Laste G, Souza AD, Torres ILS, Fregni F, Caumo W. Higher Cortical Facilitation and Serum BDNF Are Associated with Increased Sensitivity to Heat Pain and Reduced Endogenous Pain Inhibition in Healthy Males. PAIN MEDICINE 2019; 19:1578-1586. [PMID: 29294124 DOI: 10.1093/pm/pnx297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Although the brain-derived neurotrophic factor (BDNF) has been intensively investigated in animal models of chronic pain, its role in human pain processing is less understood. Objective To study the neurophysiology of BDNF modulation on acute experimental pain, we performed a cross-sectional study. Methods We recruited 20 healthy male volunteers (19-40 years old) and assessed their serum BDNF levels, quantitative sensory testing, and cortical excitability parameters using transcranial magnetic stimulation. Results Linear regression models demonstrated that the BDNF (β = -5.245, P = 0.034) and intracortical facilitation (β = -3.311, P = 0.034) were inversely correlated with heat pain threshold (adjusted R2 = 44.26). The BDNF (β = -3.719, P ≤ 0.001) was also inversely correlated with conditioned pain modulation (adjusted R2 = 56.8). Conclusions Our findings indicate that higher serum BDNF and intracortical facilitation of the primary motor cortex are associated with increased sensitivity to heat pain and high serum BDNF with reduced pain inhibition during noxious heterotopic stimulation.
Collapse
Affiliation(s)
- Jairo Alberto Dussán-Sarria
- Postgraduation Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA)/UFRGS, Porto Alegre, RS, Brazil
| | - Nadia Regina Jardim da Silva
- Postgraduation Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA)/UFRGS, Porto Alegre, RS, Brazil
| | - Alicia Deitos
- Postgraduation Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA)/UFRGS, Porto Alegre, RS, Brazil
| | - Luciana Cadore Stefani
- Postgraduation Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA)/UFRGS, Porto Alegre, RS, Brazil.,Surgery Department, School of Medicine, HCPA/UFRGS, RS, Brazil
| | - Gabriela Laste
- Postgraduation Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA)/UFRGS, Porto Alegre, RS, Brazil
| | - Andressa de Souza
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA)/UFRGS, Porto Alegre, RS, Brazil.,La Salle University, Canoas, RS, Brazil
| | - Iraci L S Torres
- Postgraduation Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Pharmacology Department, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, Boston, Massachusetts, USA
| | - Wolnei Caumo
- Postgraduation Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA)/UFRGS, Porto Alegre, RS, Brazil.,Surgery Department, School of Medicine, HCPA/UFRGS, RS, Brazil.,Pain and Palliative Care Service at HCPA, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Pain or nociception? Subjective experience mediates the effects of acute noxious heat on autonomic responses - corrected and republished. Pain 2019; 160:1469-1481. [PMID: 31107415 DOI: 10.1097/j.pain.0000000000001573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nociception reliably elicits an autonomic nervous system (ANS) response. Because pain and ANS circuitry interact on multiple spinal, subcortical, and cortical levels, it remains unclear whether autonomic responses are simply a reflexive product of noxious stimulation regardless of how stimulation is consciously perceived or whether the experience of pain mediates ANS responses to noxious stimulation. To test these alternative predictions, we examined the relative contribution of noxious stimulation and individual pain experience to ANS responses in healthy volunteers who underwent 1 or 2 pain assessment tasks. Participants received 8 seconds of thermal stimulation of varied temperatures and judged pain intensity on every trial. Skin conductance responses and pupil dilation responses to stimulation served as measures of the heat-evoked autonomic response. We used multilevel modelling to examine trial-by-trial relationships between heat, pain, and ANS response. Although both pain and noxious heat stimulation predicted skin conductance response and pupil dilation response in separate analyses, the individual pain experience statistically mediated effects of noxious heat on both outcomes. Furthermore, moderated mediation revealed that evidence for this process was stronger when stimulation was perceived as painful compared with when stimulation was perceived as nonpainful, although this difference emerged late, in the 4-second period after thermal stimulation. These findings suggest that pain appraisal regulates the heat-evoked autonomic response to noxious stimulation, documenting the flexibility of the autonomic pain response to adjust to perceived or actual changes in environmental affordances above and beyond nociceptive input.
Collapse
|
15
|
Pain or nociception? Subjective experience mediates the effects of acute noxious heat on autonomic responses. Pain 2019; 159:699-711. [PMID: 29251663 DOI: 10.1097/j.pain.0000000000001132] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nociception reliably elicits an autonomic nervous system (ANS) response. Because pain and ANS circuitry interact on multiple spinal, subcortical, and cortical levels, it remains unclear whether autonomic responses are simply a reflexive product of noxious stimulation regardless of how stimulation is consciously perceived or whether the experience of pain mediates ANS responses to noxious stimulation. To test these alternative predictions, we examined the relative contribution of noxious stimulation and individual pain experience to ANS responses in healthy volunteers who underwent 1 or 2 pain assessment tasks. Participants received 8 seconds of thermal stimulation of varied temperatures and judged pain intensity on every trial. Skin conductance responses and pupil dilation responses to stimulation served as measures of the heat-evoked autonomic response. We used multilevel modelling to examine trial-by-trial relationships between heat, pain, and ANS response. Although both pain and noxious heat stimulation predicted skin conductance response and pupil dilation response in separate analyses, the individual pain experience statistically mediated effects of noxious heat on both outcomes. Furthermore, moderated mediation revealed that evidence for this process was stronger when stimulation was perceived as painful compared with when stimulation was perceived as nonpainful. These findings suggest that pain appraisal regulates the heat-evoked autonomic response to noxious stimulation, documenting the flexibility of the autonomic pain response to adjust to perceived or actual changes in environmental affordances above and beyond nociceptive input.
Collapse
|
16
|
Garcia-Larrea L, Hagiwara K. Electrophysiology in diagnosis and management of neuropathic pain. Rev Neurol (Paris) 2019; 175:26-37. [DOI: 10.1016/j.neurol.2018.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
|
17
|
Venturella I, Crivelli D, Fossati M, Fiorillo F, Balconi M. EEG and autonomic responses to nociceptive stimulation in disorders of consciousness. J Clin Neurosci 2018; 60:101-106. [PMID: 30309803 DOI: 10.1016/j.jocn.2018.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/26/2018] [Indexed: 01/23/2023]
Abstract
Since behavioral responses to external stimuli of patients presenting disorders of consciousness (DoC) are often difficult to qualify, covert physiological correlates of responsivity are deemed as potentially valuable tools to help assessment procedures. While noxious stimuli seem good candidates to explore DoC patients' responsivity, autonomic and electrophysiological correlates of pain detection in DoC patients are still debated. This research aims at investigating autonomic and cortical activation as covert measure of residual somatosensory and nociceptive processes in patients in vegetative state. Twenty-one patients received touch- and pain-related stimulations while autonomic and cortical measures were recorded, with minimal stress for them. Results showed an increased frontal and parietal activation in response to both touch and pain stimuli. Pain-related stimulation was however associated with greater delta parietal response, lower left frontal activation, and increased electrodermal and heart rate measures. Present findings suggest that both somatic stimulations could induce measurable central responses, which might mirror basic attention orientation and perceptual processes. Nonetheless, the nociceptive stimulation in particular seemed to induce a more consistent and informative pattern of covert response even if we used a mild pain-induction procedure.
Collapse
Affiliation(s)
- Irene Venturella
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milano, Italy; Department of Psychology, Catholic University of the Sacred Heart, Milano, Italy
| | - Davide Crivelli
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milano, Italy; Department of Psychology, Catholic University of the Sacred Heart, Milano, Italy.
| | - Marina Fossati
- Residential Care Facility "Foscolo", Gruppo La Villa spa, Guanzate, Como, Italy
| | - Francesca Fiorillo
- Residential Care Facility "Foscolo", Gruppo La Villa spa, Guanzate, Como, Italy
| | - Michela Balconi
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milano, Italy; Department of Psychology, Catholic University of the Sacred Heart, Milano, Italy
| |
Collapse
|
18
|
Tracy LM, Gibson SJ, Georgiou-Karistianis N, Giummarra MJ. Effects of explicit cueing and ambiguity on the anticipation and experience of a painful thermal stimulus. PLoS One 2017; 12:e0183650. [PMID: 28832636 PMCID: PMC5568281 DOI: 10.1371/journal.pone.0183650] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/31/2017] [Indexed: 01/10/2023] Open
Abstract
Many factors can influence the way in which we perceive painful events and noxious stimuli, but less is known about how pain perception is altered by explicit knowledge about the impending sensation. This study aimed to investigate the impact of explicit cueing on anxiety, arousal, and pain experience during the anticipation and delivery of noxious thermal heat stimulations. Fifty-two healthy volunteers were randomised to receive explicit instructions about visual cue-stimulus temperature pairings, or no explicit instructions about the cue-stimulus pairs. A pain anxiety task was used to investigate the effects of explicit cueing on anticipatory anxiety, pain experience and electrophysiological responses. Participants who received explicit instructions about the cue-stimulus pairs (i.e., the relationship between the colour of the cue and the temperature of the associated stimuli) reported significantly higher subjective anxiety prior to the delivery of the thermal heat stimuli (p = .025, partial eta squared = .10). There were no effects of explicit cueing on subsequent pain intensity, unpleasantness, or the electrophysiological response to stimulus delivery. The perceived intensity and unpleasantness of the stimuli decreased across the blocks of the paradigm. In both groups anticipating the ambiguous cue elicited the largest change in electrophysiological arousal, indicating that not knowing the impending stimulus temperature led to increased arousal, compared to being certain of receiving a high temperature thermal stimulus (both p < .001). Perceived stimulus intensity varied between ambiguous and non-ambiguous cues, depending on the temperature of the stimulus. Together these findings highlight the impact and importance of explicit cueing and uncertainty in experimental pain studies, and how these factors influence the way healthy individuals perceive and react to noxious and innocuous thermal stimuli.
Collapse
Affiliation(s)
- Lincoln M Tracy
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Victoria, Australia.,Caulfield Pain Management & Research Centre, Caulfield Hospital, Caulfield, Victoria, Australia
| | - Stephen J Gibson
- Caulfield Pain Management & Research Centre, Caulfield Hospital, Caulfield, Victoria, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Victoria, Australia
| | - Melita J Giummarra
- Caulfield Pain Management & Research Centre, Caulfield Hospital, Caulfield, Victoria, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,Institute of Safety, Compensation & Recovery Research, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Silva AF, Zortea M, Carvalho S, Leite J, Torres ILDS, Fregni F, Caumo W. Anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex modulates attention and pain in fibromyalgia: randomized clinical trial. Sci Rep 2017; 7:135. [PMID: 28273933 PMCID: PMC5427889 DOI: 10.1038/s41598-017-00185-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/13/2017] [Indexed: 12/31/2022] Open
Abstract
Cognitive dysfunction in fibromyalgia patients has been reported, especially when increased attentional demands are required. Transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) has been effective in modulating attention. We tested the effects of a single session of tDCS coupled with a Go/No-go task in modulating three distinct attentional networks: alertness, orienting and executive control. Secondarily, the effect on pain measures was evaluated. Forty females with fibromyalgia were randomized to receive active or sham tDCS. Anodal stimulation (1 mA, 20 min) was applied over the DLPFC. Attention indices were assessed using the Attention Network Test (ANT). Heat pain threshold (HPTh) and tolerance (HPTo) were measured. Active compared to sham tDCS led to increased performance in the orienting (mean difference [MD] = 14.63) and executive (MD = 21.00) attention networks. There was no effect on alertness. Active tDCS increased HPTh as compared to sham (MD = 1.93) and HPTo (MD = 1.52). Regression analysis showed the effect on executive attention is mostly independent of the effect on pain. DLPFC may be an important target for neurostimulation therapies in addition to the primary motor cortex for patients who do not respond adequately to neurostimulation therapies.
Collapse
Affiliation(s)
- Adriana Ferreira Silva
- Post Graduate Program in Medical Sciences, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maxciel Zortea
- Post Graduate Program in Medical Sciences, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Pain & Neuromodulation, Clinical Hospital of Porto Alegre, Porto Alegre, Brazil
| | - Sandra Carvalho
- Spaulding Center of Neuromodulation, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
- Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Braga, Portugal
| | - Jorge Leite
- Spaulding Center of Neuromodulation, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
- Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Braga, Portugal
| | - Iraci Lucena da Silva Torres
- Post Graduate Program in Medical Sciences, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Pharmacology Department, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Fregni
- Spaulding Center of Neuromodulation, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolnei Caumo
- Post Graduate Program in Medical Sciences, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
- Laboratory of Pain & Neuromodulation, Clinical Hospital of Porto Alegre, Porto Alegre, Brazil.
- Pharmacology Department, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
- Pain and Palliative Care Service, Clinical Hospital of Porto Alegre, Porto Alegre, Brazil.
- Surgery Department, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
20
|
Not an Aspirin: No Evidence for Acute Anti-Nociception to Laser-Evoked Pain After Motor Cortex rTMS in Healthy Humans. Brain Stimul 2016; 9:48-57. [DOI: 10.1016/j.brs.2015.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/18/2015] [Accepted: 08/28/2015] [Indexed: 02/06/2023] Open
|
21
|
Gay A, Aimonetti JM, Roll JP, Ribot-Ciscar E. Kinesthetic illusions attenuate experimental muscle pain, as do muscle and cutaneous stimulation. Brain Res 2015; 1615:148-156. [PMID: 25935692 DOI: 10.1016/j.brainres.2015.04.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/19/2015] [Accepted: 04/06/2015] [Indexed: 12/28/2022]
Abstract
In the present study, muscle pain was induced experimentally in healthy subjects by administrating hypertonic saline injections into the tibialis anterior (TA) muscle. We first aimed at comparing the analgesic effects of mechanical vibration applied to either cutaneous or muscle receptors of the TA or to both types simultaneously. Secondly, pain alleviation was compared in subjects in whom muscle tendon vibration evoked kinesthetic illusions of the ankle joint. Muscle tendon vibration, which primarily activated muscle receptors, reduced pain intensity by 30% (p<0.01). In addition, tangential skin vibration reduced pain intensity by 33% (p<0.01), primarily by activating cutaneous receptors. Concurrently stimulating both sensory channels induced stronger analgesic effects (-51%, p<0.01), as shown by the lower levels of electrodermal activity. The strongest analgesic effects of the vibration-induced muscle inputs occurred when illusory movements were perceived (-38%, p=0.01). The results suggest that both cutaneous and muscle sensory feedback reduce muscle pain, most likely via segmental and supraspinal processes. Further clinical trials are needed to investigate these new methods of muscle pain relief.
Collapse
Affiliation(s)
- André Gay
- La Conception Hospital, APHM, Marseille, France
| | | | - Jean-Pierre Roll
- Aix-Marseille université, CNRS, NIA UMR 7260, 13331 Marseille, France
| | | |
Collapse
|
22
|
Silva NTD, Schestatsky P, Winckler PB, Salum GA, Petroceli AW, Heldt EPDS. Oppositionality and sympathetic skin response in adolescents: Specific associations with the headstrong/hurtful dimension. Biol Psychol 2014; 103:242-7. [DOI: 10.1016/j.biopsycho.2014.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
|
23
|
de Zanette SA, Vercelino R, Laste G, Rozisky JR, Schwertner A, Machado CB, Xavier F, de Souza ICC, Deitos A, Torres ILS, Caumo W. Melatonin analgesia is associated with improvement of the descending endogenous pain-modulating system in fibromyalgia: a phase II, randomized, double-dummy, controlled trial. BMC Pharmacol Toxicol 2014; 15:40. [PMID: 25052847 PMCID: PMC4119581 DOI: 10.1186/2050-6511-15-40] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/16/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Central disinhibition is a mechanism involved in the physiopathology of fibromyalgia. Melatonin can improve sleep quality, pain and pain threshold. We hypothesized that treatment with melatonin alone or in combination with amitriptyline would be superior to amitriptyline alone in modifying the endogenous pain-modulating system (PMS) as quantified by conditional pain modulation (CPM), and this change in CPM could be associated with serum brain-derived neurotrophic factor (BDNF). We also tested whether melatonin improves the clinical symptoms of pain, pain threshold and sleep quality. METHODS Sixty-three females, aged 18 to 65, were randomized to receive bedtime amitriptyline (25 mg) (n = 21), melatonin (10 mg) (n = 21) or melatonin (10 mg) + amitriptyline (25 mg) (n = 21) for a period of six weeks. The descending PMS was assessed with the CPM-TASK. It was assessed the pain score on the Visual Analog Scale (VAS 0-100 mm), the score on Fibromyalgia Impact Questionnaire (FIQ), heat pain threshold (HPT), sleep quality and BDNF serum. Delta values (post- minus pre-treatment) were used to compare the treatment effect. The outcomes variables were collected before, one and six weeks after initiating treatment. RESULTS Melatonin alone or in combination with amitriptyline reduced significantly pain on the VAS compared with amitriptyline alone (P < 0.01). The delta values on the VAS scores were-12.85 (19.93),-17.37 (18.69) and-20.93 (12.23) in the amitriptyline, melatonin and melatonin+amitriptyline groups, respectively. Melatonin alone and in combination increased the inhibitory PMS as assessed by the Numerical Pain Scale [NPS(0-10)] reduction during the CPM-TASK:-2.4 (2.04) melatonin + amitriptyline,-2.65 (1.68) melatonin, and-1.04 (2.06) amitriptyline, (P < 0.05). Melatonin + amitriptyline treated displayed better results than melatonin and amitriptyline alone in terms of FIQ and PPT improvement (P < 0.05, fort both). CONCLUSION Melatonin increased the inhibitory endogenous pain-modulating system as assessed by the reduction on NPS(0-10) during the CPM-TASK. Melatonin alone or associated with amitriptyline was better than amitriptyline alone in improving pain on the VAS, whereas its association with amitriptyline produced only marginal additional clinical effects on FIQ and PPT. TRIAL REGISTRATION Current controlled trail is registered at clinical trials.gov upon under number NCT02041455. Registered January 16, 2014.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wolnei Caumo
- Pain and Palliative Care Service at the Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
24
|
Stefani LC, Muller S, Torres ILS, Razzolini B, Rozisky JR, Fregni F, Markus R, Caumo W. A Phase II, Randomized, Double-Blind, Placebo Controlled, Dose-Response Trial of the Melatonin Effect on the Pain Threshold of Healthy Subjects. PLoS One 2013; 8:e74107. [PMID: 25947930 PMCID: PMC3788771 DOI: 10.1371/journal.pone.0074107] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 07/30/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Previous studies have suggested that melatonin may produce antinociception through peripheral and central mechanisms. Based on the preliminary encouraging results of studies of the effects of melatonin on pain modulation, the important question has been raised of whether there is a dose relationship in humans of melatonin on pain modulation. OBJECTIVE The objective was to evaluate the analgesic dose response of the effects of melatonin on pressure and heat pain threshold and tolerance and the sedative effects. METHODS Sixty-one healthy subjects aged 19 to 47 y were randomized into one of four groups: placebo, 0.05 mg/kg sublingual melatonin, 0.15 mg/kg sublingual melatonin or 0.25 mg/kg sublingual melatonin. We determine the pressure pain threshold (PPT) and the pressure pain tolerance (PPTo). Quantitative sensory testing (QST) was used to measure the heat pain threshold (HPT) and the heat pain tolerance (HPTo). Sedation was assessed with a visual analogue scale and bispectral analysis. RESULTS Serum plasma melatonin levels were directly proportional to the melatonin doses given to each subject. We observed a significant effect associated with dose group. Post hoc analysis indicated significant differences between the placebo vs. the intermediate (0.15 mg/kg) and the highest (0.25 mg/kg) melatonin doses for all pain threshold and sedation level tests. A linear regression model indicated a significant association between the serum melatonin concentrations and changes in pain threshold and pain tolerance (R(2) = 0.492 for HPT, R(2) = 0.538 for PPT, R(2) = 0.558 for HPTo and R(2) = 0.584 for PPTo). CONCLUSIONS The present data indicate that sublingual melatonin exerts well-defined dose-dependent antinociceptive activity. There is a correlation between the plasma melatonin drug concentration and acute changes in the pain threshold. These results provide additional support for the investigation of melatonin as an analgesic agent. Brazilian Clinical Trials Registry (ReBec): (U1111-1123-5109). IRB: Research Ethics Committee at the Hospital de Clínicas de Porto Alegre.
Collapse
Affiliation(s)
- Luciana Cadore Stefani
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Suzana Muller
- Associate Professor, Pharmacology Department, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Iraci L S Torres
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil ; Anesthetist, Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre, Laboratory of Pain and Neuromodulation, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil ; Associate Professor, Pharmacology Department, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna Razzolini
- Anesthetist, Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre, Laboratory of Pain and Neuromodulation, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Joanna R Rozisky
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Felipe Fregni
- Associate Professor of Physical Medicine and Rehabilitation, Associate Professor of Neurology Harvard Medical School. Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Regina Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil ; Anesthetist, Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre, Laboratory of Pain and Neuromodulation, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil ; Associate Professor, Pharmacology Department, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
25
|
Medici C, Barraza G, Castillo CD, Morales M, Schestatsky P, Casanova-Mollà J, Valls-Sole J. Disturbed sensory perception of changes in thermoalgesic stimuli in patients with small fiber neuropathies. Pain 2013; 154:2100-2107. [PMID: 23806653 DOI: 10.1016/j.pain.2013.06.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 06/04/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
Abstract
The assessment of functional deficits in small fibre neuropathies (SFN) requires using ancillary tests other than conventional neurophysiological techniques. One of the tests with most widespread use is thermal threshold determination, as part of quantitative sensory testing. Thermal thresholds typically reflect one point in the whole subjective experience elicited by a thermal stimulus. We reasoned that more information could be obtained by analyzing the subjective description of the ongoing sensation elicited by slow temperature changes (dynamic thermal testing, DTT). Twenty SFN patients and 20 healthy subjects were requested to describe, by using an electronic visual analog scale system, the sensation perceived when the temperature of a thermode was made to slowly change according to a predetermined pattern. The thermode was attached to the left ventral forearm or the distal third of the left leg and the stimulus was either a monophasic heat or cold stimuli that reached 120% of pain threshold and reversed to get back to baseline at a rate of 0.5 °C/s. Abnormalities seen in patients in comparison to healthy subjects were: (1) delayed perception of temperature changes, both at onset and at reversal, (2) longer duration of pain perception at peak temperature, and (3) absence of an overshoot sensation after reversal, ie, a transient perception of the opposite sensation before the temperature reached again baseline. The use of DTT increases the yield of thermal testing for clinical and physiological studies. It adds information that can be discriminant between healthy subjects and SFN patients and shows physiological details about the process of activation and inactivation of temperature receptors that may be abnormal in SFN.
Collapse
Affiliation(s)
- Conrado Medici
- Department of Neurology, Hospital Clinic, Barcelona, Spain Institut d'Investigació Augustí Pi i Sunyer, Facultat de Medicina, University of Barcelona, Barcelona, Spain Neurology Service, EMG Unit, Hospital de Clinicas, Porto Alegre, Brazil Neurology Service, Hospital Joan XXIII, Tarragona, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Multi-parameter autonomic-based pain assessment: More is more? Pain 2012; 153:1779-1780. [DOI: 10.1016/j.pain.2012.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 01/08/2023]
|
27
|
Garcia-Larrea L. Objective pain diagnostics: clinical neurophysiology. Neurophysiol Clin 2012; 42:187-97. [PMID: 22632867 DOI: 10.1016/j.neucli.2012.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/01/2012] [Accepted: 03/04/2012] [Indexed: 12/13/2022] Open
Abstract
Neurophysiological techniques help in diagnosis, prognosis and treatment of chronic pain, and are particularly useful to determine its neuropathic origin. According to current standards, the diagnosis of definite neuropathic pain (NP) needs objective confirmation of a lesion or disease of somatosensory systems, which can be provided by neurophysiological testing. Lesions causing NP mostly concern the pain-temperature pathways, and therefore neurophysiological procedures allowing the specific testing of these pathways (i.e., A-delta and C-fibres, spino-thalamo-cortical tracts) are essential for objective diagnosis. Different techniques to stimulate selectively pain-temperature pathways are discussed. Of these, laser-evoked potentials (LEPs) appear as the easiest and most reliable neurophysiological method of assessing nociceptive function, and their coupling with autonomic responses (e.g., galvanic skin response) and psychophysics (quantitative sensory testing - QST) can still enhance their diagnostic yield. Neurophysiological techniques not exploring specifically nociception, such as standard nerve conduction velocities (NCV) and SEPs to non-noxious stimulation, should be associated to the exploration of nociceptive systems, not only because both may be simultaneously affected to different degrees, but also because some specific painful symptoms, such as paroxysmal discharges, may depend on specific alteration of highly myelinated A-beta fibres. The choice of techniques is determined after anamnesis and clinical exam, and tries to answer a number of questions: (a) is the pain-related to injury of somatosensory pathways?; (b) to what extent are different subsystems affected?; (c) are mechanisms and lesion site in accordance with imaging data?; (d) are results of use for diagnostic or therapeutic follow-up? Neuropathic pain (NP) affects more than 15 million people in Western countries, and its belated diagnosis leads to insufficient or delayed therapy. The use of neurofunctional approaches to obtain a "physiological photograph" of somatosensory function is therefore highly relevant, as it yields significant clues about the type and mechanisms of pain, thus prompting rapid and optimised therapy.
Collapse
Affiliation(s)
- L Garcia-Larrea
- Inserm U1028, Central Integration of Pain Unit, Centre for Neuroscience of Lyon, University Claude-Bernard Lyon, University Hospital Pain Center, Neurological Hospital, 69003 Lyon, France.
| |
Collapse
|
28
|
Autonomic responses to heat pain: Heart rate, skin conductance, and their relation to verbal ratings and stimulus intensity. Pain 2011; 152:592-598. [DOI: 10.1016/j.pain.2010.11.032] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 11/04/2010] [Accepted: 11/29/2010] [Indexed: 12/23/2022]
|
29
|
Schestatsky P, Nascimento OJM. What do general neurologists need to know about neuropathic pain? ARQUIVOS DE NEURO-PSIQUIATRIA 2009; 67:741-9. [DOI: 10.1590/s0004-282x2009000400039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuropathic pain (NP) is defined as pain caused by lesion or dysfunction of the somatosensory system, as a result of abnormal activation of the nociceptive pathway (small fibers and spinothalamic tracts). The most common causes of this syndrome are the following: diabetes, post-herpetic neuralgia, trigeminal neuralgia, stroke, multiple sclerosis, spinal cord injury, HIV infection, cancer. In the last few years, the NP has been receiving special attention for two main reasons: (1) therapeutical refractoriness of a variety of pain syndromes with predominant neuropathic characteristics and (2) the development of diagnostic tools for neuropathic pain complaints. The present review article provides relevant information on the understanding and recognition of NP, as well as evidence-based therapeutic approaches.
Collapse
|