1
|
Mohammadi E, Baldwin SA. Developing a versatile tool for studying kinetics of Selenate-Se removal from aqueous solution using a chemostat bioreactor. Heliyon 2024; 10:e24914. [PMID: 38317929 PMCID: PMC10839987 DOI: 10.1016/j.heliyon.2024.e24914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Understanding the impact of various parameters on the kinetics of dissolved selenium (Se) removal in bioreactors can be a challenging task, primarily due to the mass transfer limitations inherent in bioreactors employing attached growth configurations. This study successfully established a proof-of-concept for the efficient removal of Se from aqueous solutions using a chemostat bioreactor that relies solely on suspended growth. The research investigated the effect of selenate-Se feed concentrations under two distinct Se concentration conditions. One experiment was conducted at a considerably elevated concentration of 25 mg/L to impose stress on the system and evaluate its response. Another experiment replicated an environmentally relevant concentration of 1 mg/L, mirroring the typical Se concentrations in mine water. The bioreactor, featuring a working volume of 0.35 L, was operated as an anaerobic, fully mixed chemostat with hydraulic retention times (HRTs) ranging from 5 to 0.25 days. The outcomes revealed the chemostat's capacity to remove up to 25 mg/L of dissolved Se from water for all HRTs exceeding 1 day, under otherwise optimal conditions encompassing temperature, pH, and salinity. The research's significance lies in the development of a versatile tool designed to examine Se removal kinetics within a system devoid of mass transfer limitations. Furthermore, this study verified the ability of the bacterial consortium, obtained from a mine-influenced environment and enriched in the laboratory, to grow and sustain Se removal activities within a chemostat operating with HRTs as short as 1 day.
Collapse
Affiliation(s)
- Elnaz Mohammadi
- Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Susan A. Baldwin
- Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
2
|
Ma B, Shao S, Ai L, Chen S, Zhang L. Influences of biochar with selenite on bacterial community in soil and Cd in peanut. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114742. [PMID: 37032575 DOI: 10.1016/j.ecoenv.2023.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/06/2023] [Accepted: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) pollution in crops seriously affects the ecosystem and human health. Effective measures should be employed to reduce the absorption and accumulation of cadmium in crops. Currently, there are many pieces of research on the application of biochar (BC) and selenium (Se) alone to the remediation of soil Cd pollution; however, few investigations have been devoted to the application of BC and Se together to the remediation of soil Cd pollution. The peanut was taken as the target crop to explore the effects of exogenous selenium and biochar on the remediation of soil Cd pollution. The response of the soil bacterial community to two levels of Cd concentration and its relationship with soil properties and Cd availability are methodically investigated. This study sets two cadmium pollution concentrations of low Cd (5 mg/ kg) and high Cd (20 mg/kg), as well as six treatments: blank, BC, soil Se, soil Se-BC, leaf Se, and leaf Se-BC. The achieved results revealed that both Se and BC could noticeably enhance the yield of peanut seeds and reduce the Cd content in peanut seeds. Among them, Se-BC treatment on soil exhibits the most influence, which reduces the Cd content by 47.86%. Se and BC also affect the physical and chemical properties of soil and remarkably magnify the content of soil available phosphorus, organic matter, soil pH, and soil conductivity. For instance, then effect is detected in the case of applying selenium biochar to soil, leading to an increase of about 64.38%, 72.62%, 2.64%, and 61.15%, respectively, and reducing the content of soil available cadmium by 21.02%. Redundancy analysis confirms that these properties enhance the abundance of dominant bacteria Actinobacteria, Proteobacteria, and Chloroflexi. The correlation analysis also indicates that Saccharimonadales, Bacillus, Arthrobacter, and other bacteria with the function of reducing the bioavailability of cadmium in soil reveal a considerable positive correlation with the variations of physical and chemical properties. In general, exogenous Se and BC incorporate to drop the content of available Cd in the soil through direct passivation, passivation caused by soil environmental change, and passivation caused by altering the soil microbial community structure; as a result, the migration and enrichment of Cd in peanut seeds are blocked and reduced. Moreover, the mixed application of BC and soil Se exhibits the best effect.
Collapse
Affiliation(s)
- Bing Ma
- School of Environment and Science, Qingdao Agriculture University, Qingdao 266109, China
| | - Shiwei Shao
- School of Environment and Science, Qingdao Agriculture University, Qingdao 266109, China
| | - Liuhuan Ai
- School of Environment and Science, Qingdao Agriculture University, Qingdao 266109, China
| | - Shiyao Chen
- School of Environment and Science, Qingdao Agriculture University, Qingdao 266109, China
| | - Lei Zhang
- School of Environment and Science, Qingdao Agriculture University, Qingdao 266109, China.
| |
Collapse
|
3
|
Lin C, Liang S, Yang X, Yang Q. Toxicity monitoring signals analysis of selenite using microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160801. [PMID: 36493832 DOI: 10.1016/j.scitotenv.2022.160801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Microbial fuel cells (MFCs) based biosensors are widely studied to environmental monitoring. The suitable responsive signal is important for microbial electrochemical sensors. However, the responsive signals of toxins have not been investigated in detail. Using sodium selenite as a toxic substance, the different response signals are analyzed over a concentration range from 0 to 150 mg/L in the double chambered. The output voltage and power density had the opposite trend between 0 and 2.5 mg/L and 2.5-150 mg/L. To analyze the reasonable signal of Se(IV) monitoring sensor, correlation analysis of concentrations and responsive signal data (maximum voltage, maximum power density, coulombic recovery, coulombic efficiency, and normalized energy recovery, etc.) has been accomplished. The high concentration of exogenous selenite (2.5-100 mg/L) is negatively correlated with maximum voltage (r = -0.901, p < 0.01) and max power density (r = -0.910, p < 0.01). The low concentration of exogenous selenite is positively correlated with average voltage, max power density, coulombic yield (r = 0.973, 0.999 and 0.975, respectively. p < 0.05). Furthermore, Illumina sequencing results indicate that the addition of sodium selenite solution changes the anode community structure, thereby affecting the removal efficiency of organic matter, which may be the reason why coulombic efficiency and normalized energy recovery are not suitable as sensing signal. Overall, based on the analysis of experimental data, the maximum power density is the best response signal, which provides a reference for the selection of sensor response signal based on microbial fuel cells.
Collapse
Affiliation(s)
- Chunyang Lin
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Shengna Liang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Xiaojing Yang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Qiao Yang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
4
|
Sun Y, Guo J, Wei F, Chen X, Li M, Li C, Xia S, Zhang G, You W, Cong X, Yu T, Wang S. Microbial functional communities and the antibiotic resistome profile in a high-selenium ecosystem. CHEMOSPHERE 2023; 311:136858. [PMID: 36252903 DOI: 10.1016/j.chemosphere.2022.136858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Enshi City, in the Hubei Province of China, is known as the world capital of selenium with the most abundant selenium resource. An important selenium hyperaccumulator plant, Cardamine violifolia, was found to naturally grow in this high-selenium ecosystem. However, relatively little is known about the impact of the selenium levels on microbial community and functional shifts in C. violifolia rhizosphere. Here, we tested the hypothesis that underground microbial diversity and function vary along a selenium gradient, including antibiotic resistance genes (ARGs). Comprehensive metagenomic analyses, such as taxonomic investigation, functional detection, and ARG annotation, showed that selenium, mercury, cadmium, lead, arsenic, and available phosphorus and potassium were correlated with microbial diversity and function. Thaumarchaeota was exclusively dominant in the highest selenium concentration of mine outcrop, and Rhodanobacter and Nitrospira were predominant in the high-selenium ecosystem. The plant C. violifolia enriched a high concentration of selenium in the rhizosphere compared to those in the bulk soil, and it recruited Variovorax and Polaromonas in its rhizosphere. Microbial abundance showed a trend of increasing first and then decreasing from low to high selenium concentrations. Annotation of ARGs showed that the multidrug resistance genes adeF, mtrA, and poxtA, the aminoglycoside resistance gene rpsL, and the sulfonamide resistant gene sul2 were enriched in the high-selenium system. It was discovered that putative antibiotic resistant bacteria displayed obvious differences in the farmland and the soils with various selenium concentrations, indicating that a high-selenium ecosystem harbors the specific microbes with a higher capacity to enrich or resist selenium, toxic metals, or antibiotics. Taken together, these results reveal the effects of selenium concentration and the selenium hyperaccumulator plant C. violifolia on shaping the microbial functional community and ARGs. Metalloid selenium-inducible antibiotic resistance is worth paying attention to in future.
Collapse
Affiliation(s)
- Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, China
| | - Jia Guo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, 213164, China
| | - Fu Wei
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xiaohui Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Meng Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, China
| | - Chao Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Size Xia
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Guangming Zhang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Wencai You
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xin Cong
- Enshi Se-Run Health Tech Development Co., Ltd., Enshi, 445000, China
| | - Tian Yu
- Enshi Se-Run Health Tech Development Co., Ltd., Enshi, 445000, China.
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
5
|
Zhang X, Wang L, Zeng T, Liu Y, Wang G, Liu J, Wang A. The removal of selenite and cadmium by immobilized biospheres: Efficiency, mechanisms and bacterial community. ENVIRONMENTAL RESEARCH 2022; 211:113025. [PMID: 35278470 DOI: 10.1016/j.envres.2022.113025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
In this study, a complex bacterial consortium was enriched from a typical Pb-Zn mine area and immobilized by sodium alginate to form biospheres, which were used for treatment of selenite (Se(IV))- and cadmium (Cd(II))-containing wastewater without external carbon source. Batch experiments showed that the maximum Se(IV) removal efficiency was 92.36% under the optimal conditions of an initial pH of 5, dosage of 5 g/L, initial Se(IV) concentration of 7.9 mg/L and reaction time of 168 h. Subsequently, more than 99% of 11.2 mg/L Cd(II) was removed by the biospheres within 10 h. Physicochemical characterization showed that reduction and adsorption were the main mechanisms for Se(IV) and Cd(II) removal, respectively. During the removal process, selenium and CdSe nanoparticles were formed. Bacterial community analysis showed the dominant bacterial genera changed after treatment of Se(IV)- and Cd(II)-containing wastewater. Additionally, 16S rRNA gene function prediction results showed that amino acid transport, carbohydrate transport, ion transport and metabolism were the dominant gene functions. The present study provides a potential way for the biological treatment of Se(IV)- and Cd(II)-containing wastewater using immobilized biospheres without external carbon source in short-term.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Liangqin Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China.
| | - Yingjiu Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Guohua Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Jinxiang Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
6
|
Wang Y, Shi X, Huang X, Huang C, Wang H, Yin H, Shao Y, Li P. Linking microbial community composition to farming pattern in selenium-enriched region: Potential role of microorganisms on Se geochemistry. J Environ Sci (China) 2022; 112:269-279. [PMID: 34955211 DOI: 10.1016/j.jes.2021.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 06/14/2023]
Abstract
Selenium (Se) is an essential micronutrient for lives. Indigenous microbial communities play an important role on Se geochemistry in soils. In this study, the microbial community composition and functions of 53 soil samples were investigated using high-throughput sequencing. Samples were divided into 3 groups with different farming types based on the measured geochemical parameters and microbial functional structures. Results indicated that putative Se related bacteria Bacillus, Dyella, Paenibacillus, Burkholderia and Brevibacillus were dominant in dryland plantation soils which were characterized with higher available Se and low contents of H2O, total organic carbon (TOC), NH4+ and NO2-. In contrast, the putative denitrifier Pseudomonas dominated in flooded paddy soils with higher TOC, NO3- and organic Se, whereas genera Rhizobium, Nitrosospira, and Geobacter preferred woodland soils with higher oxidation-reduction potential (ORP), pH, NH4+ and Fe. Farming patterns resulted in distinct geochemical parameters including moisture, pH, ORP, TOC, and contents of soluble Fe, NO2- and NH4+, shaping the microbial communities, which in turn affected Se forms in soils. This study provides a valuable insight into understanding of Se biogeochemistry in soils and prospective strategy for Se-rich agriculture production.
Collapse
Affiliation(s)
- Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xinyan Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xianxin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Chunlei Huang
- Zhejiang Institute of Geological Survey, Hangzhou 311203, China
| | - Helin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Hanqin Yin
- Zhejiang Institute of Geological Survey, Hangzhou 311203, China
| | - Yixian Shao
- Zhejiang Institute of Geological Survey, Hangzhou 311203, China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
7
|
Ex and In Situ Reactivity and Sorption of Selenium in Opalinus Clay in the Presence of a Selenium Reducing Microbial Community. MINERALS 2021. [DOI: 10.3390/min11070757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
79Se is a critical radionuclide concerning the safety of deep geological disposal of certain radioactive wastes in clay-rich formations. To study the fate of selenium oxyanions in clayey rocks in the presence of a selenium reducing microbial community, in situ tests were performed in the Opalinus Clay at the Mont Terri Rock Laboratory (Switzerland). Furthermore, biotic and abiotic batch tests were performed to assess Se(VI) and Se(IV) reactivity in the presence of Opalinus Clay and/or stainless steel, in order to support the interpretation of the in situ tests. Geochemical modeling was applied to simulate Se(VI) reduction, Se(IV) sorption and solubility, and diffusion processes. This study shows that microbial activity is required to transform Se(VI) into more reduced and sorbing Se species in the Opalinus Clay, while in abiotic conditions, Se(VI) remains unreactive. On the other hand, Se(IV) can be reduced by microorganisms but can also sorb in the presence of clay without microorganisms. In situ microbial reduction of Se oxyanions can occur with electron donors provided by the clay itself. If microorganisms would be active in the clay surrounding a disposal facility, microbial reduction of leached Se could thus contribute to the overall retention of Se in clayey host rocks.
Collapse
|
8
|
Song B, Tian Z, van der Weijden RD, Buisman CJN, Weijma J. High-rate biological selenate reduction in a sequencing batch reactor for recovery of hexagonal selenium. WATER RESEARCH 2021; 193:116855. [PMID: 33556693 DOI: 10.1016/j.watres.2021.116855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/30/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Recovery of selenium (Se) from wastewater provides a solution for both securing Se supply and preventing Se pollution. Here, we developed a high-rate process for biological selenate reduction to elemental selenium. Distinctive from other studies, we aimed for a process with selenate as the main biological electron sink, with minimal formation of methane or sulfide. A sequencing batch reactor, fed with an influent containing 120 mgSe L-1 selenate and ethanol as electron donor and carbon source, was operated for 495 days. The high rates (419 ± 17 mgSe L-1 day-1) were recorded between day 446 and day 495 for a hydraulic retention time of 6 h. The maximum conversion efficiency of selenate amounted to 96% with a volumetric conversion rate of 444 mgSe L-1 day-1, which is 6 times higher than the rates reported in the literature thus far. At the end of the experiment, a highly enriched selenate reducing biomass had developed, with a specific activity of 856 ± 26 mgSe-1day-1gbiomass-1, which was nearly 1000-fold higher than that of the inoculum. No evidence was found for the formation of methane, sulfide, or volatile reduced selenium compounds like dimethyl-selenide or H2Se, revealing a high selectivity. Ethanol was incompletely oxidized to acetate. The produced elemental selenium partially accumulated in the reactor as pure (≥80% Se of the total mixture of biomass sludge flocs and flaky aggregates, and ~100% of the specific flaky aggregates) selenium black hexagonal needles, with cluster sizes between 20 and 200 µm. The new process may serve as the basis for a high-rate technology to remove and recover pure selenium from wastewater or process streams with high selectivity.
Collapse
Affiliation(s)
- B Song
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17; 6700 AA Wageningen, the Netherlands
| | - Z Tian
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17; 6700 AA Wageningen, the Netherlands
| | - R D van der Weijden
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17; 6700 AA Wageningen, the Netherlands
| | - C J N Buisman
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17; 6700 AA Wageningen, the Netherlands
| | - J Weijma
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17; 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
9
|
Favorito JE, Grossl PR, Davis TZ, Eick MJ, Hankes N. Soil-plant-animal relationships and geochemistry of selenium in the Western Phosphate Resource Area (United States): A review. CHEMOSPHERE 2021; 266:128959. [PMID: 33279237 DOI: 10.1016/j.chemosphere.2020.128959] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
While naturally found in trace quantities, several regions throughout the world have been designated as "seleniferous" or containing an overabundance of the trace element, selenium (Se), in soil. In particular, portions of the Western Phosphate Resource Area (WPRA) of the United States are considered seleniferous, notably due to past phosphate mining reclamation practices that have promoted Se release and accumulation in soil from weathering overburden waste rock. Concern over Se soil contamination in this region has been attributed to its high levels (ranging from 2.7 to 435 mg Se kg-1 soil), bioavailability, and subsequent hyperaccumulation in vegetation at toxic concentrations (exceeding 10,000 mg Se kg-1 plant tissue). The Se hyperaccumulator, western aster (Symphyotrichum ascendens (Lindl.)), is responsible for the vast majority of acute selenium livestock poisonings and fatalities throughout the region. This inherent bioavailability is largely controlled by soil redox chemistry and sorptive processes. The purpose of this review is to integrate information related to the unique site history of the WPRA from onset mining to current Se problems. This review will provide current details and connection of WPRA mining geology, soil Se geochemistry, plant hyperaccumulation, and related livestock fatalities. Soil remediation strategies will also be discussed along with their applicability and viability in this particular anthropogenically-influenced seleniferous region.
Collapse
Affiliation(s)
- Jessica E Favorito
- Environmental Science Program, 101 Vera King Farris Dr., Stockton University, Galloway, NJ, 08205, USA.
| | - Paul R Grossl
- Department of Plants, Soils, and Climate, 4820 Old Main Hill, Utah State University, Logan, UT, 84322, USA.
| | - Thomas Zane Davis
- USDA-ARS Poisonous Plant Research, 1150 East 1400 North, Logan, UT, 84341, USA.
| | - Matthew J Eick
- Department of Crop and Soil Environmental Sciences, 185 Ag Quad Ln, 237 Smyth Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Nathan Hankes
- Department of Plants, Soils, and Climate, 4820 Old Main Hill, Utah State University, Logan, UT, 84322, USA.
| |
Collapse
|
10
|
Microbial consortia capable of reducing selenate in the presence of nitrate enriched from coalmining-impacted environments. Appl Microbiol Biotechnol 2021; 105:1287-1300. [PMID: 33443632 DOI: 10.1007/s00253-020-11059-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/14/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Biological treatment to remove dissolved selenium from mine-impacted water is often inhibited by the co-contaminant nitrate. In this work, we enriched microbial consortia capable of removing dissolved selenium in the presence of nitrate from native bacteria at sites influenced by coalmine seepages with elevated concentrations of Se, nitrate, and sulfate. Enrichments were collected from sediments in different vegetated or non-vegetated seepage collection ponds, and all demonstrated the potential for dissolved selenium removal. Nitrate inhibited dissolved selenium removal rates in four of these enrichments. However, microorganisms enriched from a mine seepage influenced natural vegetated marsh removed dissolved Se and nitrate simultaneously. Additionally, enrichments from one seepage collection pond achieved enhanced dissolved selenium removal in the presence of nitrate. Based on functional metagenomics, the dominant species with the metabolic capacity for selenate reduction were classified in Orders Enterobacterales and Clostridiales. Most putative selenate reductases identified as either ygfK, associated with selenoprotein synthesis or production of methylated organoselenium compounds, and narG, nitrate reductases with an affinity also for selenate.Key points• Enriched mine influenced sediment bacteria have the capacity for removal of dissolved Se species.• Consortia from a vegetated natural marsh reduced Se without inhibition from nitrate.• Nitrate stimulated the removal of Se by consortia from a disused tailing pond.
Collapse
|
11
|
Zhu TT, Tian LJ, Yu HQ. Phosphate-Suppressed Selenite Biotransformation by Escherichia coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10713-10721. [PMID: 32786571 DOI: 10.1021/acs.est.0c02175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biotransformation of selenite to valuable elemental selenium nanoparticles (Se0) is a promising avenue to remediate seleniferous environments and simultaneously recover selenium (Se). However, the underlying oxyanion competition and selenite transformation mechanism in prokaryotes are poorly understood. In this work, the impacts of phosphate on selenite uptake and transformation were elucidated with Escherichia coli and its mutant deficient in phosphate transport as model microbial strains. Selenite uptake was inhibited by phosphate in E. coli. Moreover, the transformation of internalized Se was shifted from Se0 to toxic organo-Se with elevated phosphate levels, as evidenced by the linear combination fit analysis of the Se K-edge X-ray absorption near-edge structure. Such a phosphate-regulated selenite biotransformation process was mainly assigned to the competitive uptake of phosphate and selenite, which was primarily mediated by a low affinity phosphate transporter (PitA). Under phosphate-deficient conditions, the cells not only produced abundant Se0 nanoparticles but also maintained good cell viability. These findings provide new insights into the phosphate-regulated selenite biotransformation by prokaryotes and contribute to the development of new processes for bioremediating Se-contaminated environments, as well as bioassembly of Se0.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Li-Jiao Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
12
|
Liu K, Cai M, Hu C, Sun X, Cheng Q, Jia W, Yang T, Nie M, Zhao X. Selenium (Se) reduces Sclerotinia stem rot disease incidence of oilseed rape by increasing plant Se concentration and shifting soil microbial community and functional profiles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113051. [PMID: 31450117 DOI: 10.1016/j.envpol.2019.113051] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/27/2019] [Accepted: 08/11/2019] [Indexed: 05/21/2023]
Abstract
Sclerotinia stem rot (SSR), a soil-borne plant disease, cause the yield loss of oilseed rape. Selenium (Se), a beneficial element of plant, improves plant resistance to pathogens, and regulates microbial communities in soil. Soil microbial communities has been identified to play an important role in plant health. We studied whether the changes in soil microbiome under influence of Se associated with oilseed rape health. SSR disease incidence of oilseed rape and soil biochemical properties were investigated in Enshi district, "The World Capital of Selenium", and soil bacterial and fungal communities were analyzed by 16S rRNA and ITS sequencing, respectively. Results showed that Se had a strong effect on SSR incidence, and disease incidence inversely related with plant Se concentration. Besides, soil Se enhanced the microbiome diversities and the relative abundance of PGPR (plant growth promoting rhizobacteria), such as Bryobacter, Nitrospirae, Rhizobiales, Xanthobacteraceae, Nitrosomonadaceae and Basidiomycota. Furthermore, Soil Se decreased the relative abundance of pathogenic fungi, such as Olpidium, Armillaria, Coniosporium, Microbotryomycetes and Chytridiomycetes. Additionally, Se increased nitrogen metabolism, carbohydrate metabolism and cell processes related functional profiles in soil. The enrichment of Se in plants and improvement of soil microbial community were related to increased plant resistance to pathogen infection. These findings suggested that Se has potential to be developed as an ecological fungicide for biological control of SSR.
Collapse
Affiliation(s)
- Kang Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Miaomiao Cai
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Cheng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Jia
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Nie
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Zhao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Persistent Bacterial and Fungal Community Shifts Exhibited in Selenium-Contaminated Reclaimed Mine Soils. Appl Environ Microbiol 2018; 84:AEM.01394-18. [PMID: 29915105 PMCID: PMC6070768 DOI: 10.1128/aem.01394-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/20/2022] Open
Abstract
Mining and other industrial activities worldwide have resulted in Se-enriched surface soils, which pose risks to human and environmental health. Although not well studied, microbial activity can alter Se bioavailability and distribution, even in oxic environments. We used high-throughput sequencing to profile bacterial and fungal communities inhabiting mine soils in southeastern Idaho, comparing mined and unmined locations within two reclaimed phosphate mine areas containing various Se concentrations. The goal was to determine whether microbial communities differed in (i) different mines, (ii) mined areas compared to unmined areas, and (iii) various soil Se concentrations. Though reclamation occurred 20 to 30 years ago, microbial community structures in mined soils were significantly altered compared to unmined soils, suggesting persistent mining-related impacts on soil processes. Additionally, operational taxonomic unit with a 97% sequence similarity cutoff (OTU0.03) richness and diversity were significantly diminished with increasing Se, though not with other geochemical parameters, suggesting that Se contamination shapes communities in favor of Se-tolerant microorganisms. Two bacterial phyla, Actinobacteria and Gemmatimonadetes, were enriched in high-Se soils, while for fungi, Ascomycota dominated all soils regardless of Se concentration. Combining diversity analyses and taxonomic patterns enables us to move toward connecting physiological function of microbial groups to Se biogeochemical cycling in oxic soil environments.IMPORTANCE Selenium contamination in natural environments is of great concern globally, and microbial processes are known to mediate Se transformations. Such transformations alter Se mobility, bioavailability, and toxicity, which can amplify or mitigate Se pollution. To date, nearly all studies investigating Se-microbe interactions have used culture-based approaches with anaerobic bacteria despite growing knowledge that (i) aerobic Se transformations can occur, (ii) such transformations can be mediated by microorganisms other than bacteria, and (iii) microbial community dynamics, rather than individual organismal activities, are important for metal(loid) cycling in natural environments. We examined bacterial and fungal communities in Se-contaminated reclaimed mine soils and found significant declines in diversity at high Se concentrations. Additionally, we identified specific taxonomic groups that tolerate excess Se and may be useful for bioremediation purposes. These patterns were similar across mines of different ages, suggesting that microbial community impacts may persist long after physicochemical parameters indicate complete site recovery.
Collapse
|
14
|
Lai CY, Wen LL, Shi LD, Zhao KK, Wang YQ, Yang X, Rittmann BE, Zhou C, Tang Y, Zheng P, Zhao HP. Selenate and Nitrate Bioreductions Using Methane as the Electron Donor in a Membrane Biofilm Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10179-86. [PMID: 27562531 DOI: 10.1021/acs.est.6b02807] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Selenate (SeO4(2-)) bioreduction is possible with oxidation of a range of organic or inorganic electron donors, but it never has been reported with methane gas (CH4) as the electron donor. In this study, we achieved complete SeO4(2-) bioreduction in a membrane biofilm reactor (MBfR) using CH4 as the sole added electron donor. The introduction of nitrate (NO3(-)) slightly inhibited SeO4(2-) reduction, but the two oxyanions were simultaneously reduced, even when the supply rate of CH4 was limited. The main SeO4(2-)-reduction product was nanospherical Se(0), which was identified by scanning electron microscopy coupled to energy dispersive X-ray analysis (SEM-EDS). Community analysis provided evidence for two mechanisms for SeO4(2-) bioreduction in the CH4-based MBfR: a single methanotrophic genus, such as Methylomonas, performed CH4 oxidation directly coupled to SeO4(2-) reduction, and a methanotroph oxidized CH4 to form organic metabolites that were electron donors for a synergistic SeO4(2-)-reducing bacterium.
Collapse
Affiliation(s)
- Chun-Yu Lai
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University , Hangzhou, China
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
- Zhejiang Province Key Lab Water Pollut Control & Envi, Zhejiang University , Hangzhou, Zhejiang China
| | - Li-Lian Wen
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University , Hangzhou, China
| | - Ling-Dong Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University , Hangzhou, China
| | - Kan-Kan Zhao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University , Hangzhou, China
| | - Yi-Qi Wang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University , Hangzhou, China
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Bruce E Rittmann
- Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University , P.O. Box 875701, Tempe, Arizona 85287-5701, United States
| | - Chen Zhou
- Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University , P.O. Box 875701, Tempe, Arizona 85287-5701, United States
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida 32310-6046, United States
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University , Hangzhou, China
- Zhejiang Province Key Lab Water Pollut Control & Envi, Zhejiang University , Hangzhou, Zhejiang China
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University , Hangzhou, China
- Zhejiang Province Key Lab Water Pollut Control & Envi, Zhejiang University , Hangzhou, Zhejiang China
| |
Collapse
|
15
|
Navarro RR, Aoyagi T, Kimura M, Itoh H, Sato Y, Kikuchi Y, Ogata A, Hori T. High-Resolution Dynamics of Microbial Communities during Dissimilatory Selenate Reduction in Anoxic Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7684-7691. [PMID: 26020820 DOI: 10.1021/es505210p] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Selenate is one of the most common toxic metal compounds in contaminated soils. Its redox status can be changed by microbial activity, thus affecting its water solubility and soil mobility. However, current knowledge of microbial dynamics has been limited by the low sensitivity of past isolation and identification protocols. Here, high-throughput Illumina sequencing of 16S rRNA genes was applied to monitor the shift of the microorganisms in an anoxic contaminated soil after Se(VI) and acetate amendment. An autoclaved soil with both chemicals and a live soil with acetate alone were used as controls. Preliminary chemical analysis clearly showed the occurrence of biological selenate reduction coupled with acetate oxidation. Principal coordinate analysis and diversity indices of Illumina-derived sequence data showed dynamic succession and diversification of the microbial community in response to selenate reduction. High-resolution phylogenetic analysis revealed that the relative frequency of an operational taxonomic unit (OTU) from the genus Dechloromonas increased remarkably from 0.2% to 36% as a result of Se(VI) addition. Multiple OTUs representing less abundant microorganisms from the Rhodocyclaceae and Comamonadaceae families had significant increases as well. This study demonstrated that these microorganisms are concertedly involved in selenate reduction of the employed contaminated soil under anoxic conditions.
Collapse
Affiliation(s)
- Ronald R Navarro
- †Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Onogawa 16-1, Tsukuba, Ibaraki 305-8569, Japan
| | - Tomo Aoyagi
- †Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Onogawa 16-1, Tsukuba, Ibaraki 305-8569, Japan
| | - Makoto Kimura
- †Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Onogawa 16-1, Tsukuba, Ibaraki 305-8569, Japan
| | - Hideomi Itoh
- ‡Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukisamu-higashi 2-17-2-1, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Yuya Sato
- †Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Onogawa 16-1, Tsukuba, Ibaraki 305-8569, Japan
| | - Yoshitomo Kikuchi
- ‡Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukisamu-higashi 2-17-2-1, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Atsushi Ogata
- †Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Onogawa 16-1, Tsukuba, Ibaraki 305-8569, Japan
| | - Tomoyuki Hori
- †Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Onogawa 16-1, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
16
|
Sánchez-Andrea I, Sanz JL, Bijmans MFM, Stams AJM. Sulfate reduction at low pH to remediate acid mine drainage. JOURNAL OF HAZARDOUS MATERIALS 2014; 269:98-109. [PMID: 24444599 DOI: 10.1016/j.jhazmat.2013.12.032] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 05/25/2023]
Abstract
Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed.
Collapse
Affiliation(s)
- Irene Sánchez-Andrea
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.
| | - Jose Luis Sanz
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Martijn F M Bijmans
- Wetsus, Centre of Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands; IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
17
|
Conley JM, Funk DH, Hesterberg DH, Hsu LC, Kan J, Liu YT, Buchwalter DB. Bioconcentration and biotransformation of selenite versus selenate exposed periphyton and subsequent toxicity to the Mayfly Centroptilum triangulifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7965-7973. [PMID: 23772963 DOI: 10.1021/es400643x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Little is known about the bioaccumulation dynamics, biotransformation processes, or subsequent toxicity to consumers of dissolved selenite (SeO3) versus selenate (SeO4) uptake into aquatic primary producer communities. To address these data gaps, we examined SeO3 and SeO4 bioconcentration into complex freshwater periphyton communities under static and static-renewal conditions. Further, we explored periphyton biotransformation of Se species using X-ray absorption near edge structure (XANES) spectroscopy analysis and changes in the periphyton associated microbial consortium using denaturing gradient gel electrophoresis (DGGE). Last, we fed differentially treated periphyton to the mayfly Centroptilum triangulifer in full life cycle exposures to assess toxicity. Selenite exposed periphyton readily bioconcentrated Se while, in contrast, initial periphyton uptake of SeO4 was negligible, but over time periphyton [Se] increased steadily in conjunction with the formation of dissolved SeO3. XANES analyses revealed that both SeO3 and SeO4 treated periphyton biotransformed Se similarly with speciation dominated by organo-selenide (∼61%). Mayfly survival, secondary production, and time to emergence were similar in both SeO3 and SeO4 treated periphyton exposures with significant adverse effects at 12.8 μg g(-1) ((d.w.) secondary production) and 36 μg g(-1) ((d.w.) survival and development time). Overall, dissolved selenium speciation, residence time, and organisms at the base of aquatic food webs appear to be the principal determinants of Se bioaccumulation and toxicity.
Collapse
Affiliation(s)
- Justin M Conley
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Prakash D, Pandey J, Tiwary BN, Jain RK. Physiological adaptations and tolerance towards higher concentration of selenite (Se+4) in Enterobacter sp. AR-4, Bacillus sp. AR-6 and Delftia tsuruhatensis AR-7. Extremophiles 2010; 14:261-72. [DOI: 10.1007/s00792-010-0305-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 02/22/2010] [Indexed: 11/29/2022]
|
19
|
Oram LL, Strawn DG, Marcus MA, Fakra SC, Möller G. Macro- and microscale investigation of selenium speciation in Blackfoot river, Idaho sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:6830-6836. [PMID: 18853796 DOI: 10.1021/es7032229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The transport and bioavailability of selenium in the environment is controlled by its chemical speciation. However, knowledge of the biogeochemistry and speciation of Se in streambed sediment is limited. We investigated the speciation of Se in sediment cores from the Blackfoot River (BFR), Idaho using sequential extractions and synchrotron-based micro-X-ray fluorescence (micro-SXRF). We collected micro-SXRF oxidation state maps of Se in sediments, which had not been done on natural sediment samples. Selective extractions showed that most Se in the sediments is present as either (1) nonextractable Se or (2) base extractable Se. Results from micro-SXRF showed three defined species of Se were present in all four samples: Se(-II,O), Se(IV), and Se(VI). Se(-II,O) was the predominant species in samples from one location, and Se(IV) was the predominant species in samples from a second location. Results from both techniques were consistent, and suggested that the predominant species were Se(-II) species associated with recalcitrant organic matter, and Se(IV) species tightly bound to organic materials. This information can be used to predict the biogeochemical cycling and bioavailability of Se in streambed sediment environments.
Collapse
Affiliation(s)
- Libbie L Oram
- Environmental Science Department, P.O. Box 442339, University of Idaho, Moscow, Idaho 83844-2339, USA.
| | | | | | | | | |
Collapse
|
20
|
Hiibel SR, Pereyra LP, Inman LY, Tischer A, Reisman DJ, Reardon KF, Pruden A. Microbial community analysis of two field-scale sulfate-reducing bioreactors treating mine drainage. Environ Microbiol 2008; 10:2087-97. [PMID: 18430021 DOI: 10.1111/j.1462-2920.2008.01630.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The microbial communities of two field-scale pilot sulfate-reducing bioreactors treating acid mine drainage (AMD), Luttrell and Peerless Jenny King (PJK), were compared using biomolecular tools and multivariate statistical analyses. The two bioreactors were well suited for this study because their geographic locations and substrate compositions were similar while the characteristics of influent AMD, configuration and degree of exposure to oxygen were distinct. The two bioreactor communities were found to be functionally similar, including cellulose degraders, fermenters and sulfate-reducing bacteria (SRB). Significant differences were found between the two bioreactors in phylogenetic comparisons of cloned 16S rRNA genes and adenosine 5'-phosphosulfate reductase (apsA) genes. The apsA gene clones from the Luttrell bioreactor were dominated by uncultured SRB most closely related to Desulfovibrio spp., while those of the PJK bioreactor were dominated by Thiobacillus spp. The fraction of the SRB genus Desulfovibrio was also higher at Luttrell than at PJK as determined by quantitative real-time polymerase chain reaction analysis. Oxygen exposure at PJK is hypothesized to be the primary cause of these differences. This study is the first rigorous phylogenetic investigation of field-scale bioreactors treating AMD and the first reported application of multivariate statistical analysis of remediation system microbial communities applying UniFrac software.
Collapse
Affiliation(s)
- Sage R Hiibel
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Lenz M, Hullebusch EDV, Hommes G, Corvini PFX, Lens PNL. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors. WATER RESEARCH 2008; 42:2184-2194. [PMID: 18177686 DOI: 10.1016/j.watres.2007.11.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 11/16/2007] [Accepted: 11/24/2007] [Indexed: 05/25/2023]
Abstract
This paper evaluates the use of upflow anaerobic sludge bed (UASB) bioreactors (30 degrees C, pH=7.0) to remove selenium oxyanions from contaminated waters (790 microg Se L(-1)) under methanogenic and sulfate-reducing conditions using lactate as electron donor. One UASB reactor received sulfate at different sulfate to selenate ratios, while another UASB was operated under methanogenic conditions for 132 days without sulfate in the influent. The selenate effluent concentrations in the sulfate-reducing and methanogenic reactor were 24 and 8 microg Se L(-1), corresponding to removal efficiencies of 97% and 99%, respectively. X-ray diffraction (XRD) analysis and sequential extractions showed that selenium was mainly retained as elemental selenium in the biomass. However, the total dissolved selenium effluent concentrations amounted to 73 and 80 microg Se L(-1), respectively, suggesting that selenate was partly converted to another selenium compound, most likely colloidally dispersed Se(0) nanoparticles. Possible intermediates of selenium reduction (selenite, dimethylselenide, dimethyldiselenide, H(2)Se) could not be detected. Sulfate reducers removed selenate at molar excess of sulfate to selenate (up to a factor of 2600) and elevated dissolved sulfide concentrations (up to 168 mg L(-1)), but selenium removal efficiencies were limited by the applied sulfate-loading rate. In the methanogenic bioreactor, selenate and dissolved selenium removal were independent of the sulfate load, but inhibited by sulfide (101 mg L(-1)). The selenium removal efficiency of the methanogenic UASB abruptly improved after 58 days of operation, suggesting that a specialized selenium-converting population developed in the reactor. This paper demonstrates that both sulfate-reducing and methanogenic UASB reactors can be applied to remove selenate from contaminated natural waters and anthropogenic waste streams, e.g. agricultural drainage waters, acid mine drainage and flue gas desulfurization bleeds.
Collapse
Affiliation(s)
- Markus Lenz
- Sub-Department of Environmental Technology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|