1
|
Gupta GK, Kapoor RK, Chhabra D, Bhardwaj NK, Shukla P. Synergistic effect of cellulo-xylanolytic and laccase enzyme consortia for improved deinking of waste papers. BIORESOURCE TECHNOLOGY 2024; 408:131173. [PMID: 39084535 DOI: 10.1016/j.biortech.2024.131173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
This study reports the cellulo-xylanolytic cocktail production from Hypocrea lixii GGRK4 using multi-objective genetic algorithm-artificial neural network tool, resulting in 8.32 ± 1.07 IU/mL, 51.53 ± 3.78 IU/mL activity of CMCase and xylanase, respectively with more than 85 % residual activity at 60 °C and pH 6.0. Interestingly, metal ions viz. K+ and Ca2+ stimulated the enzyme activity, whereas Fe2+ and Cu2+ reduced the activity. Significant amounts of hydrophobic compounds, chromophores, and phenolics were released after wastepapers deinking. The deinking efficiency of 73.60 ± 2.45 % and 38.60 ± 1.34 % was obtained for photocopier paper and newspaper, respectively, whereas brightness of 89.90 ± 2.10 % ISO and 44.90 ± 1.63 % ISO was reported for both types of waste papers. The physical strength of deinked photocopier paper and newspapers, i.e., tensile index (3.10 and 0.50 %), tearing index (7.10 and 4.83 %), and burst factor (8.61) were enhanced whereas double fold property was decreased proving wastepaper reusability. This consortium showed effective and significant enzymatic deinking efficiency for recycled wastepapers.
Collapse
Affiliation(s)
- Guddu Kumar Gupta
- Enzyme and Fermentation Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Rajeev Kumar Kapoor
- Enzyme and Fermentation Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Deepak Chhabra
- Department of Mechanical Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Nishi Kant Bhardwaj
- Avantha Centre for Industrial Research and Development, Paper Mill Campus, Yamuna Nagar-135001, Haryana, India; Department of Paper Technology, Indian Institute of Technology Roorkee, Saharanpur Campus, Paper Mill Road, Saharanpur-247001, Uttar Pradesh, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Tanveer A, Gupta S, Dwivedi S, Yadav S, Yadav D. Recycling of printed Xerographic paper using Aspergillus assiutensis enzyme cocktail: an integrated approach to sustainable development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39217-39231. [PMID: 38814560 DOI: 10.1007/s11356-024-33780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
To overcome the human and animal survivability risk, sustainable development is the only option on earth that can be achieved through the maximum use of renewable environmental resources. Recycling of waste paper is an emerging waste management approach to conserve natural resources. Herein, we studied enzyme-mediated process to recycle the xerographic paper by using the crude fungal extract from indigenously isolated fungi identified as Aspergillus assiutensis. The fungal enzyme cocktail has been characterized for the production of multiple enzymes namely cellulase, amylase, xylanase, pectinase, and protease. All these enzymes have pH optima in the acidic range and except cellulase and all the enzymes are stable from 10 to 80 C. In the zymogram analysis, pectinase, xylanase, amylase, and cellulase were detected at 68 kDa, ~ 54 kDa, 38 kDa, and 30 kDa, respectively. Also, the presence of protease was confirmed by the clear zone at 68, 31, and 16 kDa. A 26% decrease in the kappa number and reduction in Hex A of the pulp was observed on the treatment of the pulp with enzyme as compared to the control pulp without any treatment. The physical and chemical properties of the pulp were also improved by enzyme-mediated pulping as compared to the control The physiochemical parameter of the effluent like TDS was reduced (397 ppm) significantly in comparison to chemical deinking process and it was within the permissible limit. BOD and alkalinity were reduced when the enzymes and chemical dosage were used in combination. These results indicate that chemi-enzymatic deinking is most promising to reduce or remove the pollution parameters including ink and this approach can be used in the paper and pulp industry for sustainable development.
Collapse
Affiliation(s)
- Aiman Tanveer
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| | - Supriya Gupta
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| | - Shruti Dwivedi
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| | - Sangeeta Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India.
| |
Collapse
|
3
|
Elegbede JA, Lateef A, Gueguim-Kana EB, Beukes LS, Matyumza N. Multi-functional xylanase from Aspergillus sydowii: biosynthesis of nanoconjugates, optimization by Taguchi approach and biodeinking potential. Prep Biochem Biotechnol 2024; 54:622-636. [PMID: 37772603 DOI: 10.1080/10826068.2023.2261037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The search for effective production of xylanase which is an important industrial enzyme led to the present study that explored xylanase production by Aspergillus sydowii SF through Taguchi optimization that incorporated nanoconjugates in submerged fermentation. Calcium and zinc oxide nanoconjugates biosynthesized by xylanase were characterized via UV-Vis spectroscopy, Fourier transform infrared spectroscopy, and Transmission electron microscopy (TEM). The xylanase-mediated calcium oxide and zinc oxide nanoconjugates with λmax of 374 and 316 nm, respectively, and were 5.32-17.69 nm in size. Xylanase production was improved by 2.90-10.58 folds (64.24-234.15 U/mL) through Taguchi optimization cum nanoconjugates, and ANOVA showed that nanoconjugates contributed 13.62-65.97% to improved production. The xylanase had up to 88.38% deinking activity, with 49.60-84.64% removal of blue color. The remarkable xylanase production, its use to biosynthesize nanoconjugates and biodeinking potentials contribute to the development of versatile biocatalysts with applications in biotechnology, nanotechnology, and sustainable paper production. To the best of our knowledge, this represents the first report of xylanase for biosynthesis of calcium oxide and zinc oxide nanoparticles, as well as nanosupplementation to induce xylanase production, which can open new vista in bioprocess optimization.
Collapse
Affiliation(s)
- J A Elegbede
- Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - A Lateef
- Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Nanotechnology Research Group (NANO+), Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - E B Gueguim-Kana
- Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Scottsville, PieterMaritzburg, South Africa
| | - L S Beukes
- Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Scottsville, PieterMaritzburg, South Africa
| | - N Matyumza
- Microscopy and Microanalysis Unit, School of Life Sciences, University of KwaZulu-Natal, Scottsville, PieterMaritzburg, South Africa
| |
Collapse
|
4
|
Pandey S, Gupta S. Exploring laccase: a sustainable enzymatic solution for the paper recycling domain. Arch Microbiol 2024; 206:211. [PMID: 38602547 DOI: 10.1007/s00203-024-03927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
The global advocacy of resource conservation and waste management emphasizes the significance of sustainable practices, particularly in sectors such as paper manufacturing and recycling. Currently, conventional chemical methods are predominant for paper production, necessitating the use of substantial amount of toxic chemicals. This chemical-intensive approach compromises the recycled fiber quality, generates hazardous effluent causing serious ecological threats which triggers regulatory complexities for the mills. To address these challenges modern research suggests adopting sustainable eco-friendly practices such as employing enzymes. This review aims to explore the applicability of 'laccase' enzyme for paper recycling, investigating its properties and contribution to improved recycling practices. By delving into the potential application of laccase integration into the papermaking process, this article sheds light on the limitations inherent in traditional methods surmounted within both research and translational landscapes. Culture and process optimization studies, supporting the technological improvements and the future prospects have been documented.
Collapse
Affiliation(s)
- Sheetal Pandey
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India
| | - Sarika Gupta
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India.
| |
Collapse
|
5
|
Pasin TM, Betini JHA, de Lucas RC, Polizeli MDLTDM. Biochemical characterization of an acid-thermostable glucoamylase from Aspergillus japonicus with potential application in the paper bio-deinking. Biotechnol Prog 2024; 40:e3384. [PMID: 37734048 DOI: 10.1002/btpr.3384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 09/23/2023]
Abstract
Aspergillus species have been highlighted in enzyme production looking for industrial applications, notably, amylases are one of the most interesting enzymes. They are capable of hydrolyzing α-glycosidic linkages of starch and widely used in industrial processes to produce ethanol, glucose, and fructose syrup as well as in the textiles, detergents, and paper industries applications. In this context, this work aimed at the biochemical characterization of the glucoamylase from Aspergillus japonicus and its application in the bio-bleaching process of recycled paper. The optimum temperature and pH for the glucoamylase assay were standardized as 50°C and 5.5. After 1 h of incubation, glucoamylase retained 90% of its activity at 30-50°C. It also kept 70% of its activity in the pH range of 4.0-6.5 after an hour of incubation. The enzyme led to an increase of 30% in the relative whiteness of 10 dry grams of sulfite paper and magazine paper when applied along with commercial cellulase and 10 mM MnCl2 . In addition, after the treatments, the glucoamylase recovered activity was 30%-32%, which indicates a prolonged availability of the enzyme and can considerably curtail the redundant downstream process of the recycled paper bio-bleaching. Thus, the glucoamylase from A. japonicus has a significant role in bio-bleaching recycled paper, reducing the necessity of hard chemicals, and improving the industrial process in an interesting economic and ecological mode.
Collapse
Affiliation(s)
- Thiago Machado Pasin
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Jorge Henrique Almeida Betini
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rosymar Coutinho de Lucas
- Institute of Biomedical Sciences, Department of Biochemistry, Federal University of Alfenas, Alfenas, Brazil
| | | |
Collapse
|
6
|
Fernández-López MG, Batista-García RA, Aréchiga-Carvajal ET. Alkaliphilic/Alkali-Tolerant Fungi: Molecular, Biochemical, and Biotechnological Aspects. J Fungi (Basel) 2023; 9:652. [PMID: 37367588 DOI: 10.3390/jof9060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Biotechnologist interest in extremophile microorganisms has increased in recent years. Alkaliphilic and alkali-tolerant fungi that resist alkaline pH are among these. Alkaline environments, both terrestrial and aquatic, can be created by nature or by human activities. Aspergillus nidulans and Saccharomyces cerevisiae are the two eukaryotic organisms whose pH-dependent gene regulation has received the most study. In both biological models, the PacC transcription factor activates the Pal/Rim pathway through two successive proteolytic mechanisms. PacC is a repressor of acid-expressed genes and an activator of alkaline-expressed genes when it is in an active state. It appears, however, that these are not the only mechanisms associated with pH adaptations in alkali-tolerant fungi. These fungi produce enzymes that are resistant to harsh conditions, i.e., alkaline pH, and can be used in technological processes, such as in the textile, paper, detergent, food, pharmaceutical, and leather tanning industries, as well as in bioremediation of pollutants. Consequently, it is essential to understand how these fungi maintain intracellular homeostasis and the signaling pathways that activate the physiological mechanisms of alkali resistance in fungi.
Collapse
Affiliation(s)
- Maikel Gilberto Fernández-López
- Unidad de Manipulación Genética, Laboratorio de Micología y Fitopatología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Mexico
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Elva Teresa Aréchiga-Carvajal
- Unidad de Manipulación Genética, Laboratorio de Micología y Fitopatología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Mexico
| |
Collapse
|
7
|
Chemical and Enzymatic Fiber Modification to Enhance the Mechanical Properties of CMC Composite Films. Polymers (Basel) 2022; 14:polym14194127. [PMID: 36236075 PMCID: PMC9573683 DOI: 10.3390/polym14194127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Carboxymethyl cellulose (CMC) is a cellulose derivative that can be obtained from wood, bamboo, rattan, straw, and other cellulosic materials. CMC can be used to produce biofilms for many purposes, but the properties of these resulting films make them unsuitable for some applications. The effects of three kinds of plant fiber addition on CMC film properties was investigated using CMC derived from eucalyptus bark cellulose. Tensile strength (TS) and elongation at break (EB) of CMC/sodium alginate/glycerol composite films were 26.2 MPa and 7.35%, respectively. Tensile strength of CMC composite films substantially increased, reaching an optimum at 0.50 g of fiber. The enhancement due to industrial hemp hurd fiber on CMC composite films was more obvious. Pretreatment with hydrogen peroxide (H2O2) and glacial acetic acid (CH3COOH) produced films with a TS of 35.9 MPa and an EB of 1.61%. TS values with pectinase pretreated fiber films was 41.3 MPa and EB was 1.76%. TS of films pretreated with pectinase and hemicellulase was 45.2 MPa and EB was 4.18%. Chemical and enzymatic treatment both improved fiber crystallinity, but film tensile strength was improved to a greater extent by enzymatic treatment. Surface roughness and pyrolysis residue of the film increased after fiber addition, but Fourier transform infrared spectroscopy (FTIR), opacity, and water vapor transmission coefficients were largely unchanged. Adding fiber improved tensile strength of CMC/sodium alginate/glycerol composite films and broadened the application range of CMC composite films without adversely affecting film performance.
Collapse
|
8
|
Three-Step Purification and Characterization of Organic Solvent-Tolerant and Alkali-Thermo-Tolerant Xylanase from Bacillus paramycoides T4 [MN370035]. Catalysts 2022. [DOI: 10.3390/catal12070749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In the present study, an extracellular alkali-thermo-tolerant xylanase from Bacillus paramycoides was produced in the presence of an organic solvent. The enzyme was purified by ammonium sulphate precipitation, gel filtration, and ion exchange chromatography, with an overall recovery of 25.9%. The purified enzyme hada 70 kDa molecular weight (MW) confirmed by SDS-PAGE gel analysis. The maximum enzyme activity was reported at 55 °C and pH 7.0. Xylanase activity and stability were improved in the presence of 30% (v/v) n-dodecane, iso-octane, n-decane, and cyclohexane (7 days). The enzyme activity was improved by Co2+, EDTA, and Triton-X-100 while vigorously repressed by Hg2+ and Cu2+. The purified enzyme showed 1.473 mg/mL Km and 654.017 µg/mL/min Vmax values. The distinctive assets of the isolate verified the potential application in the field of biomass conversion into fuel and other industrial processes. Organic solvent-tolerant xylanases can be used for concurrent saccharification and bioethanol production, the amplification of intoxicating beverages, and the fermenting industry.
Collapse
|
9
|
Kurniati A, Puspaningsih NNT, Putri KDA, Damayanti M, Purwani NN, Rahmah SA, Purkan, Fujiyama K, Sakka M, Sakka K, Kimura T, Rohman A, Baktir A, Sanjaya RE. Heterologous fusion gene expression and characterization of a novel carbohydrate binding module (Cbm36) to laccase (Lcc2). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Indumathi T, Jayaraj R, Kumar PS, Sonali J MI, Krishnaswamy VG, Ghfar AA, Govindaraju S. Biological approach in deinking of waste paper using bacterial cellulase as an effective enzyme catalyst. CHEMOSPHERE 2022; 287:132088. [PMID: 34509023 DOI: 10.1016/j.chemosphere.2021.132088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Paper has become the basic elixir in everyone's activities and usage of paper has increased day by day, the waste generated by paper is also enormous. The primary source of paper is wood (tree) yet, waste paper is environmentally good and biodegradable; however, it is the primary source of deforestation. Current research aims to find an alternate way to recycle paper in the biological approach. Hence in our work, twelve cellulose-producing bacteria were isolated, out of which one bacterial strain proved to be the best. Cellulase enzyme was extracted and purified, and used for enzymatic de-inking of photocopy papers. The optimal conditions for cellulase synthesis were at 60 °C, glucose as the only carbon source, and potassium nitrate as the nitrogen source. The enzyme demonstrated excellent de-inking at a lower pulp consistency of 3% with a 20% enzyme dose. The cellulose and hemicellulose levels decreased, which can be attributed to fiber breaking. Further, the changes in the functional groups identified by Fourier-transform infrared spectroscopy analysis and the changes in the surface morphology of the pulp fibers were obtained using scanning electron microscope analysis.
Collapse
Affiliation(s)
- T Indumathi
- Department of Zoology, Stella Maris College, Chennai, 600 086, Tamil Nadu, India
| | - Rita Jayaraj
- Department of Zoology, Stella Maris College, Chennai, 600 086, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India.
| | | | | | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
11
|
Sango C, Pathak P, Bhardwaj NK, Dalal S, Sharma J. Partial purification of bacterial cellulo-xylanolytic enzymes and their application in deinking of photocopier waste paper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61317-61328. [PMID: 34173149 DOI: 10.1007/s11356-021-14709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
The potential of alkaline cellulo-xylanolytic enzymes from non-pathogenic Bacillus subtilis strain was tested for deinking of photocopier waste paper. Cellulase and xylanase play a crucial role in deinking of different types of waste paper. Partial purification of cellulo-xylanolytic enzymes was carried out using ultrafiltration followed by ammonium sulfate precipitation. The ultrafiltered enzyme was used for deinking the photocopier waste paper along with chemical deinking. An enzyme dose of 0.6 IU/g and reaction time of 60 min for ultrafiltered cellulo-xylanolytic enzyme significantly increased deinking efficiency, tear index (9.52%) and folding endurance (5±2%) as compared to chemical deinking. There was improvement in strength properties such as tear index and double-fold along with freeness of pulp (18%). There was slight decrease in tensile index (0.6%) and burst index (16%) while ISO brightness remained unaffected. Enzymatic deinking (74.3%) by ultrafiltered cellulo-xylanolytic from Bacillus subtilis was found significant over conventional chemical deinking.
Collapse
Affiliation(s)
- Chakarvati Sango
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, -136 119, India
| | - Puneet Pathak
- Avantha Centre for Industrial Research & Development, Paper Mill Campus, Yamuna Nagar, Haryana, -135 001, India
| | - Nishi K Bhardwaj
- Avantha Centre for Industrial Research & Development, Paper Mill Campus, Yamuna Nagar, Haryana, -135 001, India
| | - Sunita Dalal
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, -136 119, India
| | - Jitender Sharma
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, -136 119, India.
| |
Collapse
|
12
|
Méndez-Líter JA, de Eugenio LI, Nieto-Domínguez M, Prieto A, Martínez MJ. Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: A review. BIORESOURCE TECHNOLOGY 2021; 324:124623. [PMID: 33434871 DOI: 10.1016/j.biortech.2020.124623] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 05/26/2023]
Abstract
The term hemicellulose groups different polysaccharides with heterogeneous structures, mannans, xyloglucans, mixed-linkage β-glucans and xylans, which differ in their backbone and branches, and in the type and distribution of glycosidic linkages. The enzymatic degradation of these complex polymers requires the concerted action of multiple hemicellulases and auxiliary enzymes. Most commercial enzymes are produced by Trichoderma and Aspergillus species, but recent studies have disclosed Penicillium and Talaromyces as promising sources of hemicellulases. In this review, we summarize the current knowledge on the hemicellulolytic system of these genera, and the role of hemicellulases in the disruption and synthesis of glycosidic bonds. In both cases, the enzymes from Penicillium and Talaromyces represent an interesting alternative for valorization of lignocellulosic biomass in the current framework of circular economy.
Collapse
Affiliation(s)
- Juan A Méndez-Líter
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Laura I de Eugenio
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Manuel Nieto-Domínguez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Alicia Prieto
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Jesús Martínez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
13
|
Singh A, Varghese LM, Yadav RD, Mahajan R. A pollution reducing enzymatic deinking approach for recycling of mixed office waste paper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45814-45823. [PMID: 32803575 DOI: 10.1007/s11356-020-10440-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The efficiency of xylano-pectinolytic enzymes, co-produced by a single microbial strain Bacillus pumilus, was analysed for the recycling of mixed office waste paper through deinking and compared with the alkaline chemical deinking method. Enzymes showed maximum deinking at pH 8.5, pulp consistency of 10%, xylanase-pectinase dose of 12 and 4 IU per gram pulp, respectively, after 120 min of deinking period, and temperature at 50 °C. A chemi-enzymatic approach was employed with xylano-pectinolytic enzymes and various concentrations of deinking chemicals, which showed that enzyme-treated mixed office waste pulp requires only 40% chemicals for deinking, in order to get the almost same level of various handsheets properties, as obtained by the chemical method with 100% chemicals. Similarly, the effluent load of BOD and COD contents was also decreased by 17.90 and 19.75%. This combinational approach of deinking significantly improved the various properties of the handsheets and resulted in gain of 7.5, 9.38, 6.33 and 11.65% in tear factor, burst factor, breaking length and viscosity of the handsheets, while the effective residual ink concentration analysis of deinked handsheets of mixed office waste paper showed deinking efficiency of 22.45%, which revealed the removal of ink particles during enzymatic deinking steps.
Collapse
Affiliation(s)
- Avtar Singh
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, 140306, India
| | - Libin M Varghese
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Ravi Dutt Yadav
- Trident Limited, Mansa Road, Dhaula, Barnala, Punjab, 148105, India
| | - Ritu Mahajan
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
14
|
Comparative Optimization of Cellulase and Laccase Enzymes in Deinking Process of Used Newspapers. JURNAL KIMIA SAINS DAN APLIKASI 2020. [DOI: 10.14710/jksa.23.10.353-359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The use of enzymes in the bio-deinking process of newspaper waste has promising potential. However, investigations on the concentration of enzyme combinations need to be carried out to obtain the optimum ratio of cellulase and laccase enzymes for the bio-deinking process of recycled newspapers. The mixture of the two enzymes at various ratios was used to remove the ink on paper pulp from used newspapers by mechanical disintegration method treatment and followed by the bio-deinking process in an incubator shaker. The characterization of functional groups, structures, and thermal properties of bio-deinked pulp paper was carried out by FTIR, XRD, DTG/TGA, and an analysis of the degree of brightness to the prepared paper. FTIR results confirmed three main components of papers, such as cellulose, hemicellulose, and lignin. The XRD results showed that the equal ratio of cellulase and laccase enzymes had an effect on a higher crystallinity index, which was 78.8% compared to those obtained from the conventional methods with a crystallinity index of 69.7%. Thermal analysis showed that the optimum combination of both enzymes contributed the most at the highest temperature where the rate of degradation decreased. Brightness analysis showed that bio-deinking had met the quality requirements for newsprint paper in SNI 7273:2008. Our findings show that the combination of cellulase and laccase enzymes at the same ratio can produce optimal bio-deinked pulp for paper fabrication with excellent characteristics in brightness, thermal, and physical properties.
Collapse
|
15
|
Cicekler M, Tutus A. Effects of cellulase enzyme in deinking of Solvent-Based inks from mixed office wastes. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1834538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mustafa Cicekler
- Department of Forest Industry Engineering, Faculty of Forestry, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Ahmet Tutus
- Department of Forest Industry Engineering, Faculty of Forestry, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
16
|
Hasanin MS, Hashem AH, Abd El-Sayed ES, El-Saied H. Green ecofriendly bio-deinking of mixed office waste paper using various enzymes from Rhizopus microsporus AH3: efficiency and characteristics. CELLULOSE 2020; 27:4443-4453. [DOI: 10.1007/s10570-020-03071-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/18/2020] [Indexed: 09/02/2023]
|
17
|
Singh G, Arya SK. Utility of laccase in pulp and paper industry: A progressive step towards the green technology. Int J Biol Macromol 2019; 134:1070-1084. [DOI: 10.1016/j.ijbiomac.2019.05.168] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 01/31/2023]
|
18
|
Singh A, Kaur A, Yadav RD, Mahajan R. An efficient eco-friendly approach for recycling of newspaper waste. 3 Biotech 2019; 9:51. [PMID: 30729075 DOI: 10.1007/s13205-019-1590-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/19/2019] [Indexed: 11/28/2022] Open
Abstract
In this study, a chemical reduction strategy was explored for deinking of newspaper waste using xylano-pectinolytic catalysts. A remarkable reduction of 40% in toxic chemicals consumption was obtained by introducing this enzymatic approach of deinking along with improved level of various physical and optical properties. Similarly, a reduction of 18.89% and 17.68% in BOD, COD values of effluent has also been noticed. This combined deinking methodology also resulted in a gain of 5.82% in breaking length, 6.45% in tear factor, 8.57% in burst factor and 9.64% in viscosity, which greatly improved the quality of the handsheets. The study revealed that enzymatic deinking followed by chemical deinking with 40% less chemicals consumption, could be an effective method for reducing the negative impact over the environment caused by 100% deinking chemicals. This is the first report of newspaper waste deinking using xylano-pectinolytic catalysts produced concurrently in the same production media by a bacterial isolate using agricultural wastes as carbon sources.
Collapse
Affiliation(s)
- Avtar Singh
- 1Department of Biotechnology, Kurukshetra University, Kurukshetra, 136119 India
- 3Present Address: Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab 140306 India
| | - Amanjot Kaur
- 1Department of Biotechnology, Kurukshetra University, Kurukshetra, 136119 India
| | - Ravi Dutt Yadav
- Trident Limited, Mansa Road, Dhaula, Barnala, Punjab 148105 India
| | - Ritu Mahajan
- 1Department of Biotechnology, Kurukshetra University, Kurukshetra, 136119 India
| |
Collapse
|
19
|
Shankar S, Shikha, Bhan C, Chandra R, Tyagi S. Laccase based de-inking of mixed office waste and evaluation of its impact on physico-optical properties of recycled fiber. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42398-018-0021-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Production of endoglucanase from Trichoderma reesei RUT C30 and its application in deinking of printed office waste paper. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Abstract
Paper manufacturing industries depend mainly on forests for wood, which is the basic raw material. Forest plays an important role in balancing the ecosystem to protect forest deinking and bleaching (recycling) of waste paper had gained a lot of importance. Conventional chemical deinking processes require large amount of chemicals which are toxic and hazardous to the environment, hence other effective deinking methods are needed. Enzymatic deinking (cellulolytic, hemicellulolytic and ligninolytic) has attracted enormous attention because of high efficacy and minimum environmental impact. For bleaching, enzymatic action (individual as well as in combination), along with physical treatment, makes the pulp more accessible to the chemicals and also to the amount of chemicals required to obtain similar levels of brightness. Strength properties and brightness of the pulp are improved by these treatment methods. With minimum impact on the environment, this review gives comprehensive information about the various methods used for the recycling of waste paper.
Collapse
Affiliation(s)
- Arunika Saxena
- a Department of Chemistry , Samrat Prithviraj Chauhan Government College , Ajmer , India
| | - Prakram Singh Chauhan
- b Faculty of Pharmacy and Pharmaceutical Sciences , Monash University Parkville Campus , Melbourne , Australia
| |
Collapse
|
22
|
Endoglucanase enzymatic modification of kraft pulp during recycling. Biotechnol Lett 2016; 38:1139-45. [DOI: 10.1007/s10529-016-2088-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
|
23
|
Desai DI, Iyer BD. Biodeinking of old newspaper pulp using a cellulase-free xylanase preparation of Aspergillus niger DX-23. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2015.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Giese EC, Gascon J, Anzelmo G, Barbosa AM, da Cunha MAA, Dekker RF. Free-radical scavenging properties and antioxidant activities of botryosphaeran and some other β-D-glucans. Int J Biol Macromol 2015; 72:125-30. [DOI: 10.1016/j.ijbiomac.2014.07.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 01/21/2023]
|
25
|
Kashyap R, Monika, Subudhi E. A novel thermoalkaliphilic xylanase fromGordoniasp. is salt, solvent and surfactant tolerant. J Basic Microbiol 2014; 54:1342-9. [DOI: 10.1002/jobm.201400097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/11/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Radhika Kashyap
- Department of Biotechnology; National Institute of Medical Sciences (NIMS) University; Jaipur India
| | - Monika
- Department of Biotechnology; Mata Gujri College; Fatehgarh Sahib Punjab India
| | - Enketeswara Subudhi
- Center of Biotechnology; Siksha 'O' Anusandhan University; Kalinganagar Ghatikia Bhubaneswar Orissa India
| |
Collapse
|
26
|
Zhang Y, Wang Q, Fan X, Yuan J. Structural changes of lignin in the jute fiber treated by laccase and mediator system. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Hmad IB, Abdeljalil S, Saibi W, Amouri B, Gargouri A. Medium Initial pH and Carbon Source Stimulate Differential Alkaline Cellulase Time Course Production in Stachybotrys microspora. Appl Biochem Biotechnol 2014; 172:2640-9. [DOI: 10.1007/s12010-013-0705-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/25/2013] [Indexed: 01/29/2023]
|
28
|
Li H, Pu Y, Kumar R, Ragauskas AJ, Wyman CE. Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol Bioeng 2013; 111:485-92. [PMID: 24037461 DOI: 10.1002/bit.25108] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/12/2013] [Accepted: 08/26/2013] [Indexed: 11/07/2022]
Abstract
In dilute acid pretreatment of lignocellulosic biomass, lignin has been shown to form droplets that deposit on the cellulose surface and retard enzymatic digestion of cellulose (Donohoe et al., 2008; Selig et al., 2007). However, studies of this nature are limited for hydrothermal pretreatment, with the result that the corresponding mechanisms that inhibit cellulosic enzymes are not well understood. In this study, scanning electron microscope (SEM) and wet chemical analysis of solids formed by hydrothermal pretreatment of a mixture of Avicel cellulose and poplar wood showed that lignin droplets from poplar wood relocated onto the Avicel surface. In addition, nuclear magnetic resonance (NMR) showed higher S/G ratios in deposited lignin than the initial lignin in poplar wood. Furthermore, the lignin droplets deposited on Avicel significantly impeded cellulose hydrolysis. A series of tests confirmed that blockage of the cellulose surface by lignin droplets was the main cause of cellulase inhibition. The results give new insights into the fate of lignin in hydrothermal pretreatment and its effects on enzymatic hydrolysis.
Collapse
Affiliation(s)
- Hongjia Li
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California, 92507; Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, California; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | | | | | | | | |
Collapse
|
29
|
Virk AP, Puri M, Gupta V, Capalash N, Sharma P. Combined enzymatic and physical deinking methodology for efficient eco-friendly recycling of old newsprint. PLoS One 2013; 8:e72346. [PMID: 23977287 PMCID: PMC3744503 DOI: 10.1371/journal.pone.0072346] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The development in the deinking process has made recycled fiber a major part of the raw material for pulp and paper industry. Enzymes have revolutionized the deinking process obtaining brightness levels surpassing conventional deinking processes. This study explores the deinking efficiencies of bacterial alkalophilic laccase (L) and xylanase (X) enzymes along with physical deinking methods of microwaving (MW) and sonication (S) for recycling of old newsprint (ONP). METHODS AND RESULTS The operational parameters viz. enzyme dose, pH and treatment time for X and L deinking were optimized statistically using Response Surface Methodology. Laccase did not require any mediator supplementation for deinking. Deinking of ONP pulp with a combination of xylanase and laccase enzymes was investigated, and fiber surface composition and morphological changes were studied using X-ray diffraction, fourier transform infrared spectroscopy and scanning electron microscopy. Compared to the pulp deinked with xylanase (47.9%) or laccase (62.2%) individually, the percentage reduction of effective residual ink concentration (ERIC) was higher for the combined xylanase/laccase-deinked pulp (65.8%). An increase in brightness (21.6%), breaking length (16.5%), burst factor (4.2%) tear factor (6.9%), viscosity (13%) and cellulose crystallinity (10.3%) along with decrease in kappa number (22%) and chemical consumption (50%) were also observed. Surface appeared more fibrillar along with changes in surface functional groups. A combination of physical and enzymatic processes (S-MW-XL) for deinking further improved brightness (28.8%) and decreased ERIC (73.9%) substantially. CONCLUSION This is the first report on deinking of ONP with laccase without any mediator supplementation. XL pretreatment resulted in marked improvement in paper quality and a new sequence being reported for deinking (S-MW-XL) will contribute further in decreasing chemical consumption and making the process commercially feasible.
Collapse
Affiliation(s)
| | - Minakshi Puri
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Vijaya Gupta
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
- * E-mail:
| |
Collapse
|
30
|
|
31
|
Singh A, Yadav RD, Kaur A, Mahajan R. An ecofriendly cost effective enzymatic methodology for deinking of school waste paper. BIORESOURCE TECHNOLOGY 2012; 120:322-327. [PMID: 22796145 DOI: 10.1016/j.biortech.2012.06.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/05/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
Efficiency of xylano-pectinolytic enzymes in deinking of school waste paper for its reuse has been investigated in the present study. Enzymatic deinked pulp decreased the requirement of chemicals to nearly 50% and gave same optical properties of pulp as obtained by conventional deinking process. This biodeinking plus chemical deinking approach resulted in a decrease of 20.15% and 22.64% in BOD and COD values of effluents and a gain of 10.71% in viscosity, 7.49% in breaking length, 10.52% in burst factor and 6.25% in tear factor as compared to conventional chemical deinking. This is the first report mentioning the use of xylanase and pectinase produced from a cellulase free alkalo-thermotolerant bacterial strain in the same cost effective agricultural residues based production medium for deinking and will help in making the process ecofriendly with 50% reduction in chemicals, commercially viable with better paper quality.
Collapse
Affiliation(s)
- Avtar Singh
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India
| | | | | | | |
Collapse
|