1
|
Sharma G, Singh V, Raheja Y, Chadha BS. Unlocking the potential of feruloyl esterase from Myceliophthora verrucosa: a key player in efficient conversion of biorefinery-relevant pretreated rice straw. 3 Biotech 2024; 14:168. [PMID: 38828098 PMCID: PMC11139844 DOI: 10.1007/s13205-024-04013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The lignocellulolytic accessory enzyme, Feruloyl esterase C (FE_5DR), encoded in the genome of thermotolerant Myceliophthora verrucosa was successfully cloned and heterologously expressed in Pichia pastoris. The expressed FE_5DR was purified using UNOsphere™ Q anion exchange chromatography column, exhibiting a homogeneous band of ~ 39 kDa. Its optimum temperature was determined to be 60 °C, with an optimal pH of 6.0. Additionally, the enzyme activity of FE_5DR was significantly enhanced by preincubation in a buffer containing Mg2+, Cu2+ and Ca2 metal ions. Enzyme kinetic parameters, computed from double reciprocal Lineweaver-Burk plots, yielded observed Vmax and Km values of 0.758 U/mg and 0.439 mM, respectively. Furthermore, the potential of custom-made cocktails comprising FE_5DR and benchmark cellulase derived from the developed mutant strain of Aspergillus allahabadii MAN 40, as well as the biorefinery-relevant lignocellulolytic enzyme Cellic CTec 3, resulted in improved saccharification of unwashed acid pretreated (UWAP) rice straw slurry and mild alkali deacetylated (MAD) rice straw when compared to benchmark MAN 40 and Cellic CTec 3. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04013-7.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Varinder Singh
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | | |
Collapse
|
2
|
Liu X, Jiang Y, Liu H, Yuan H, Huang D, Wang T. Research progress and biotechnological applications of feruloyl esterases. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Xuejun Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| |
Collapse
|
3
|
Fu Z, Zhu Y, Teng C, Fan G, Li X. Biochemical characterization of a novel feruloyl esterase from Burkholderia pyrrocinia B1213 and its application for hydrolyzing wheat bran. 3 Biotech 2022; 12:24. [PMID: 35036272 PMCID: PMC8695398 DOI: 10.1007/s13205-021-03066-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023] Open
Abstract
In this study, a novel feruloyl esterase (BpFae) from Burkholderia pyrrocinia B1213 was purified, biochemically characterized, and applied in releasing ferulic acid from wheat bran. The molecular mass of BpFae was approximately 60 kDa by SDS-PAGE, and the enzyme was a homomultimer in solution. BpFae displayed maximum activity at pH 4.5-5.0 and was stable at pH 3.0-7.0. The optimal temperature for BpFae was 50 °C. BpFae activity was not affected by most metal ions tested and was significantly increased by Tween-20 and Triton-100. Purified BpFae exhibited a preference for methyl ferulate (41.78 U mg-1) over methyl p-coumarate (38.51 U mg-1) and methyl caffeate (35.36 U mg-1) and had the lowest activity on methyl sinapate (1.79 U mg-1). Under the optimum conditions, the K m and V max for methyl ferulate were 0.53 mM and 86.74 U mg-1, respectively. Residues Ser209, His492, and Glu245 in the catalytic pocket of BpFae could form hydrogen bonds with the substrate and were crucial for catalytic activity and substrate specificity. When G11 xylanase XynA and BpFae were used separately for hydrolyzing de-starched wheat bran (DSWB), the ferulic acid released was undetectable and 1.78%, respectively, whereas it was increased to 59.26% using the mixture of the two enzymes. Thus, BpFae is considered an attractive candidate for the production of ferulic acid from agricultural by-products. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03066-2.
Collapse
Affiliation(s)
- Zhilei Fu
- grid.411615.60000 0000 9938 1755Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China ,grid.411615.60000 0000 9938 1755School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Yuting Zhu
- grid.411615.60000 0000 9938 1755Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China ,grid.411615.60000 0000 9938 1755School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Chao Teng
- grid.411615.60000 0000 9938 1755Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China ,grid.411615.60000 0000 9938 1755School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Guangsen Fan
- grid.411615.60000 0000 9938 1755Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China ,grid.411615.60000 0000 9938 1755School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Xiuting Li
- grid.411615.60000 0000 9938 1755Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China ,grid.411615.60000 0000 9938 1755School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China ,grid.411615.60000 0000 9938 1755Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| |
Collapse
|
4
|
Todokoro T, Negoro H, Kotaka A, Hata Y, Ishida H. Aspergillus oryzae FaeA is responsible for the release of ferulic acid, a precursor of off-odor 4-vinylguaiacol in sake brewing. J Biosci Bioeng 2021; 133:140-145. [PMID: 34815172 DOI: 10.1016/j.jbiosc.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Abstract
4-Vinylguaiacol (4-VG) is one of the most common off-flavors found in sake. 4-VG is produced from its precursor, ferulic acid, which is a component of the cell wall of the rice endosperm. The release of ferulic acid in sake brewing is thought to be mediated by feruloyl esterase produced by either Aspergillus oryzae or Saccharomyces cerevisiae. To investigate the effect of FaeA, a feruloyl esterase produced by A. oryzae, its loss-of-function strain was produced by genome co-editing. The feruloyl esterase activity of the faeA-deficient strain was drastically reduced. Sake was fermented using koji with S. cerevisiae strain G046, which can convert ferulic acid to 4-VG. Fermented sake was analyzed by measuring the 4-VG content and sensory evaluation. 4-VG content was reduced to approximately 10% of that of sake fermented with control koji. Sensory evaluation revealed that 4-VG was almost undetectable. Our findings showed that disruption of faeA in A. oryzae is a promising strategy to reduce 4-VG off-flavors in sake.
Collapse
Affiliation(s)
- Takehiko Todokoro
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan.
| | - Hiroaki Negoro
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Atsushi Kotaka
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Yoji Hata
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| |
Collapse
|
5
|
Agrawal D, Tsang A, Chadha BS. Economizing the lignocellulosic hydrolysis process using heterologously expressed auxiliary enzymes feruloyl esterase D (CE1) and β-xylosidase (GH43) derived from thermophilic fungi Scytalidium thermophilum. BIORESOURCE TECHNOLOGY 2021; 339:125603. [PMID: 34293687 DOI: 10.1016/j.biortech.2021.125603] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Two lignocellulolytic accessory enzymes, feruloyl esterase D (FAED_SCYTH) and β-xylosidase (XYL43B_SCYTH) were cloned and produced in the Pichia pastoris X33 as host. The molecular weight of recombinant enzymes FAED_SCYTH and XYL43B_SCYTH were ~ 31 and 40 kDa, respectively. FAED_SCYTH showed optimal activity at pH 6.0, 60 °C; and XYL43B_SCYTH at pH 7.0, 50 °C. FAED_SCYTH and XYL43B_SCYTH exhibited t1/2: 4 and 0.5 h, respectively (50 °C, pH 5.0). The β-xylosidase was bi-functional with pronounced activity against pNP-α-arabinofuranoside besides being highly xylose tolerant (retaining ~ 97% activity in the presence of 700 mM xylose). Cocktails prepared using these enzymes along with AA9 protein (PMO9D_SCYTH) and commercial cellulase CellicCTec2, showed improved hydrolysis of the pre-treated lignocellulosic biomass. Priming of pre-treated lignocellulosic biomass with these accessory enzymes was found to further enhance the hydrolytic potential of CellicCTec2 promising to reduce the enzyme load and cost required for obtaining sugars from biorefinery relevant pre-treated substrates.
Collapse
Affiliation(s)
- Dhruv Agrawal
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | | |
Collapse
|
6
|
Lin S, Agger JW, Wilkens C, Meyer AS. Feruloylated Arabinoxylan and Oligosaccharides: Chemistry, Nutritional Functions, and Options for Enzymatic Modification. Annu Rev Food Sci Technol 2021; 12:331-354. [PMID: 33472016 DOI: 10.1146/annurev-food-032818-121443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cereal brans and grain endosperm cell walls are key dietary sources of different types of arabinoxylan. Arabinoxylan is the main group of hemicellulosic polysaccharides that are present in the cell walls of monocot grass crops and hence in cereal grains. The arabinoxylan polysaccharides consist of a backbone of β-(1→4)-linked xylopyranosyl residues, which carry arabinofuranosyl moieties, hence the term arabinoxylan. Moreover, the xylopyranosyl residues can be acetylated or substituted by 4-O-methyl-d-glucuronic acid. The arabinofuranosyls may be esterified with a feruloyl group. Feruloylated arabinoxylo-oligosaccharides exert beneficial bioactivities via prebiotic, immunomodulatory, and/or antioxidant effects. New knowledge on microbial enzymes that catalyze specific structural modifications of arabinoxylans can help us understand how these complex fibers are converted in the gut and provide a foundation for the production of feruloylated arabinoxylo-oligosaccharides from brans or other cereal grain processing sidestreams as functional food ingredients. There is a gap between the structural knowledge, bioactivity data, and enzymology insight. Our goal with this review is to present an overview of the structures and bioactivities of feruloylated arabinoxylo-oligosaccharides and review the enzyme reactions that catalyze specific changes in differentially substituted arabinoxylans.
Collapse
Affiliation(s)
- Shang Lin
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| | - Jane W Agger
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| | - Casper Wilkens
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
7
|
Valério R, Bernardino ARS, Torres CAV, Brazinha C, Tavares ML, Crespo JG, Reis MAM. Feeding strategies to optimize vanillin production by Amycolatopsis sp. ATCC 39116. Bioprocess Biosyst Eng 2021; 44:737-747. [PMID: 33389106 DOI: 10.1007/s00449-020-02482-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/10/2020] [Indexed: 01/28/2023]
Abstract
The growing consumer demand for natural products led to an increasing interest in vanillin production by biotechnological routes. In this work, the biotechnological vanillin production by Amycolatopsis sp. ATCC 39116 is studied using ferulic acid as precursor, aiming to achieve maximized vanillin productivities. During biotech-vanillin production, the effects of glucose, vanillin and ferulic acid concentrations in the broth proved to be relevant for vanillin productivity. Concerning glucose, its presence in the broth during the production phase avoids vanillin conversion to vanillic acid and, consequently, increases vanillin production. To avoid the accumulation of vanillin up to a toxic concentration level, a multiple-pulse-feeding strategy is implemented, with intercalated vanillin removal from the broth and biomass recovery. This strategy turned out fruitful, leading to 0.46 g L-1 h-1 volumetric productivity of vanillin of and a production yield of 0.69 gvanillin gferulic acid-1, which are among the highest values reported in the literature for non-modified bacteria.
Collapse
Affiliation(s)
- Rita Valério
- UCIBIO-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,LAQV-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Ana R S Bernardino
- UCIBIO-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Cristiana A V Torres
- UCIBIO-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Carla Brazinha
- LAQV-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Maria L Tavares
- Copam-Companhia Portuguesa de Amidos SA, 2695-722, S. João da Talha, Portugal
| | - João G Crespo
- LAQV-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Maria A M Reis
- UCIBIO-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
8
|
Heterologous overexpression of a novel halohydrin dehalogenase from Pseudomonas pohangensis and modification of its enantioselectivity by semi-rational protein engineering. Int J Biol Macromol 2020; 146:80-88. [DOI: 10.1016/j.ijbiomac.2019.12.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/06/2019] [Accepted: 12/22/2019] [Indexed: 02/08/2023]
|
9
|
Highly Efficient Extraction of Ferulic Acid from Cereal Brans by a New Type A Feruloyl Esterase from Eupenicillium parvum in Combination with Dilute Phosphoric Acid Pretreatment. Appl Biochem Biotechnol 2019; 190:1561-1578. [PMID: 31792788 DOI: 10.1007/s12010-019-03189-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
Abstract
Feruloyl esterase (FAE) is a critical enzyme in bio-extraction of ferulic acid (FA) from plant cell wall. A new FAE (EpFAE1) encoding gene was isolated from Eupenicillium parvum and heterologously expressed in Pichia pastoris cells. Based on phylogenetic tree analysis, the protein EpFAE1 belongs to type A of the seventh FAE subfamily. Using methyl ferulate as substrate, the optimum temperature and pH for the catalytic activity of EpFAE1 were 50 °C and 5.5, respectively. The enzyme exhibited high stability at 50 °C, in a wide pH range (3.0-11.0), or in the presence of 2 M of NaCl. Together with the endo-xylanase EpXYN1, EpFAE1 released 72.32% and 4.00% of the alkali-extractable FA from de-starched wheat bran (DSWB) or de-starched corn bran (DSCB), respectively. Meanwhile, the substrates were pretreated with 1.75% (for DSWB) or 1.0% (for DSCB) of phosphoric acid (PA) at 90 °C for 12 h, followed by enzymatic hydrolysis of the soluble and insoluble fractions. The release efficiencies of FA were up to 84.64% for DSWB and 66.73% for DSCB. Combined dilute PA pretreatment with enzymatic hydrolysis is a low-cost and highly efficient method for the extraction of FA from cereal brans.
Collapse
|
10
|
Phuengmaung P, Sunagawa Y, Makino Y, Kusumoto T, Handa S, Sukhumsirichart W, Sakamoto T. Identification and characterization of ferulic acid esterase from Penicillium chrysogenum 31B: de-esterification of ferulic acid decorated with l-arabinofuranoses and d-galactopyranoses in sugar beet pectin. Enzyme Microb Technol 2019; 131:109380. [PMID: 31615673 DOI: 10.1016/j.enzmictec.2019.109380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 01/06/2023]
Abstract
We previously described the fungus Penicillium chrysogenum 31B, which has high performance to produce the ferulic acid esterase (FAE) for de-esterifying ferulic acids (FAs) from sugar beet pulp. However, the characteristics of this fungus have not yet been determined. Therefore, in this study, we evaluated the molecular characteristics and natural substrate specificity of the Pcfae1 gene from Penicillium chrysogenum and examined its synergistic effects on sugar beet pectin. The Pcfae1 gene was cloned and overexpressed in Pichia pastoris KM71H, and the recombinant enzyme, named PcFAE1, was characterized. The 505 amino acids of PcFAE1 possessed a GCSTG motif (Gly164 to Gly168), characteristic of the serine esterase family. By comparing the amino acid sequence of PcFAE1 with that of the FAE (AoFaeB) of Aspergillus oryzae, Ser166, Asp379, and His419 were identified as the catalytic triad. PcFAE1 was purified through two steps using anion-exchange column chromatography. Its molecular mass without the signal peptide was 75 kDa. Maximum PcFAE1 activity was achieved at pH 6.0-7.0 and 50 °C. The enzyme was stable up to 37 °C and at a pH range of 3-8. PcFAE1 activity was only inhibited by Hg2+, and the enzyme had activity toward methyl FA, methyl caffeic acid, and methyl p-coumaric acid, with specific activities of 6.97, 4.65, and 9.32 U/mg, respectively, but not on methyl sinapinic acid. These results indicated that PcFAE1 acted similar to FaeB type according the Crepin classification. PcFAE1 de-esterified O-[6-O-feruloyl-β-d-galactopyranosyl-(1→4)]-d-galactopyranose, O-[2-O-feruloyl-α-l-arabinofuranosyl-(1→5)]-l-arabinofuranose, and O-[5-O-feruloyl-α-l-arabinofuranosyl-(1→3)]-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose, indicating that the enzyme could de-esterify FAs decorated with both β-d-galactopyranosidic and α-l-arabinofuranosidic residues in pectin and xylan. PcFAE1 acted in synergy with endo-α-1,5-arabinanase and α-l-arabinofuranosidase, which releases FA linked to arabinan, to digest the sugar beet pectin. Moreover, when PcFAE1 was allowed to act on sugar beet pectin together with Driselase, approximately 90% of total FA in the substrate was released. Therefore, PcFAE1 may be an interesting candidate for hydrolysis of lignocellulosic materials and could have applications as a tool for production of FA from natural substrates.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand.
| | - Yoichi Sunagawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Yosuke Makino
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Takafumi Kusumoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Satoshi Handa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Wasana Sukhumsirichart
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand.
| | - Tatsuji Sakamoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
11
|
Expression and characterisation of feruloyl esterases from Lactobacillus fermentum JN248 and release of ferulic acid from wheat bran. Int J Biol Macromol 2019; 138:272-277. [DOI: 10.1016/j.ijbiomac.2019.07.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 11/29/2022]
|
12
|
Oliveira DM, Mota TR, Oliva B, Segato F, Marchiosi R, Ferrarese-Filho O, Faulds CB, Dos Santos WD. Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. BIORESOURCE TECHNOLOGY 2019; 278:408-423. [PMID: 30704902 DOI: 10.1016/j.biortech.2019.01.064] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 05/25/2023]
Abstract
Ferulic acid and its hydroxycinnamate derivatives represent one of the most abundant forms of low molecular weight phenolic compounds in plant biomass. Feruloyl esterases are part of a microorganism's plant cell wall-degrading enzymatic arsenal responsible for cleaving insoluble wall-bound hydroxycinnamates and soluble cytosolic conjugates. Stimulated by industrial requirements, accelerating scientific discoveries and knowledge transfer, continuous improvement efforts have been made to identify, create and repurposed biocatalysts dedicated to plant biomass conversion and biosynthesis of high-added value molecules. Here we review the basic knowledge and recent advances in biotechnological characteristics and the gene content encoding for feruloyl esterases. Information about several enzymes is systematically organized according to their function, biochemical properties, substrate specificity, and biotechnological applications. This review contributes to further structural, functional, and biotechnological R&D both for obtaining hydroxycinnamates from agricultural by-products as well as for lignocellulose biomass treatments aiming for production of bioethanol and other derivatives of industrial interest.
Collapse
Affiliation(s)
- Dyoni M Oliveira
- Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil.
| | - Thatiane R Mota
- Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Bianca Oliva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Fernando Segato
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Rogério Marchiosi
- Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Craig B Faulds
- Aix-Marseille Université, INRA UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), 13009 Marseille, France
| | | |
Collapse
|
13
|
Gopalan N, Nampoothiri KM. Biorefining of wheat bran for the purification of ferulic acid. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Heterologous expression of two Aspergillus niger feruloyl esterases in Trichoderma reesei for the production of ferulic acid from wheat bran. Bioprocess Biosyst Eng 2018; 41:593-601. [DOI: 10.1007/s00449-018-1894-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/07/2018] [Indexed: 01/20/2023]
|
15
|
Long L, Ding D, Han Z, Zhao H, Lin Q, Ding S. Thermotolerant hemicellulolytic and cellulolytic enzymes from Eupenicillium parvum 4-14 display high efficiency upon release of ferulic acid from wheat bran. J Appl Microbiol 2017; 121:422-34. [PMID: 27171788 DOI: 10.1111/jam.13177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/13/2016] [Accepted: 05/05/2016] [Indexed: 11/28/2022]
Abstract
AIMS To characterize the hemicellulolytic and cellulolytic enzymes from novel fungi, and evaluate the potential of novel enzyme system in releasing ferulic acid (FA) from biomass resource. METHODS AND RESULTS A hemicellulolytic and cellulolytic enzyme-producing fungus 4-14 was isolated from soil by Congo red staining method, and identified as Eupenicillium parvum based on the morphologic and molecular phylogenetic analysis. The optimum temperature of fungal growth was 37°C. Hemicellulolytic and cellulolytic enzymes were produced by this fungus in solid-state fermentation (SSF), and their maximum activities were 554, 385, 218, 2·62 and 5·25 U g(-1) for CMCase, xylanase, β-glucosidase, FPase and FAE respectively. These enzymes displayed the best catalytic ability at low pH values (pH 4·5-5·0). The optimum temperatures were 70°C, 70°C, 75°C and 55°C for CMCase, β-glucosidase, xylanase and FAE respectively. CMCase, xylanase and FAE were stable at different pHs or high temperature (60°C). Enzymatic hydrolysis experiment indicated that the maximum (76·8 ± 4)% of total alkali-extractable FA was released from de-starched wheat bran by the fungal enzyme system. CONCLUSIONS High activities of thermotolerant CMCase, β-glucosidase, xylanase and FAE were produced by the newly isolated fungus E. parvum 4-14 in SSF. The fungal enzyme system displayed high efficiency at releasing FA from wheat bran. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides a new fungal strain for researches of novel hemicellulolytic and cellulolytic enzymes and will improve the bioconversion and utilization of agricultural by-products.
Collapse
Affiliation(s)
- L Long
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - D Ding
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Z Han
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - H Zhao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Q Lin
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing, China
| | - S Ding
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
16
|
Wu H, Li H, Xue Y, Luo G, Gan L, Liu J, Mao L, Long M. High efficiency co-production of ferulic acid and xylooligosaccharides from wheat bran by recombinant xylanase and feruloyl esterase. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Zwane EN, van Zyl PJ, Duodu KG, Rose SH, Rumbold K, van Zyl WH, Viljoen-Bloom M. Enrichment of maize and triticale bran with recombinant Aspergillus tubingensis ferulic acid esterase. Journal of Food Science and Technology 2017; 54:778-785. [PMID: 28298692 DOI: 10.1007/s13197-017-2521-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 11/26/2022]
Abstract
Ferulic acid is a natural antioxidant found in various plants and serves as a precursor for various fine chemicals, including the flavouring agent vanillin. However, expensive extraction methods have limited the commercial application of ferulic acid, in particular for the enrichment of food substrates. A recombinant Aspergillus tubingensis ferulic acid esterase Type A (FAEA) was expressed in Aspergillus niger D15#26 and purified with anion-exchange chromatography (3487 U/mg, Km = 0.43 mM, Kcat = 0.48/min on methyl ferulate). The 36-kDa AtFAEA protein showed maximum ferulic acid esterase activity at 50 °C and pH 6, suggesting potential application in industrial processes. A crude AtFAEA preparation extracted 26.56 and 8.86 mg/g ferulic acid from maize bran and triticale bran, respectively, and also significantly increased the levels of p-coumaric and caffeic acid from triticale bran. The cost-effective production of AtFAEA could therefore allow for the enrichment of brans generally used as food and fodder, or for the production of fine chemicals (such as ferulic and p-coumaric acid) from plant substrates. The potential for larger-scale production of AtFAEA was demonstrated with the A. niger D15[AtfaeA] strain yielding a higher enzyme activity (185.14 vs. 83.48 U/ml) and volumetric productivity (3.86 vs. 1.74 U/ml/h) in fed-batch than batch fermentation.
Collapse
Affiliation(s)
- Eunice N Zwane
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| | | | - Kwaku G Duodu
- Department of Food Science, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028 South Africa
| | - Shaunita H Rose
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| | - Karl Rumbold
- School of Molecular and Cell Biology, University of the Witwatersrand (WITS), Private Bag X3, Wits, 2050 South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| |
Collapse
|
18
|
Hu Q, Luo Y. Polyphenol-chitosan conjugates: Synthesis, characterization, and applications. Carbohydr Polym 2016; 151:624-639. [DOI: 10.1016/j.carbpol.2016.05.109] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/30/2016] [Accepted: 05/29/2016] [Indexed: 01/09/2023]
|
19
|
Chen X, Zhou M, Huang Z, Jia G, Liu G, Zhao H. Codon optimization of Aspergillus niger feruloyl esterase and its expression in Pichia pastoris. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Dilokpimol A, Mäkelä MR, Aguilar-Pontes MV, Benoit-Gelber I, Hildén KS, de Vries RP. Diversity of fungal feruloyl esterases: updated phylogenetic classification, properties, and industrial applications. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:231. [PMID: 27795736 PMCID: PMC5084320 DOI: 10.1186/s13068-016-0651-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/18/2016] [Indexed: 05/08/2023]
Abstract
Feruloyl esterases (FAEs) represent a diverse group of carboxyl esterases that specifically catalyze the hydrolysis of ester bonds between ferulic (hydroxycinnamic) acid and plant cell wall polysaccharides. Therefore, FAEs act as accessory enzymes to assist xylanolytic and pectinolytic enzymes in gaining access to their site of action during biomass conversion. Their ability to release ferulic acid and other hydroxycinnamic acids from plant biomass makes FAEs potential biocatalysts in a wide variety of applications such as in biofuel, food and feed, pulp and paper, cosmetics, and pharmaceutical industries. This review provides an updated overview of the knowledge on fungal FAEs, in particular describing their role in plant biomass degradation, diversity of their biochemical properties and substrate specificities, their regulation and conditions needed for their induction. Furthermore, the discovery of new FAEs using genome mining and phylogenetic analysis of current publicly accessible fungal genomes will also be presented. This has led to a new subfamily classification of fungal FAEs that takes into account both phylogeny and substrate specificity.
Collapse
Affiliation(s)
- Adiphol Dilokpimol
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Miia R. Mäkelä
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Isabelle Benoit-Gelber
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Kristiina S. Hildén
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Ronald P. de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
21
|
Gopalan N, Rodríguez-Duran LV, Saucedo-Castaneda G, Nampoothiri KM. Review on technological and scientific aspects of feruloyl esterases: A versatile enzyme for biorefining of biomass. BIORESOURCE TECHNOLOGY 2015; 193:534-44. [PMID: 26159377 DOI: 10.1016/j.biortech.2015.06.117] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 05/11/2023]
Abstract
With increasing focus on sustainable energy, bio-refining from lignocellulosic biomass has become a thrust area of research. With most of the works being focused on biofuels, significant efforts are also being directed towards other value added products. Feruloyl esterases (EC. 3.1.1.73) can be used as a tool for bio-refining of lignocellulosic material for the recovery and purification of ferulic acid and related hydroxycinnamic acids ubiquitously found in the plant cell wall. More and more genes coding for feruloyl esterases have been mined out from various sources to allow efficient enzymatic release of ferulic acid and allied hydroxycinnamic acids (HCAs) from plant-based biomass. A sum up on enzymatic extraction of HCAs and its recovery from less explored agro residual by-products is still a missing link and this review brushes up the achieved landmarks so far in this direction and also covers a detailed patent search on this biomass refining enzyme.
Collapse
Affiliation(s)
- Nishant Gopalan
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, India
| | - L V Rodríguez-Duran
- Metropolitan Autonomous University Campus Iztapalapa, Biotechnology Department, Mexico City, Iztapalapa Z.C. 09340, Mexico
| | - G Saucedo-Castaneda
- Metropolitan Autonomous University Campus Iztapalapa, Biotechnology Department, Mexico City, Iztapalapa Z.C. 09340, Mexico
| | - K Madhavan Nampoothiri
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, India.
| |
Collapse
|
22
|
Zhou M, Huang Z, Zhou B, Luo Y, Jia G, Liu G, Zhao H, Chen X. Construction and expression of two-copy engineered yeast of feruloyl esterase. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Improvement in the thermostability of a type A feruloyl esterase, AuFaeA, from Aspergillus usamii by iterative saturation mutagenesis. Appl Microbiol Biotechnol 2015; 99:10047-56. [PMID: 26266754 DOI: 10.1007/s00253-015-6889-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/05/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Feruloyl or ferulic acid esterase (Fae, EC 3.1.1.73) catalyzes the hydrolysis of ester bonds between polysaccharides and phenolic acid compounds in xylan side chain. In this study, the thermostability of a type A feruloyl esterase (AuFaeA) from Aspergillus usamii was increased by iterative saturation mutagenesis (ISM). Two amino acids, Ser33 and Asn92, were selected for saturation mutagenesis according to the B-factors analyzed by B-FITTER software and ΔΔG values predicted by PoPMuSiC algorithm. After screening the saturation mutagenesis libraries constructed in Pichia pastoris, 15 promising variants were obtained. The best variant S33E/N92-4 (S33E/N92R) produced a T m value of 44.5 °C, the half-lives (t1/2) of 35 and 198 min at 55 and 50 °C, respectively, corresponding to a 4.7 °C, 2.33- and 3.96-fold improvement compared to the wild type. Additionally, the best S33 variant S33-6 (S33E) was thermostable at 50 °C with a t1/2 of 82 min, which was 32 min longer than that of the wild type. All the screened S33E/N92 variants were more thermostable than the best S33 variant S33-6 (S33E). This work would contribute to the further studies on higher thermostability modification of type A feruloyl esterases, especially those from fungi. The thermostable feruloyl esterase variants were expected to be potential candidates for industrial application in prompting the enzymic degradation of plant biomass materials at elevated temperatures.
Collapse
|
24
|
Yin X, Hu D, Li JF, He Y, Zhu TD, Wu MC. Contribution of Disulfide Bridges to the Thermostability of a Type A Feruloyl Esterase from Aspergillus usamii. PLoS One 2015; 10:e0126864. [PMID: 25969986 PMCID: PMC4429965 DOI: 10.1371/journal.pone.0126864] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 04/08/2015] [Indexed: 11/18/2022] Open
Abstract
The contribution of disulfide bridges to the thermostability of a type A feruloyl esterase (AuFaeA) from Aspergillus usamii E001 was studied by introducing an extra disulfide bridge or eliminating a native one from the enzyme. MODIP and DbD, two computational tools that can predict the possible disulfide bridges in proteins for thermostability improvement, and molecular dynamics (MD) simulations were used to design the extra disulfide bridge. One residue pair A126-N152 was chosen, and the respective amino acid residues were mutated to cysteine. The wild-type AuFaeA and its variants were expressed in Pichia pastoris GS115. The temperature optimum of the recombinant (re-) AuFaeAA126C-N152C was increased by 6°C compared to that of re-AuFaeA. The thermal inactivation half-lives of re-AuFaeAA126C-N152C at 55 and 60°C were 188 and 40 min, which were 12.5- and 10-folds longer than those of re-AuFaeA. The catalytic efficiency (kcat/Km) of re-AuFaeAA126C-N152C was similar to that of re-AuFaeA. Additionally, after elimination of each native disulfide bridge in AuFaeA, a great decrease in expression level and at least 10°C decrease in thermal stability of recombinant AuEaeA variants were also observed.
Collapse
Affiliation(s)
- Xin Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Die Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian-Fang Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yao He
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Tian-Di Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Min-Chen Wu
- Wuxi Medical School, Jiangnan University, Wuxi, China
| |
Collapse
|
25
|
Zeng Y, Yin X, Wu MC, Yu T, Feng F, Zhu TD, Pang QF. Expression of a novel feruloyl esterase from Aspergillus oryzae in Pichia pastoris with esterification activity. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Molecular modeling and MM-PBSA free energy analysis of endo-1,4-β-xylanase from Ruminococcus albus 8. Int J Mol Sci 2014; 15:17284-303. [PMID: 25264743 PMCID: PMC4227162 DOI: 10.3390/ijms151017284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 11/16/2022] Open
Abstract
Endo-1,4-β-xylanase (EC 3.2.1.8) is the enzyme from Ruminococcus albus 8 (R. albus 8) (Xyn10A), and catalyzes the degradation of arabinoxylan, which is a major cell wall non-starch polysaccharide of cereals. The crystallographic structure of Xyn10A is still unknown. For this reason, we report a computer-assisted homology study conducted to build its three-dimensional structure based on the known sequence of amino acids of this enzyme. In this study, the best similarity was found with the Clostridium thermocellum (C. thermocellum) N-terminal endo-1,4-β-D-xylanase 10 b. Following the 100 ns molecular dynamics (MD) simulation, a reliable model was obtained for further studies. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) methods were used for the substrate xylotetraose having the reactive sugar, which was bound in the -1 subsite of Xyn10A in the 4C1 (chair) and 2SO (skew boat) ground state conformations. According to the simulations and free energy analysis, Xyn10A binds the substrate with the -1 sugar in the 2SO conformation 39.27 kcal·mol(-1) tighter than the substrate with the sugar in the 4C1 conformation. According to the Xyn10A-2SO Xylotetraose (X4(sb) interaction energies, the most important subsite for the substrate binding is subsite -1. The results of this study indicate that the substrate is bound in a skew boat conformation with Xyn10A and the -1 sugar subsite proceeds from the 4C1 conformation through 2SO to the transition state. MM-PBSA free energy analysis indicates that Asn187 and Trp344 in subsite -1 may an important residue for substrate binding. Our findings provide fundamental knowledge that may contribute to further enhancement of enzyme performance through molecular engineering.
Collapse
|