1
|
Enhancing Soluble Expression of Phospholipase B for Efficient Catalytic Synthesis of L-Alpha-Glycerylphosphorylcholine. Catalysts 2022. [DOI: 10.3390/catal12060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phospholipase B (PLB) harbors three distinct activities with broad substrate specificities and application fields. Its hydrolyzing of sn-1 and sn-2 acyl ester bonds enables it to catalyze the production of L-alpha-glycerylphosphorylcholine (L-α-GPC) from phosphatidylcholine (PC) without speed-limiting acyl migration. This work was intended to obtain high-level active PLB and apply it to establish an efficient system for L-α-GPC synthesis. PLB from Pseudomonas fluorescens was co-expressed with five different molecular chaperones, including trigger factor (Tf), GroEL-GroES (GroELS), DnaK-DnaJ-GrpE (DnaKJE), GroELS and DnaKJE, or GroELS and Tf or fused with maltose binding protein (MBP) in Escherichia coli BL21(DE3) to improve PLB expression. PLB with DnaKJE-assisted expression exhibited the highest catalytic activity. Further optimization of the expression conditions identified an optimal induction OD600 of 0.8, IPTG concentration of 0.3 mmol/L, induction time of 9 h, and temperature of 25 °C. The PLB activity reached a maximum of 524.64 ± 3.28 U/mg under optimal conditions. Subsequently, to establish an efficient PLB-catalyzed system for L-α-GPC synthesis, a series of organic-aqueous mixed systems and surfactant-supplemented aqueous systems were designed and constructed. Furthermore, the factors of temperature, reaction pH, metal ions, and substrate concentration were further systematically identified. Finally, a high yield of 90.50 ± 2.21% was obtained in a Span 60-supplemented aqueous system at 40 °C and pH 6.0 with 0.1 mmol/L of Mg2+. The proposed cost-effective PLB production and an environmentally friendly PLB-catalyzed system offer a candidate strategy for the industrial production of L-α-GPC.
Collapse
|
2
|
Zhao Q, Li P, Wang M, Zhang W, Zhao W, Yang R. Fate of phospholipids during aqueous extraction processing of peanut and effect of demulsification treatments on oil-phosphorus-content. Food Chem 2020; 331:127367. [PMID: 32574946 DOI: 10.1016/j.foodchem.2020.127367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 05/30/2020] [Accepted: 06/14/2020] [Indexed: 11/16/2022]
Abstract
PC (phosphatidylcholine), PE (phosphatidylethanolamine), PI (phosphatidylinositol), and PA (phosphatidic acid) in 9 peanut matrices obtained during the AEP (aqueous extraction processing) of peanut were quantified employing HPLC-ELSD analysis in this study. Phosphorus contents of crude oils obtained from different demulsification treatments were also investigated. Decantation had a larger effect than grinding in terms of phospholipids loss due to alkaline-hydrolysis, indicating this processing step was vital for the manipulation of phospholipids levels remained in oil. Over 80% of initial phospholipids were lost during AEP and only 19.8% of initial phospholipids ended up in cream, skim and sediment phase. 52.55% of the remained phospholipids trapped in cream phase. Just 22.16-32.61 mg/kg phosphorus content could be detected in crude oils, which indicated the separation of phospholipids from the cream phase into aqueous medium. Degumming was not essential in AEP of peanut and the waste generated after demulsification could be a source of phospholipids.
Collapse
Affiliation(s)
- Qiyan Zhao
- State Key Laboratory of Food Science & Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Pengfei Li
- State Key Laboratory of Food Science & Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mingming Wang
- State Key Laboratory of Food Science & Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenbin Zhang
- State Key Laboratory of Food Science & Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Zhao
- State Key Laboratory of Food Science & Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Ruijin Yang
- State Key Laboratory of Food Science & Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Yang P, Jiang S, Wu Y, Hou Z, Zheng Z, Cao L, Du M, Jiang S. Recombinant Expression of Serratia marcescens Outer Membrane Phospholipase A (A1) in Pichia pastoris and Immobilization With Graphene Oxide-Based Fe 3O 4 Nanoparticles for Rapeseed Oil Degumming. Front Microbiol 2019; 10:334. [PMID: 30846983 PMCID: PMC6393389 DOI: 10.3389/fmicb.2019.00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
Enzymatic degumming is an effective approach to produce nutritional, safe, and healthy refined oil. However, the high cost and low efficiency of phospholipase limit the application of enzymatic degumming. In this study, an 879 bp outer membrane phospholipase A (A1) (OM-PLA1) gene encoding 292 amino acid residues was isolated from the genome of Serratia marcescens. The recombinant OM-PLA1 profile of appropriately 33 KDa was expressed by the engineered Pichia pastoris GS115. The OM-PLA1 activity was 21.2 U/mL with the induction of 1 mM methanol for 72 h. The expression efficiencies of OM-PLA1 were 0.29 U/mL/h and 1.06 U/mL/OD600. A complex of magnetic graphene oxide (MGO) and OM-PLA1 (MGO-OM-PLA1) was prepared by immobilizing OM-PLA1 with graphene oxide-based Fe3O4 nanoparticles by cross-linking with glutaraldehyde. The content of phosphorus decreased to 5.1 mg/kg rapeseed oil from 55.6 mg/kg rapeseed oil with 0.02% MGO-OM-PLA1 (w/w) at 50°C for 4 h. MGO-OM-PLA1 retained 51.7% of the initial activity after 13 times of continuous recycling for the enzymatic degumming of rapeseed oil. This study provided an effective approach for the enzymatic degumming of crude vegetable oil by developing a novel phospholipase and improving the degumming technology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shaotong Jiang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
4
|
Liu Y, Li M, Huang L, Gui S, Jia L, Zheng D, Fu Y, Zhang Y, Rui J, Lu F. Cloning, expression and characterisation of phospholipase B from Saccharomyces cerevisiae and its application in the synthesis of l-alpha-glycerylphosphorylcholine and peanut oil degumming. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1455536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Mingjie Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Lin Huang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Shuang Gui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Leibo Jia
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Dong Zheng
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Yu Fu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Yutong Zhang
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Jinqiu Rui
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| |
Collapse
|
5
|
Szydłowska-Czerniak A, Łaszewska A. Optimization of a soft degumming process of crude rapeseed oil—Changes in its antioxidant capacity. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Kumar S, Arumugam N, Permaul K, Singh S. Chapter 5 Thermostable Enzymes and Their Industrial Applications. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
7
|
Borrelli GM, Trono D. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications. Int J Mol Sci 2015; 16:20774-840. [PMID: 26340621 PMCID: PMC4613230 DOI: 10.3390/ijms160920774] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/17/2015] [Accepted: 08/11/2015] [Indexed: 11/29/2022] Open
Abstract
Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| |
Collapse
|