1
|
Hou C, Wang C, Zheng L, Peng J, Yuan T, Huang H, Lu X. Interfacial crack self-healing by Sporosarcina pasteurii: From medium optimization to spore encapsulation. Biointerphases 2024; 19:061006. [PMID: 39688355 DOI: 10.1116/6.0004099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Self-healing cement takes advantage of microbial induced carbonate precipitation (MICP), a meritorious biological process, to achieve automatic healing of cement cracks. In this study, two beneficial factors, optimization of the bacteria culture medium and encapsulation of bacterial spores, were used to improve the MICP efficiency of Sporosarcina pasteurii in self-healing cement. On the one hand, in medium optimization, we compared the growth of Sporosarcina pasteurii fed with two generally used nitrogen sources, e.g., urea and ammonium chloride, and found that ammonium chloride can promote biomineralization more efficiently than urea. It was also confirmed that nickel (0.1 mg/l) and manganese ions (10 mg/l) benefit the MICP process through enhancement of urease activity and promotion of spore production. On the other hand, spores encapsulated in sodium alginate-gelatin gel beads prepared by using a flow nozzle device can have excellent swelling performance triggered by water. As an application demonstration, self-healing of cement cracks with consideration of the above beneficial factors was successfully verified without substantial influence on the cement compressive strength.
Collapse
Affiliation(s)
- Chenxi Hou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chu Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ling Zheng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jie Peng
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China
| | - Tao Yuan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China
| | - Hui Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China
| | - Xiaolin Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
2
|
Tyagi G, Lahoti M, Srivastava A, Patil D, Jadhav UU, Purekar AS. Bioconcrete-Enabled Resilient Construction: a Review. Appl Biochem Biotechnol 2024; 196:2901-2927. [PMID: 36976510 DOI: 10.1007/s12010-023-04427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Concrete, the ubiquitous cementitious composite though immensely versatile, is crack-susceptible. Cracks let in deleterious substances causing durability issues. Superseding conventional crack-repair methods, the innovative application of microbially induced calcium carbonate precipitation (MICCP) stands prominent, being based on the natural phenomenon of carbonate precipitation. It is eco-friendly, self-activated, economical, and simplistic. Bacteria inside concrete get activated by contacting the environment upon the crack opening and filling the cracks with calcium carbonate-their metabolic waste. This work systematizes MICCP's intricacies and reviews state-of-the-art literature on practical technicalities in its materialization and testing. Explored are the latest advances in various aspects of MICCP, such as bacteria species, calcium sources, encapsulations, aggregates, and the techniques of bio-calcification and curing. Furthermore, methodologies for crack formation, crack observation, property analysis of healed test subject, and present techno-economic limitations are examined. The work serves as a succinct, implementation-ready, and latest review for MICCP's application, giving tailorable control over the enormous variations in this bio-mimetic technique.
Collapse
Affiliation(s)
- Gaurav Tyagi
- Department of Civil Engineering, Jaypee Institute of Information Technology, Waknaghat, 173234, India
- Department of Civil Engineering, Birla Institute of Technology and Science, Faculty Division 1, BITS, Pilani Campus, Pilani, 333031, India
| | - Mukund Lahoti
- Department of Civil Engineering, Birla Institute of Technology and Science, Faculty Division 1, BITS, Pilani Campus, Pilani, 333031, India.
| | - Anshuman Srivastava
- Department of Civil Engineering, Birla Institute of Technology and Science, Faculty Division 1, BITS, Pilani Campus, Pilani, 333031, India
| | - Deeksha Patil
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, India
| | - Umesh U Jadhav
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, India
| | - Aniruddha S Purekar
- Department of Civil Engineering, Birla Institute of Technology and Science, Faculty Division 1, BITS, Pilani Campus, Pilani, 333031, India
| |
Collapse
|
3
|
Lapierre FM, Huber R. Feeding strategies for Sporosarcina pasteurii cultivation unlock more efficient production of ureolytic biomass for MICP. Biotechnol J 2024; 19:e2300466. [PMID: 38581094 DOI: 10.1002/biot.202300466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 04/08/2024]
Abstract
The bacterium Sporosarcina pasteurii is the most commonly used microorganism for Microbial Induced Calcite Precipitation (MICP) due to its high urease activity. To date, no proper fed-batch cultivation protocol for S. pasteurii has been published, even though this cultivation method has a high potential for reducing costs of producing microbial ureolytic biomass. This study focusses on fed-batch cultivation of S. pasteurii DSM33. The study distinguishes between limited fed-batch cultivation and extended batch cultivation. Simply feeding glucose to a S. pasteurii culture does not seem beneficial. However, it was exploited that S. pasteurii is auxotrophic for two vitamins and amino acids. Limited fed-batch cultivation was accomplished by feeding the necessary vitamins or amino acids to a culture lacking them. Feeding nicotinic acid to a nicotinic acid deprived culture resulted in a 24% increase of the specific urease activity compared to a fed culture without nicotinic acid limitation. Also, extended batch cultivation was explored. Feeding a mixture of glucose and yeast extract results in OD600 of ≈70 at the end of cultivation, which is the highest value published in literature so far. These results have the potential to make MICP applications economically viable.
Collapse
Affiliation(s)
- Frédéric M Lapierre
- Department of Engineering and Management, Munich University of Applied Sciences, Munich, Germany
| | - Robert Huber
- Department of Engineering and Management, Munich University of Applied Sciences, Munich, Germany
| |
Collapse
|
4
|
Carter MS, Tuttle MJ, Mancini JA, Martineau R, Hung CS, Gupta MK. Microbially Induced Calcium Carbonate Precipitation by Sporosarcina pasteurii: a Case Study in Optimizing Biological CaCO 3 Precipitation. Appl Environ Microbiol 2023; 89:e0179422. [PMID: 37439668 PMCID: PMC10467343 DOI: 10.1128/aem.01794-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
Current production of traditional concrete requires enormous energy investment that accounts for approximately 5 to 8% of the world's annual CO2 production. Biocement is a building material that is already in industrial use and has the potential to rival traditional concrete as a more convenient and more environmentally friendly alternative. Biocement relies on biological structures (enzymes, cells, and/or cellular superstructures) to mineralize and bind particles in aggregate materials (e.g., sand and soil particles). Sporosarcina pasteurii is a workhorse organism for biocementation, but most research to date has focused on S. pasteurii as a building material rather than a biological system. In this review, we synthesize available materials science, microbiology, biochemistry, and cell biology evidence regarding biological CaCO3 precipitation and the role of microbes in microbially induced calcium carbonate precipitation (MICP) with a focus on S. pasteurii. Based on the available information, we provide a model that describes the molecular and cellular processes involved in converting feedstock material (urea and Ca2+) into cement. The model provides a foundational framework that we use to highlight particular targets for researchers as they proceed into optimizing the biology of MICP for biocement production.
Collapse
Affiliation(s)
- Michael S. Carter
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Matthew J. Tuttle
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Joshua A. Mancini
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Rhett Martineau
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Maneesh K. Gupta
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| |
Collapse
|
5
|
Rodin S, Champagne P, Mann V. Pilot-scale feasibility study for the stabilization of coal tailings via microbially induced calcite precipitation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8868-8882. [PMID: 36104649 PMCID: PMC9898352 DOI: 10.1007/s11356-022-22316-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Sustainable long-term solutions to managing tailings storage facilities (TSFs) are integral for mines to operate in a safe and environmentally responsible manner. The long-term storage of subaqueous tailings can pose significant safety, environmental, and economic risks; therefore, alternative containment strategies for maintaining geochemical stability of reactive materials must be explored. In this study, the physical and geochemical stabilization of coal tailings using microbially induced calcite precipitation (MICP) was evaluated at a laboratory pilot scale. Three application techniques simulated commonly used agricultural approaches and equipment that could be deployed for field-scale treatment: spraying on treatment solutions with irrigation sprinklers, mixing tailings and treatment solutions with a rototiller, and distributing treatment solutions via shallow trenches using an excavator ripper. Test cells containing 1.0 × 1.0 × 0.5 m of tailings were treated with ureolytic bacteria (Sporosarcina pasteurii) and cementation solutions composed of urea and calcium chloride for 28 days. Penetrometer tests were performed following incubation to evaluate the extent of cementation. The spray-on application method showed the greatest strength improvement, with in an increase in surface strength of more than 50% for the 28-day testing period. The distribution of treatment solution using trenches was found to be less effective and resulted in greater variability in particle size distribution of treated tailings and would not be recommended for use in the field. The use of rototilling equipment provided a homogenous distribution of treatment solution; however, the disruption to the tailings material was less effective for facilitating effective cementation. Bacterial plate counts of soil samples indicated that S. pasteurii cultures remained viable in a tailings environment for 28 days at 18 °C and near-neutral pH. The treatment was also found to stabilize the pH of tailings porewater sampled over the 28-day incubation period, suggesting the potential for the treatment to provide short-term geochemical stability under unsaturated conditions.
Collapse
Affiliation(s)
- Sarah Rodin
- Department of Civil Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Pascale Champagne
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada.
- Centre Eau Terre Et Environnement, Institut de La Recherche Scientifique, Quebec, QC, G1K 9A9, Canada.
| | - Vanessa Mann
- Department of Civil Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
6
|
Importance of Carbon to Nitrogen Ratio in Microbial Cement Production: Insights through Experiments and Genome-Scale Metabolic Modelling. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Biochar-Added Cementitious Materials—A Review on Mechanical, Thermal, and Environmental Properties. SUSTAINABILITY 2021. [DOI: 10.3390/su13169336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The enhanced carbon footprint of the construction sector has created the need for CO2 emission control and mitigation. CO2 emissions in the construction sector are influenced by a variety of factors, including raw material preparation, cement production, and, most notably, the construction process. Thus, using biobased constituents in cement could reduce CO2 emissions. However, biobased constituents can degrade and have a negative impact on cement performance. Recently, carbonised biomass known as biochar has been found to be an effective partial replacement for cement. Various studies have reported improved mechanical strength and thermal properties with the inclusion of biochar in concrete. To comprehend the properties of biochar-added cementitious materials, the properties of biochar and their effect on concrete need to be examined. This review provides a critical examination of the mechanical and thermal properties of biochar and biochar-added cementitious materials. The study also covers biochar’s life cycle assessment and economic benefits. Overall, the purpose of this review article is to provide a means for researchers in the relevant field to gain a deeper understanding of the innate properties of biochar imparted into biochar-added cementitious materials for property enhancement and reduction of CO2 emissions.
Collapse
|
8
|
Crack sealing evaluation of self-healing mortar with Sporosarcina pasteurii: Influence of bacterial concentration and air-entraining agent. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Transcriptome analyses reveal the utilization of nitrogen sources and related metabolic mechanisms of Sporosarcina pasteurii. PLoS One 2021; 16:e0246818. [PMID: 33561150 PMCID: PMC7872227 DOI: 10.1371/journal.pone.0246818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/26/2021] [Indexed: 11/19/2022] Open
Abstract
In recent years, Sporosarcina pasteurii (S. pasteurii) has become one of the most popular bacteria in microbially induced calcium carbonate precipitation (MICP). Various applications have been developed based on the efficient urease that can induce the precipitation of calcium carbonate. However, the metabolic mechanism related to biomineralization of S. pasteurii has not been clearly elucidated. The process of bacterial culture and biomineralization consumes a large amount of urea or ammonium salts, which are usually used as agricultural fertilizers, not to mention probable environmental pollutions caused by the excessive use of these raw materials. Therefore, it is urgent to reveal the mechanism of nitrogen utilization and metabolism of S. pasteurii. In this paper, we compared the growth and gene expression of S. pasteurii under three different culture conditions through transcriptome analyses. GO and KEGG analyses revealed that both ammonium and urea were direct nitrogen sources of S. pasteurii, and the bacteria could not grow normally in the absence of ammonium or urea. To the best of our knowledge, this paper is the first one to reveal the nitrogen utilization mechanism of S. pasteurii through transcriptome methods. Furthermore, the presence of ammonium might promote the synthesis of intracellular ATP and enhance the motility of the bacteria. There should be an ATP synthesis mechanism associated with urea hydrolysis catalyzed by urease in S. pasteurii.
Collapse
|
10
|
Lapierre FM, Schmid J, Ederer B, Ihling N, Büchs J, Huber R. Revealing nutritional requirements of MICP-relevant Sporosarcina pasteurii DSM33 for growth improvement in chemically defined and complex media. Sci Rep 2020; 10:22448. [PMID: 33384450 PMCID: PMC7775470 DOI: 10.1038/s41598-020-79904-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/10/2020] [Indexed: 11/12/2022] Open
Abstract
Microbial induced calcite precipitation (MICP) based on ureolysis has a high potential for many applications, e.g. restoration of construction materials. The gram-positive bacterium Sporosarcina pasteurii is the most commonly used microorganism for MICP due to its high ureolytic activity. However, Sporosarcina pasteurii is so far cultivated almost exclusively in complex media, which only results in moderate biomass concentrations at the best. Cultivation of Sporosarcina pasteurii must be strongly improved in order to make technological application of MICP economically feasible. The growth of Sporosarcina pasteurii DSM 33 was boosted by detecting auxotrophic deficiencies (L-methionine, L-cysteine, thiamine, nicotinic acid), nutritional requirements (phosphate, trace elements) and useful carbon sources (glucose, maltose, lactose, fructose, sucrose, acetate, L-proline, L-alanine). These were determined by microplate cultivations with online monitoring of biomass in a chemically defined medium and systematically omitting or substituting medium components. Persisting growth limitations were also detected, allowing further improvement of the chemically defined medium by the addition of glutamate group amino acids. Common complex media based on peptone and yeast extract were supplemented based on these findings. Optical density at the end of each cultivation of the improved peptone and yeast extract media roughly increased fivefold respectively. A maximum OD600 of 26.6 ± 0.7 (CDW: 17.1 ± 0.5 g/L) was reached with the improved yeast extract medium. Finally, culture performance and media improvement was analysed by measuring the oxygen transfer rate as well as the backscatter during shake flask cultivation.
Collapse
Affiliation(s)
| | - Jakob Schmid
- Munich University of Applied Sciences, 80335, Munich, Germany
| | - Benjamin Ederer
- Munich University of Applied Sciences, 80335, Munich, Germany
| | - Nina Ihling
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Robert Huber
- Munich University of Applied Sciences, 80335, Munich, Germany
| |
Collapse
|
11
|
Ma L, Pang AP, Luo Y, Lu X, Lin F. Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii. Microb Cell Fact 2020; 19:12. [PMID: 31973723 PMCID: PMC6979283 DOI: 10.1186/s12934-020-1281-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/09/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The ureolytic bacterium Sporosarcina pasteurii is well-known for its capability of microbially induced calcite precipitation (MICP), representing a great potential in constructional engineering and material applications. However, the molecular mechanism for its biomineralization remains unresolved, as few studies were carried out. RESULTS The addition of urea into the culture medium provided an alkaline environment that is suitable for S. pasteurii. As compared to S. pasteurii cultivated without urea, S. pasteurii grown with urea showed faster growth and urease production, better shape, more negative surface charge and higher biomineralization ability. To survive the unfavorable growth environment due to the absence of urea, S. pasteurii up-regulated the expression of genes involved in urease production, ATPase synthesis and flagella, possibly occupying resources that can be deployed for MICP. As compared to non-mineralizing bacteria, S. pasteurii exhibited more negative cell surface charge for binding calcium ions and more robust cell structure as nucleation sites. During MICP process, the genes for ATPase synthesis in S. pasteurii was up-regulated while genes for urease production were unchanged. Interestingly, genes involved in flagella were down-regulated during MICP, which might lead to poor mobility of S. pasteurii. Meanwhile, genes in fatty acid degradation pathway were inhibited to maintain the intact cell structure found in calcite precipitation. Both weak mobility and intact cell structure are advantageous for S. pasteurii to serve as nucleation sites during MICP. CONCLUSIONS Four factors are demonstrated to benefit the super performance of S. pasteurii in MICP. First, the good correlation of biomass growth and urease production of S. pasteurii provides sufficient biomass and urease simultaneously for improved biomineralization. Second, the highly negative cell surface charge of S. pasteurii is good for binding calcium ions. Third, the robust cell structure and fourth, the weak mobility, are key for S. pasteurii to be nucleation sites during MICP.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 Jiangsu People’s Republic of China
| | - Ai-Ping Pang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 Jiangsu People’s Republic of China
| | - Yongsheng Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 Jiangsu People’s Republic of China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 Jiangsu People’s Republic of China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 Jiangsu People’s Republic of China
| |
Collapse
|
12
|
Omoregie AI, Ngu LH, Ong DEL, Nissom PM. Low-cost cultivation of Sporosarcina pasteurii strain in food-grade yeast extract medium for microbially induced carbonate precipitation (MICP) application. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Joshi S, Goyal S, Reddy MS. Corn steep liquor as a nutritional source for biocementation and its impact on concrete structural properties. ACTA ACUST UNITED AC 2018; 45:657-667. [DOI: 10.1007/s10295-018-2050-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/21/2018] [Indexed: 10/14/2022]
Abstract
Abstract
Microbial-induced carbonate precipitation (MICP) has a potential to improve the durability properties and remediate cracks in concrete. In the present study, the main emphasis is placed upon replacing the expensive laboratory nutrient broth (NB) with corn steep liquor (CSL), an industrial by-product, as an alternate nutrient medium during biocementation. The influence of organic nutrients (carbon and nitrogen content) of CSL and NB on the chemical and structural properties of concrete structures is studied. It has been observed that cement-setting properties were unaffected by CSL organic content, while NB medium influenced it. Carbon and nitrogen content in concrete structures was significantly lower in CSL-treated specimens than in NB-treated specimens. Decreased permeability and increased compressive strength were reported when NB is replaced with CSL in bacteria-treated specimens. The present study results suggest that CSL can be used as a replacement growth medium for MICP technology at commercial scale.
Collapse
Affiliation(s)
- Sumit Joshi
- 0000 0004 0500 6866 grid.412436.6 Department of Biotechnology Thapar Institute of Engineering & Technology 147004 Patiala Punjab India
| | - Shweta Goyal
- 0000 0004 0500 6866 grid.412436.6 Department of Civil Engineering Thapar Institute of Engineering & Technology 147004 Patiala Punjab India
| | - M Sudhakara Reddy
- 0000 0004 0500 6866 grid.412436.6 Department of Biotechnology Thapar Institute of Engineering & Technology 147004 Patiala Punjab India
| |
Collapse
|
14
|
Microbial healing of cracks in concrete: a review. J Ind Microbiol Biotechnol 2017; 44:1511-1525. [PMID: 28900729 DOI: 10.1007/s10295-017-1978-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Concrete is the most widely used construction material of the world and maintaining concrete structures from premature deterioration is proving to be a great challenge. Early age formation of micro-cracking in concrete structure severely affects the serviceability leading to high cost of maintenance. Apart from conventional methods of repairing cracks with sealants or treating the concrete with adhesive chemicals to prevent the cracks from widening, a microbial crack-healing approach has shown promising results. The unique feature of the microbial system is that it enables self-healing of concrete. The effectiveness of microbially induced calcium carbonate precipitation (MICCP) in improving durability of cementitious building materials, restoration of stone monuments and soil bioclogging is discussed. Main emphasis has been laid on the potential of bacteria-based crack repair in concrete structure and the applications of different bacterial treatments to self-healing cracks. Furthermore, recommendations to employ the MICCP technology at commercial scale and reduction in the cost of application are provided in this review.
Collapse
|