1
|
Meena SN, Wajs-Bonikowska A, Girawale S, Imran M, Poduwal P, Kodam KM. High-Throughput Mining of Novel Compounds from Known Microbes: A Boost to Natural Product Screening. Molecules 2024; 29:3237. [PMID: 38999189 PMCID: PMC11243205 DOI: 10.3390/molecules29133237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Advanced techniques can accelerate the pace of natural product discovery from microbes, which has been lagging behind the drug discovery era. Therefore, the present review article discusses the various interdisciplinary and cutting-edge techniques to present a concrete strategy that enables the high-throughput screening of novel natural compounds (NCs) from known microbes. Recent bioinformatics methods revealed that the microbial genome contains a huge untapped reservoir of silent biosynthetic gene clusters (BGC). This article describes several methods to identify the microbial strains with hidden mines of silent BGCs. Moreover, antiSMASH 5.0 is a free, accurate, and highly reliable bioinformatics tool discussed in detail to identify silent BGCs in the microbial genome. Further, the latest microbial culture technique, HiTES (high-throughput elicitor screening), has been detailed for the expression of silent BGCs using 500-1000 different growth conditions at a time. Following the expression of silent BGCs, the latest mass spectrometry methods are highlighted to identify the NCs. The recently emerged LAESI-IMS (laser ablation electrospray ionization-imaging mass spectrometry) technique, which enables the rapid identification of novel NCs directly from microtiter plates, is presented in detail. Finally, various trending 'dereplication' strategies are emphasized to increase the effectiveness of NC screening.
Collapse
Affiliation(s)
- Surya Nandan Meena
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| | - Anna Wajs-Bonikowska
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Łódz University of Technology, Stefanowskiego Street 2/22, 90-537 Łódz, Poland
| | - Savita Girawale
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| | - Md Imran
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Preethi Poduwal
- Department of Biotechnology, Dhempe College of Arts and Science, Miramar, Goa 403001, India;
| | - Kisan M. Kodam
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| |
Collapse
|
2
|
Ji CH, Je HW, Kim H, Kang HS. Promoter engineering of natural product biosynthetic gene clusters in actinomycetes: concepts and applications. Nat Prod Rep 2024; 41:672-699. [PMID: 38259139 DOI: 10.1039/d3np00049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Covering 2011 to 2022Low titers of natural products in laboratory culture or fermentation conditions have been one of the challenging issues in natural products research. Many natural product biosynthetic gene clusters (BGCs) are also transcriptionally silent in laboratory culture conditions, making it challenging to characterize the structures and activities of their metabolites. Promoter engineering offers a potential solution to this problem by providing tools for transcriptional activation or optimization of biosynthetic genes. In this review, we summarize the 10 years of progress in promoter engineering approaches in natural products research focusing on the most metabolically talented group of bacteria actinomycetes.
Collapse
Affiliation(s)
- Chang-Hun Ji
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hyun-Woo Je
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hiyoung Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
3
|
Darvishi F, Rafatiyan S, Abbaspour Motlagh Moghaddam MH, Atkinson E, Ledesma-Amaro R. Applications of synthetic yeast consortia for the production of native and non-native chemicals. Crit Rev Biotechnol 2024; 44:15-30. [PMID: 36130800 DOI: 10.1080/07388551.2022.2118569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 11/03/2022]
Abstract
The application of microbial consortia is a new approach in synthetic biology. Synthetic yeast consortia, simple or complex synthetic mixed cultures, have been used for the production of various metabolites. Cooperation between the members of a consortium and cross-feeding can be applied to create stable microbial communication. These consortia can: consume a variety of substrates, perform more complex functions, produce metabolites in high titer, rate, and yield (TRY), and show higher stability during industrial fermentations. Due to the new research context of synthetic consortia, few yeasts were used to build these consortia, including Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. Here, application of the yeasts for design of synthetic microbial consortia and their advantages and bottlenecks for effective and robust production of valuable metabolites from bioresource, including: cellulose, xylose, glycerol and so on, have been reviewed. Key trends and challenges are also discussed for the future development of synthetic yeast consortia.
Collapse
Affiliation(s)
- Farshad Darvishi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Research Center for Applied Microbiology and Microbial Biotechnology (CAMB), Alzahra University, Tehran, Iran
| | - Sajad Rafatiyan
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Eliza Atkinson
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| |
Collapse
|
4
|
Sritharan T, Salim AA, Khalil ZG, Capon RJ. Jugiones A-D: Antibacterial Xanthone-Anthraquinone Heterodimers from Australian Soil-Derived Penicillium shearii CMB-STF067. Antibiotics (Basel) 2024; 13:97. [PMID: 38247656 PMCID: PMC10812710 DOI: 10.3390/antibiotics13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024] Open
Abstract
The Australian roadside soil-derived fungus Penicillium shearii CMB-STF067 was prioritized for chemical investigation based on an SDA cultivation extract exhibiting both antibacterial properties and natural products with unprecedented molecular formulae (GNPS). Subsequent miniaturized 24-well plate cultivation profiling (MATRIX) identified red rice as optimal for the production of the target chemistry, with scaled-up cultivation, extraction and fractionation yielding four new xanthone-anthraquinone heterodimers, jugiones A-D (1-4), whose structures were assigned by detailed spectroscopic analysis and biosynthetic considerations. Of note, where 1-2 and 4 were active against the Gram-positive bacteria vancomycin-resistant Enterococcus faecalis (IC50 2.6-3.9 μM) and multiple-drug-resistant clinical isolates of Staphylococcus aureus (IC50 1.8-6.4 μM), and inactive against the Gram-negative bacteria Escherichia coli (IC50 > 30 μM), the closely related analog 3 exhibited no antibacterial properties (IC50 > 30 μM). Furthermore, where 1 was cytotoxic to human carcinoma (IC50 9.0-9.8 μM) and fungal (IC50 4.1 μM) cells, 2 and 4 displayed no such cytotoxicity (IC50 > 30 μM), revealing an informative structure activity relationship (SAR). We also extended the SAR study to other known compounds of this heterodimer class, which showed that the modification of ring G can reduce or eliminate the cytotoxicity while retaining the antibacterial activity.
Collapse
Affiliation(s)
| | | | | | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.S.); (A.A.S.); (Z.G.K.)
| |
Collapse
|
5
|
Meng Z, Tan Y, Duan YL, Li M. Monaspin B, a Novel Cyclohexyl-furan from Cocultivation of Monascus purpureus and Aspergillus oryzae, Exhibits Potent Antileukemic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1114-1123. [PMID: 38166364 DOI: 10.1021/acs.jafc.3c08187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Natural products are a rich resource for the discovery of innovative drugs. Microbial cocultivation enables discovery of novel natural products through tandem enzymatic catalysis between different fungi. In this study, Monascus purpureus, as a food fermentation strain capable of producing abundant natural products, was chosen as an example of a cocultivation pair strain. Cocultivation screening revealed that M. purpureus and Aspergillus oryzae led to the production of two novel cyclohexyl-furans, Monaspins A and B. Optimization of the cocultivation mode and media enhanced the production of Monaspins A and B to 1.2 and 0.8 mg/L, respectively. Monaspins A and B were structurally elucidated by HR-ESI-MS and NMR. Furthermore, Monaspin B displayed potent antiproliferative activity against the leukemic HL-60 cell line by inducing apoptosis, with a half-maximal inhibitory concentration (IC50) of 160 nM. Moreover, in a mouse leukemia model, Monaspin B exhibited a promising in vivo antileukemic effect by reducing white blood cell, lymphocyte, and neutrophil counts. Collectively, these results indicate that Monaspin B is a promising candidate agent for leukemia therapy.
Collapse
Affiliation(s)
- Zitong Meng
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Yingao Tan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Ya-Li Duan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Mu Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
6
|
Karimian S, Farahmandzad N, Mohammadipanah F. Manipulation and epigenetic control of silent biosynthetic pathways in actinobacteria. World J Microbiol Biotechnol 2024; 40:65. [PMID: 38191749 DOI: 10.1007/s11274-023-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Most biosynthetic gene clusters (BGCs) of Actinobacteria are either silent or expressed less than the detectable level. The non-genetic approaches including biological interactions, chemical agents, and physical stresses that can be used to awaken silenced pathways are compared in this paper. These non-genetic induction strategies often need screening approaches, including one strain many compounds (OSMAC), reporter-guided mutant selection, and high throughput elicitor screening (HiTES) have been developed. Different types of genetic manipulations applied in the induction of cryptic BGCs of Actinobacteria can be categorized as genome-wide pleiotropic and targeted approaches like manipulation of global regulatory systems, modulation of regulatory genes, ribosome and engineering of RNA polymerase or phosphopantheteine transferases. Targeted approaches including genome editing by CRISPR, mutation in transcription factors and modification of BGCs promoters, inactivation of the highly expressed biosynthetic pathways, deleting the suppressors or awakening the activators, heterologous expression, or refactoring of gene clusters can be applied for activation of pathways which are predicted to synthesize new bioactive structures in genome mining studies of Acinobacteria. In this review, the challenges and advantages of employing these approaches in induction of Actinobacteria BGCs are discussed. Further, novel natural products needed as drug for pharmaceutical industry or as biofertilizers in agricultural industry can be discovered even from known species of Actinobactera by the innovative approaches of metabolite biosynthesis elicitation.
Collapse
Affiliation(s)
- Sanaz Karimian
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Navid Farahmandzad
- Department of Biosystems Engineering, Auburn university, Auburn, AL 36849, USA
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
7
|
Peng Q, Li Y, Fang J, Yu X. Effects of Epigenetic Modification and High Hydrostatic Pressure on Polyketide Synthase Genes and Secondary Metabolites of Alternaria alternata Derived from the Mariana Trench Sediments. Mar Drugs 2023; 21:585. [PMID: 37999409 PMCID: PMC10672368 DOI: 10.3390/md21110585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
The hadal biosphere is the most mysterious ecosystem on the planet, located in a unique and extreme environment on Earth. To adapt to extreme environmental conditions, hadal microorganisms evolve special strategies and metabolisms to survive and reproduce. However, the secondary metabolites of the hadal microorganisms are poorly understood. In this study, we focused on the isolation and characterization of hadal fungi, screening the potential strains with bioactive natural products. The isolates obtained were detected further for the polyketide synthase (PKS) genes. Two isolates of Alternaria alternata were picked up as the representatives, which had the potential to synthesize active natural products. The epigenetic modifiers were used for the two A. alternata isolates to stimulate functional gene expression in hadal fungi under laboratory conditions. The results showed that the chemical epigenetic modifier, 5-Azacytidine (5-Aza), affected the phenotype, PKS gene expression, production of secondary metabolites, and antimicrobial activity of the hadal fungus A. alternata. The influence of epigenetic modification on natural products was strongest when the concentration of 5-Aza was 50 μM. Furthermore, the modification of epigenetic agents on hadal fungi under high hydrostatic pressure (HHP) of 40 MPa displayed significant effects on PKS gene expression, and also activated the production of new compounds. Our study demonstrates the high biosynthetic potential of cultivable hadal fungi, but also provides evidence for the utility of chemical epigenetic modifiers on active natural products from hadal fungi, providing new ideas for the development and exploitation of microbial resources in extreme environments.
Collapse
Affiliation(s)
| | | | | | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Q.P.)
| |
Collapse
|
8
|
Kempken F. Marine fungi: A treasure trove of novel natural products and for biological discovery. PLoS Pathog 2023; 19:e1011624. [PMID: 37733683 PMCID: PMC10513230 DOI: 10.1371/journal.ppat.1011624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Affiliation(s)
- Frank Kempken
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
9
|
Li X, Xu H, Li Y, Liao S, Liu Y. Exploring Diverse Bioactive Secondary Metabolites from Marine Microorganisms Using Co-Culture Strategy. Molecules 2023; 28:6371. [PMID: 37687200 PMCID: PMC10489945 DOI: 10.3390/molecules28176371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The isolation and identification of an increasing number of secondary metabolites featuring unique skeletons and possessing diverse bioactivities sourced from marine microorganisms have garnered the interest of numerous natural product chemists. There has been a growing emphasis on how to cultivate microorganisms to enhance the chemical diversity of metabolites and avoid the rediscovery of known ones. Given the significance of secondary metabolites as a means of communication among microorganisms, microbial co-culture has been introduced. By mimicking the growth patterns of microbial communities in their natural habitats, the co-culture strategy is anticipated to stimulate biosynthetic gene clusters that remain dormant under traditional laboratory culture conditions, thereby inducing the production of novel secondary metabolites. Different from previous reviews mainly focusing on fermentation conditions or metabolite diversities from marine-derived co-paired strains, this review covers the marine-derived co-culture microorganisms from 2012 to 2022, and turns to a particular discussion highlighting the selection of co-paired strains for marine-derived microorganisms, especially the fermentation methods for their co-cultural apparatus, and the screening approaches for the convenient and rapid detection of novel metabolites, as these are important in the co-culture. Finally, the structural and bioactivity diversities of molecules are also discussed. The challenges and prospects of co-culture are discussed on behave of the views of the authors.
Collapse
Affiliation(s)
- Xiaolin Li
- Research Center for Marine Microbes, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huayan Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuyue Li
- Research Center for Marine Microbes, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengrong Liao
- Research Center for Marine Microbes, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Liu
- Research Center for Marine Microbes, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
10
|
Kim H, Kim JY, Ji CH, Lee D, Shim SH, Joo HS, Kang HS. Acidonemycins A-C, Glycosylated Angucyclines with Antivirulence Activity Produced by the Acidic Culture of Streptomyces indonesiensis. JOURNAL OF NATURAL PRODUCTS 2023; 86:2039-2045. [PMID: 37561973 DOI: 10.1021/acs.jnatprod.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The genome of Streptomyces indonesiensis is highly enriched with cryptic biosynthetic gene clusters (BGCs). The majority of these cryptic BGCs are transcriptionally silent in normal laboratory culture conditions as determined by transcriptome analysis. When cultured in acidic pH (pH 5.4), this strain has been shown to produce a set of new metabolites that were not observed in cultures of neutral pH (pH 7.4). The organic extract of the acidic culture displayed an antivirulence activity against methicillin-resistant Staphylococcus aureus (MRSA). Here, we report the structures of new glycosylated aromatic polyketides, named acidonemycins A-C (1-3), belonging to the family of angucyclines. Type II polyketide synthase BGC responsible for the production of 1-3 was identified by a transcriptome comparison between acidic (pH 5.4) and neutral (pH 7.4) cultures and further confirmed by heterologous expression in Streptomyces albus J1074. Of the three new compounds, acidonemycins A and B (1 and 2) displayed antivirulence activity against MRSA. The simultaneous identification of both antivirulent compounds and their BGC provides a starting point for the future effort of combinatorial biosynthesis.
Collapse
Affiliation(s)
- Hiyoung Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Jun-Yong Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Chang-Hun Ji
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hwang-Soo Joo
- College of Science and Technology, Duksung Women's University, Seoul 01369, Korea
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
11
|
MacNair CR, Tsai CN, Rutherford ST, Tan MW. Returning to Nature for the Next Generation of Antimicrobial Therapeutics. Antibiotics (Basel) 2023; 12:1267. [PMID: 37627687 PMCID: PMC10451936 DOI: 10.3390/antibiotics12081267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotics found in and inspired by nature are life-saving cures for bacterial infections and have enabled modern medicine. However, the rise in resistance necessitates the discovery and development of novel antibiotics and alternative treatment strategies to prevent the return to a pre-antibiotic era. Once again, nature can serve as a source for new therapies in the form of natural product antibiotics and microbiota-based therapies. Screening of soil bacteria, particularly actinomycetes, identified most of the antibiotics used in the clinic today, but the rediscovery of existing molecules prompted a shift away from natural product discovery. Next-generation sequencing technologies and bioinformatics advances have revealed the untapped metabolic potential harbored within the genomes of environmental microbes. In this review, we first highlight current strategies for mining this untapped chemical space, including approaches to activate silent biosynthetic gene clusters and in situ culturing methods. Next, we describe how using live microbes in microbiota-based therapies can simultaneously leverage many of the diverse antimicrobial mechanisms found in nature to treat disease and the impressive efficacy of fecal microbiome transplantation and bacterial consortia on infection. Nature-provided antibiotics are some of the most important drugs in human history, and new technologies and approaches show that nature will continue to offer valuable inspiration for the next generation of antibacterial therapeutics.
Collapse
Affiliation(s)
- Craig R. MacNair
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| | - Caressa N. Tsai
- School of Law, University of California, Berkeley, Berkeley, CA 94704, USA;
| | - Steven T. Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| |
Collapse
|
12
|
Buyuklyan JA, Zakalyukina YV, Osterman IA, Biryukov MV. Modern Approaches to the Genome Editing of Antibiotic Biosynthetic Clusters in Actinomycetes. Acta Naturae 2023; 15:4-16. [PMID: 37908767 PMCID: PMC10615194 DOI: 10.32607/actanaturae.23426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/19/2023] [Indexed: 11/02/2023] Open
Abstract
Representatives of the phylum Actinomycetota are one of the main sources of secondary metabolites, including antibiotics of various classes. Modern studies using high-throughput sequencing techniques enable the detection of dozens of potential antibiotic biosynthetic genome clusters in many actinomycetes; however, under laboratory conditions, production of secondary metabolites amounts to less than 5% of the total coding potential of producer strains. However, many of these antibiotics have already been described. There is a continuous "rediscovery" of known antibiotics, and new molecules become almost invisible against the general background. The established approaches aimed at increasing the production of novel antibiotics include: selection of optimal cultivation conditions by modifying the composition of nutrient media; co-cultivation methods; microfluidics, and the use of various transcription factors to activate silent genes. Unfortunately, these tools are non-universal for various actinomycete strains, stochastic in nature, and therefore do not always lead to success. The use of genetic engineering technologies is much more efficient, because they allow for a directed and controlled change in the production of target metabolites. One example of such technologies is mutagenesis-based genome editing of antibiotic biosynthetic clusters. This targeted approach allows one to alter gene expression, suppressing the production of previously characterized molecules, and thereby promoting the synthesis of other unknown antibiotic variants. In addition, mutagenesis techniques can be successfully applied both to new producer strains and to the genes of known isolates to identify new compounds.
Collapse
Affiliation(s)
- J A Buyuklyan
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
| | - Yu V Zakalyukina
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| | - I A Osterman
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143025 Russian Federation
| | - M V Biryukov
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| |
Collapse
|
13
|
Gasparek M, Steel H, Papachristodoulou A. Deciphering mechanisms of production of natural compounds using inducer-producer microbial consortia. Biotechnol Adv 2023; 64:108117. [PMID: 36813010 DOI: 10.1016/j.biotechadv.2023.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023]
Abstract
Living organisms produce a wide range of metabolites. Because of their potential antibacterial, antifungal, antiviral, or cytostatic properties, such natural molecules are of high interest to the pharmaceutical industry. In nature, these metabolites are often synthesized via secondary metabolic biosynthetic gene clusters that are silent under the typical culturing conditions. Among different techniques used to activate these silent gene clusters, co-culturing of "producer" species with specific "inducer" microbes is a particularly appealing approach due to its simplicity. Although several "inducer-producer" microbial consortia have been reported in the literature and hundreds of different secondary metabolites with attractive biopharmaceutical properties have been described as a result of co-cultivating inducer-producer consortia, less attention has been devoted to the understanding of the mechanisms and possible means of induction for production of secondary metabolites in co-cultures. This lack of understanding of fundamental biological functions and inter-species interactions significantly limits the diversity and yield of valuable compounds using biological engineering tools. In this review, we summarize and categorize the known physiological mechanisms of production of secondary metabolites in inducer-producer consortia, and then discuss approaches that could be exploited to optimize the discovery and production of secondary metabolites.
Collapse
Affiliation(s)
- Miroslav Gasparek
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom.
| | - Harrison Steel
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | | |
Collapse
|
14
|
Choi JW, Lee Y, Kim J, Kwon H, Deyrup ST, Lee JW, Lee D, Kang HS, Joo H, Shim SH. Discovery of Bioactive Metabolites by Acidic Stress to a Geldanamycin Producer, Streptomyces samsunensis. JOURNAL OF NATURAL PRODUCTS 2023; 86:947-957. [PMID: 37042709 DOI: 10.1021/acs.jnatprod.2c01151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In an effort to activate silent biosynthetic gene clusters, Streptomyces samsunensis DSM42010, a producer of geldanamycin, was cultured at four different pHs (4.5, 5.4, 6.6, and 7.4). An acidic culture condition (pH 5.4) was selected for a chemical investigation since S. samsunensis showed a different metabolic profile compared to when it was cultured under other conditions. Seven new (1-7) and four known (8-11) compounds were isolated from these cultures. The structures of the isolated compounds were determined by spectroscopic techniques and chemical derivatization. Relative and absolute configurations of the new compounds (1-5) were established using JBCA, PGME method, advanced Marfey's method, modified Mosher's method, and comparison of observed and calculated ECD data. Interestingly, compounds 1-3 were truncated versions of geldanamycin, and compound 4 was also deduced to originate from geldanamycin. Compound 5 was composed of 3-methyltyrosine and 6-hydroxy-2,4-hexadienoic acid connected through an amide bond. Compounds 6 and 7 were dihydrogenated forms of geldanamycin with a hydroxy substitution. It is possible that culturing this strain under acidic conditions interfered to some degree with the geldanamycin polyketide synthase, leading to production of truncated versions as well as analogues of geldanamycin. Compounds 1, 8, and 9 showed significant antivirulence activity, inhibiting production of α-toxin by methicillin-resistant Staphylococcus aureus without growth attenuation and global regulatory inhibition; compounds 1, 8, and 9 may become promising α-toxin-specific antivirulence leads with less risk of resistance development.
Collapse
Affiliation(s)
- Jin Won Choi
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeonhee Lee
- College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Jaekyeong Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Haeun Kwon
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 05029, Republic of Korea
| | - Stephen T Deyrup
- Department of Chemistry and Biochemistry, Siena College, Loudonville, New York 12211, United States
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 05029, Republic of Korea
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hwangsoo Joo
- College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Alanzi A, Elhawary EA, Ashour ML, Moussa AY. Aspergillus co-cultures: A recent insight into their secondary metabolites and microbial interactions. Arch Pharm Res 2023; 46:273-298. [PMID: 37032397 DOI: 10.1007/s12272-023-01442-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023]
Abstract
There is an urgent need for novel antibiotics to combat emerging resistant microbial strains. One of the most pressing resources is Aspergillus microbial cocultures. The genome of Aspergillus species comprises a far larger number of novel gene clusters than previously expected, and novel strategies and approaches are essential to exploit this potential source of new drugs and pharmacological agents. This is the first review consulting recent developments and chemical diversity of Aspergillus cocultures and highlighting its untapped richness. The analyzed data revealed that cocultivation of several Aspergillus species with other microorganisms, including bacteria, plants, and fungi, is a source of novel bioactive natural products. Various vital chemical skeleton leads were newly produced or augmented in Aspergillus cocultures, among which were taxol, cytochalasans, notamides, pentapeptides, silibinin, and allianthrones. The possibility of mycotoxin production or complete elimination in cocultivations was detected, which pave the way for better decontamination strategies. Most cocultures revealed a remarkable improvement in their antimicrobial or cytotoxic behavior due to their produced chemical patterns; for instance, weldone and asperterrin whose antitumor and antibacterial activities, respectively, were superior. Microbial cocultivation elicited the upregulation or production of specific metabolites whose importance and significance are yet to be revealed. With more than 155 compounds isolated from Aspergillus cocultures in the last 10 years, showing overproduction, reduction, or complete suppression under the optimized coculture circumstances, this study filled a gap for medicinal chemists searching for new lead sources or bioactive molecules as anticancer agents or antimicrobials.
Collapse
Affiliation(s)
- Abdullah Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain shams University, Cairo, 11566, Egypt
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain shams University, Cairo, 11566, Egypt
- Pharmacy Program, Department of Pharmaceutical Science, Batterjee Medical College, 21442, Jeddah, Saudi Arabia
| | - Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain shams University, Cairo, 11566, Egypt.
| |
Collapse
|
16
|
The Potential Use of Fungal Co-Culture Strategy for Discovery of New Secondary Metabolites. Microorganisms 2023; 11:microorganisms11020464. [PMID: 36838429 PMCID: PMC9965835 DOI: 10.3390/microorganisms11020464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Fungi are an important and prolific source of secondary metabolites (SMs) with diverse chemical structures and a wide array of biological properties. In the past two decades, however, the number of new fungal SMs by traditional monoculture method had been greatly decreasing. Fortunately, a growing number of studies have shown that co-culture strategy is an effective approach to awakening silent SM biosynthetic gene clusters (BGCs) in fungal strains to produce cryptic SMs. To enrich our knowledge of this approach and better exploit fungal biosynthetic potential for new drug discovery, this review comprehensively summarizes all fungal co-culture methods and their derived new SMs as well as bioactivities on the basis of an extensive literature search and data analysis. Future perspective on fungal co-culture study, as well as its interaction mechanism, is supplied.
Collapse
|
17
|
Tapfuma KI, Nyambo K, Adu-Amankwaah F, Baatjies L, Smith L, Allie N, Keyster M, Loxton AG, Ngxande M, Malgas-Enus R, Mavumengwana V. Antimycobacterial activity and molecular docking of methanolic extracts and compounds of marine fungi from Saldanha and False Bays, South Africa. Heliyon 2022; 8:e12406. [PMID: 36582695 PMCID: PMC9793266 DOI: 10.1016/j.heliyon.2022.e12406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/18/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The number and diversity of drugs in the tuberculosis (TB) drug development process has increased over the years, yet the attrition rate remains very high, signaling the need for continued research in drug discovery. In this study, crude secondary metabolites from marine fungi associated with ascidians collected from Saldanha and False Bays (South Africa) were investigated for antimycobacterial activity. Isolation of fungi was performed by sectioning thin inner-tissues of ascidians and spreading them over potato dextrose agar (PDA). Solid state fermentation of fungal isolates on PDA was then performed for 28 days to allow production of secondary metabolites. Afterwards, PDA cultures were dried and solid-liquid extraction using methanol was performed to extract fungal metabolites. Profiling of metabolites was performed using untargeted liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS/MS). The broth microdilution method was used to determine antimycobacterial activity against Mycobacterium smegmatis mc2155 and Mycobacterium tuberculosis H37Rv, while in silico flexible docking was performed on selected target proteins from M. tuberculosis. A total of 16 ascidians were sampled and 46 fungi were isolated. Only 32 fungal isolates were sequenced, and their sequences submitted to GenBank to obtain accession numbers. Metabolite profiling of 6 selected fungal extracts resulted in the identification of 65 metabolites. The most interesting extract was that of Clonostachys rogersoniana MGK33 which inhibited Mycobacterium smegmatis mc2155 and Mycobacterium tuberculosis H37Rv growth with minimum inhibitory concentrations (MICs) of 0.125 and 0.2 mg/mL, respectively. These results were in accordance with those from in silico molecular docking studies which showed that bionectin F produced by C. rogersoniana MGK33 is a potential inhibitor of M. tuberculosis β-ketoacyl-acyl carrier protein reductase (MabA, PDB ID = 1UZN), with the docking score observed as -11.17 kcal/mol. These findings provided evidence to conclude that metabolites from marine-derived fungi are potential sources of bioactive metabolites with antimycobacterial activity. Even though in silico studies showed that bionectin F is a potent inhibitor of an essential enzyme, MabA, the results should be validated by performing purification of bionectin F from C. rogersoniana MGK33 and in vitro assays against MabA and whole cells (M. tuberculosis).
Collapse
Affiliation(s)
- Kudzanai Ian Tapfuma
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kudakwashe Nyambo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Francis Adu-Amankwaah
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lucinda Baatjies
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Liezel Smith
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nasiema Allie
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory (EBL), Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Andre G. Loxton
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mkhuseli Ngxande
- Computer Science Division, Department of Mathematical Sciences, Faculty of Science University of Stellenbosch, Matieland, South Africa
| | - Rehana Malgas-Enus
- Department of Chemistry and Polymer Science, Faculty of Science, University of Stellenbosch, Matieland, South Africa
| | - Vuyo Mavumengwana
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa,Corresponding author.
| |
Collapse
|
18
|
Ning Y, Xu Y, Jiao B, Lu X. Application of Gene Knockout and Heterologous Expression Strategy in Fungal Secondary Metabolites Biosynthesis. Mar Drugs 2022; 20:705. [PMID: 36355028 PMCID: PMC9699552 DOI: 10.3390/md20110705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
The in-depth study of fungal secondary metabolites (SMs) over the past few years has led to the discovery of a vast number of novel fungal SMs, some of which possess good biological activity. However, because of the limitations of the traditional natural product mining methods, the discovery of new SMs has become increasingly difficult. In recent years, with the rapid development of gene sequencing technology and bioinformatics, new breakthroughs have been made in the study of fungal SMs, and more fungal biosynthetic gene clusters of SMs have been discovered, which shows that the fungi still have a considerable potential to produce SMs. How to study these gene clusters to obtain a large number of unknown SMs has been a research hotspot. With the continuous breakthrough of molecular biology technology, gene manipulation has reached a mature stage. Methods such as gene knockout and heterologous expression techniques have been widely used in the study of fungal SM biosynthesis and have achieved good effects. In this review, the representative studies on the biosynthesis of fungal SMs by gene knockout and heterologous expression under the fungal genome mining in the last three years were summarized. The techniques and methods used in these studies were also briefly discussed. In addition, the prospect of synthetic biology in the future under this research background was proposed.
Collapse
Affiliation(s)
| | | | | | - Xiaoling Lu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
19
|
Kontomina E, Garefalaki V, Fylaktakidou KC, Evmorfidou D, Eleftheraki A, Avramidou M, Udoh K, Panopoulou M, Felföldi T, Márialigeti K, Fakis G, Boukouvala S. A taxonomically representative strain collection to explore xenobiotic and secondary metabolism in bacteria. PLoS One 2022; 17:e0271125. [PMID: 35834592 PMCID: PMC9282458 DOI: 10.1371/journal.pone.0271125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
Bacteria employ secondary metabolism to combat competitors, and xenobiotic metabolism to survive their chemical environment. This project has aimed to introduce a bacterial collection enabling comprehensive comparative investigations of those functions. The collection comprises 120 strains (Proteobacteria, Actinobacteria and Firmicutes), and was compiled on the basis of the broad taxonomic range of isolates and their postulated biosynthetic and/or xenobiotic detoxification capabilities. The utility of the collection was demonstrated in two ways: first, by performing 5144 co-cultures, recording inhibition between isolates and employing bioinformatics to predict biosynthetic gene clusters in sequenced genomes of species; second, by screening for xenobiotic sensitivity of isolates against 2-benzoxazolinone and 2-aminophenol. The co-culture medium of Bacillus siamensis D9 and Lysinibacillus sphaericus DSM 28T was further analysed for possible antimicrobial compounds, using liquid chromatography-mass spectrometry (LC-MS), and guided by computational predictions and the literature. Finally, LC-MS analysis demonstrated N-acetylation of 3,4-dichloroaniline (a toxic pesticide residue of concern) by the actinobacterium Tsukamurella paurometabola DSM 20162T which is highly tolerant of the xenobiotic. Microbial collections enable "pipeline" comparative screening of strains: on the one hand, bacterial co-culture is a promising approach for antibiotic discovery; on the other hand, bioremediation is effective in combating pollution, but requires knowledge of microbial xenobiotic metabolism. The presented outcomes are anticipated to pave the way for studies that may identify bacterial strains and/or metabolites of merit in biotechnological applications.
Collapse
Affiliation(s)
- Evanthia Kontomina
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasiliki Garefalaki
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Dorothea Evmorfidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athina Eleftheraki
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Marina Avramidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Karen Udoh
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Panopoulou
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
| | - Károly Márialigeti
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Giannoulis Fakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- * E-mail:
| |
Collapse
|
20
|
Dong Y, Aharoni A. Image to insight: exploring natural products through mass spectrometry imaging. Nat Prod Rep 2022; 39:1510-1530. [PMID: 35735199 DOI: 10.1039/d2np00011c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2017 to 2022Mass spectrometry imaging (MSI) has become a mature molecular imaging technique that is well-matched for natural product (NP) discovery. Here we present a brief overview of MSI, followed by a thorough discussion of different MSI applications in NP research. This review will mainly focus on the recent progress of MSI in plants and microorganisms as they are the main producers of NPs. Specifically, the opportunity and potential of combining MSI with other imaging modalities and stable isotope labeling are discussed. Throughout, we focus on both the strengths and weaknesses of MSI, with an eye on future improvements that are necessary for the progression of MSI toward routine NP studies. Finally, we discuss new areas of research, future perspectives, and the overall direction that the field may take in the years to come.
Collapse
Affiliation(s)
- Yonghui Dong
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
21
|
Aldholmi M, Ahmad R, Carretero‐Molina D, Pérez‐Victoria I, Martín J, Reyes F, Genilloud O, Gourbeyre L, Gefflaut T, Carlsson H, Maklakov A, O'Neill E, Field RA, Wilkinson B, O'Connell M, Ganesan A. Euglenatides, Potent Antiproliferative Cyclic Peptides Isolated from the Freshwater Photosynthetic Microalga Euglena gracilis. Angew Chem Int Ed Engl 2022; 61:e202203175. [PMID: 35325497 PMCID: PMC9321709 DOI: 10.1002/anie.202203175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 11/27/2022]
Abstract
By limiting the nitrogen source to glutamic acid, we isolated cyclic peptides from Euglena gracilis containing asparagine and non-proteinogenic amino acids. Structure elucidation was accomplished through spectroscopic methods, mass spectrometry and chemical degradation. The euglenatides potently inhibit pathogenic fungi and cancer cell lines e.g., euglenatide B exhibiting IC50 values of 4.3 μM in Aspergillus fumigatus and 0.29 μM in MCF-7 breast cancer cells. In an unprecedented convergence of non-ribosomal peptide synthetase and polyketide synthase assembly-line biosynthesis between unicellular species and the metazoan kingdom, euglenatides bear resemblance to nemamides from Caenorhabditis elegans and inhibited both producing organisms E. gracilis and C. elegans. By molecular network analysis, we detected over forty euglenatide-like metabolites in E. gracilis, E. sanguinea and E. mutabilis, suggesting an important biological role for these natural products.
Collapse
Affiliation(s)
- Mohammed Aldholmi
- Natural Products and Alternative MedicineCollege of Clinical PharmacyImam Abdulrahman Bin Faisal UniversityDammam31441Saudi Arabia
| | - Rizwan Ahmad
- Natural Products and Alternative MedicineCollege of Clinical PharmacyImam Abdulrahman Bin Faisal UniversityDammam31441Saudi Arabia
| | - Daniel Carretero‐Molina
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Ignacio Pérez‐Victoria
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Jesús Martín
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Fernando Reyes
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Olga Genilloud
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Léa Gourbeyre
- Université Clermont AuvergneClermont Auvergne INP, CNRS, Institut Pascal63000Clermont-FerrandFrance
| | - Thierry Gefflaut
- Université Clermont AuvergneClermont Auvergne INP, CNRS, Institut Pascal63000Clermont-FerrandFrance
| | - Hanne Carlsson
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Alexei Maklakov
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Ellis O'Neill
- School of ChemistryUniversity of NottinghamNottinghamNG7 2RDUK
| | - Robert A. Field
- Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| | | | - Maria O'Connell
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - A. Ganesan
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| |
Collapse
|
22
|
Wang Z, Koirala B, Hernandez Y, Zimmerman M, Brady SF. Bioinformatic prospecting and synthesis of a bifunctional lipopeptide antibiotic that evades resistance. Science 2022; 376:991-996. [PMID: 35617397 PMCID: PMC10904332 DOI: 10.1126/science.abn4213] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Emerging resistance to currently used antibiotics is a global public health crisis. Because most of the biosynthetic capacity within the bacterial kingdom has remained silent in previous antibiotic discovery efforts, uncharacterized biosynthetic gene clusters found in bacterial genome-sequencing studies remain an appealing source of antibiotics with distinctive modes of action. Here, we report the discovery of a naturally inspired lipopeptide antibiotic called cilagicin, which we chemically synthesized on the basis of a detailed bioinformatic analysis of the cil biosynthetic gene cluster. Cilagicin's ability to sequester two distinct, indispensable undecaprenyl phosphates used in cell wall biosynthesis, together with the absence of detectable resistance in laboratory tests and among multidrug-resistant clinical isolates, makes it an appealing candidate for combating antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Zongqiang Wang
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| | - Bimal Koirala
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| | - Yozen Hernandez
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
23
|
Cruz KCP, Enekegho LO, Stuart DT. Bioengineered Probiotics: Synthetic Biology Can Provide Live Cell Therapeutics for the Treatment of Foodborne Diseases. Front Bioeng Biotechnol 2022; 10:890479. [PMID: 35656199 PMCID: PMC9152101 DOI: 10.3389/fbioe.2022.890479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/29/2022] [Indexed: 11/15/2022] Open
Abstract
The rising prevalence of antibiotic resistant microbial pathogens presents an ominous health and economic challenge to modern society. The discovery and large-scale development of antibiotic drugs in previous decades was transformational, providing cheap, effective treatment for what would previously have been a lethal infection. As microbial strains resistant to many or even all antibiotic drug treatments have evolved, there is an urgent need for new drugs or antimicrobial treatments to control these pathogens. The ability to sequence and mine the genomes of an increasing number of microbial strains from previously unexplored environments has the potential to identify new natural product antibiotic biosynthesis pathways. This coupled with the power of synthetic biology to generate new production chassis, biosensors and “weaponized” live cell therapeutics may provide new means to combat the rapidly evolving threat of drug resistant microbial pathogens. This review focuses on the application of synthetic biology to construct probiotic strains that have been endowed with functionalities allowing them to identify, compete with and in some cases kill microbial pathogens as well as stimulate host immunity. Weaponized probiotics may have the greatest potential for use against pathogens that infect the gastrointestinal tract: Vibrio cholerae, Staphylococcus aureus, Clostridium perfringens and Clostridioides difficile. The potential benefits of engineered probiotics are highlighted along with the challenges that must still be met before these intriguing and exciting new therapeutic tools can be widely deployed.
Collapse
|
24
|
Aldholmi M, Ahmad R, Carretero‐Molina D, Pérez‐Victoria I, Martín J, Reyes F, Genilloud O, Gourbeyre L, Gefflaut T, Carlsson H, Maklakov A, O'Neill E, Field RA, Wilkinson B, O'Connell M, Ganesan A. Euglenatides, Potent Antiproliferative Cyclic Peptides Isolated from the Freshwater Photosynthetic Microalga
Euglena gracilis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohammed Aldholmi
- Natural Products and Alternative Medicine College of Clinical Pharmacy Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Rizwan Ahmad
- Natural Products and Alternative Medicine College of Clinical Pharmacy Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Daniel Carretero‐Molina
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Ignacio Pérez‐Victoria
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Jesús Martín
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Fernando Reyes
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Olga Genilloud
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Léa Gourbeyre
- Université Clermont Auvergne Clermont Auvergne INP, CNRS, Institut Pascal 63000 Clermont-Ferrand France
| | - Thierry Gefflaut
- Université Clermont Auvergne Clermont Auvergne INP, CNRS, Institut Pascal 63000 Clermont-Ferrand France
| | - Hanne Carlsson
- School of Biological Sciences University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Alexei Maklakov
- School of Biological Sciences University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Ellis O'Neill
- School of Chemistry University of Nottingham Nottingham NG7 2RD UK
| | - Robert A. Field
- Manchester Institute of Biotechnology University of Manchester Manchester M1 7DN UK
| | | | - Maria O'Connell
- School of Pharmacy University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - A. Ganesan
- School of Pharmacy University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
25
|
Domingues Vieira B, Niero H, de Felício R, Giolo Alves LF, Freitas Bazzano C, Sigrist R, Costa Furtado L, Felix Persinoti G, Veras Costa-Lotufo L, Barretto Barbosa Trivella D. Production of Epoxyketone Peptide-Based Proteasome Inhibitors by Streptomyces sp. BRA-346: Regulation and Biosynthesis. Front Microbiol 2022; 13:786008. [PMID: 35401454 PMCID: PMC8988807 DOI: 10.3389/fmicb.2022.786008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Streptomyces sp. BRA-346 is an Actinobacteria isolated from the Brazilian endemic tunicate Euherdmania sp. We have reported that this strain produces epoxyketone peptides, as dihydroeponemycin (DHE) and structurally related analogs. This cocktail of epoxyketone peptides inhibits the proteasome chymotrypsin-like activity and shows high cytotoxicity to glioma cells. However, low yields and poor reproducibility of epoxyketone peptides production by BRA-346 under laboratory cultivation have limited the isolation of epoxyketone peptides for additional studies. Here, we evaluated several cultivation methods using different culture media and chemical elicitors to increase the repertoire of peptide epoxyketone production by this bacterium. Furthermore, BRA-346 genome was sequenced, revealing its broad genetic potential, which is mostly hidden under laboratory conditions. By using specific growth conditions, we were able to evidence different classes of secondary metabolites produced by BRA-346. In addition, by combining genome mining with untargeted metabolomics, we could link the metabolites produced by BRA-346 to its genetic capacity and potential regulators. A single biosynthetic gene cluster (BGC) was related to the production of the target epoxyketone peptides by BRA-346. The candidate BGC displays conserved biosynthetic enzymes with the reported eponemycin (EPN) and TMC-86A (TMC) BGCs. The core of the putative epoxyketone peptide BGC (ORFs A-L), in which ORF A is a LuxR-like transcription factor, was cloned into a heterologous host. The recombinant organism was capable to produce TMC and EPN natural products, along with the biosynthetic intermediates DH-TMC and DHE, and additional congeners. A phylogenetic analysis of the epn/tmc BGC revealed related BGCs in public databases. Most of them carry a proteasome beta-subunit, however, lacking an assigned specialized metabolite. The retrieved BGCs also display a diversity of regulatory genes and TTA codons, indicating tight regulation of this BGC at the transcription and translational levels. These results demonstrate the plasticity of the epn/tmc BGC of BRA-346 in producing epoxyketone peptides and the feasibility of their production in a heterologous host. This work also highlights the capacity of BRA-346 to tightly regulate its secondary metabolism and shed light on how to awake silent gene clusters of Streptomyces sp. BRA-346 to allow the production of pharmacologically important biosynthetic products.
Collapse
Affiliation(s)
- Bruna Domingues Vieira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Faculty of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, Brazil
| | - Henrique Niero
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Faculty of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, Brazil
| | - Rafael de Felício
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Luiz Fernando Giolo Alves
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Cristina Freitas Bazzano
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Institute of Computing (IC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Renata Sigrist
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Luciana Costa Furtado
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Barretto Barbosa Trivella
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- *Correspondence: Daniela Barretto Barbosa Trivella,
| |
Collapse
|
26
|
Pellicciaro M, Padoan E, Lione G, Celi L, Gonthier P. Pyoluteorin Produced by the Biocontrol Agent Pseudomonas protegens Is Involved in the Inhibition of Heterobasidion Species Present in Europe. Pathogens 2022; 11:pathogens11040391. [PMID: 35456066 PMCID: PMC9027871 DOI: 10.3390/pathogens11040391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas protegens (strain DSMZ 13134) is a biocontrol agent with promising antagonistic activity hinging on antibiosis against the fungal forest pathogens Heterobasidion spp. Here, by using High-Performance Liquid Chromatography coupled to Mass Spectrometry (HPLC-MS), we assessed whether monocultures of P. protegens (strain DSMZ 13134) produce the three major determinants of biocontrol activity known for the genus Pseudomonas: 2,4-diacetylphloroglucinol (2,4-DAPG), pyoluteorin (PLT), and pyrrolnitrin (PRN). At the tested culture conditions, we observed the production of PLT at concentrations ranging from 0.01 to 10.21 mg/L and 2,4-DAPG at a concentration not exceeding 0.5 mg/L. Variations of culture conditions involving culture medium, incubation temperature, and incubation period had no consistent influence on PLT production by the bacterium. Assays using culture medium amended with PLT at the same concentration of that present in cell-free filtrate of the bacterium, i.e., 3.77 mg/L, previously documented as effective against Heterobasidion spp., showed a remarkable activity of PLT against genotypes of all the four Heterobasidion species present in Europe, including the non-native invasive H. irregulare. However, such antifungal activity decreased over time, and this may be a constraint for using this molecule as a pesticide against Heterobasidion spp. When the bacterium was co-cultured in liquid medium with genotypes of the different Heterobasidion species, an increased production of PLT was observed at 4 °C, suggesting the bacterium may perform better as a PLT producer in field applications under similar environmental conditions, i.e., at low temperatures. Our results demonstrated the role of PLT in the inhibition of Heterobasidion spp., although all lines of evidence suggest that antibiosis does not rely on a single constitutively produced metabolite, but rather on a plethora of secondary metabolites. Findings presented in this study will help to optimize treatments based on Pseudomonas protegens (strain DSMZ 13134) against Heterobasidion spp.
Collapse
|
27
|
Zhou J, Feng Z, Zhang W, Xu J. Evaluation of the antimicrobial and cytotoxic potential of endophytic fungi extracts from mangrove plants Rhizophora stylosa and R. mucronata. Sci Rep 2022; 12:2733. [PMID: 35177749 PMCID: PMC8854691 DOI: 10.1038/s41598-022-06711-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/03/2022] [Indexed: 12/30/2022] Open
Abstract
Mangrove endophytic fungi are tolerant to numerous stresses and are inevitably capable of exhibiting excellent biological activity by producing impressive numbers of metabolites with special biological functions, based on previous work on the biological potential of mangrove-derived endophytic fungi. To obtain marked antimicrobial and cytotoxic fermentation products of culturable endophytic fungi from mangrove forests, our research evaluated the antimicrobial and cytotoxic activities of crude extracts of endophytic fungi from Rhizophora stylosa and Rhizophora mucronata. Forty-six fungal isolates were cultured on four different media, namely, dextrose agar (PDA), Czapek’s agar (CZA), rice medium (RM) and grain medium (GM) and harvested by ethyl acetate solvent at 40 days. The extracts were tested for antimicrobial activity by the microdilution method against the gram-negative bacteria Pseudomonas adaceae (PA), gram-positive bacteria Enterococcus faecalis (EF), methicillin-resistant Staphylococcus aureus (MRSA) and pathogenic fungus Monilia albicans (MA). The cytotoxic activity of the extracts was evaluated by MTT assay using A549 human lung cancer cells, HeLa human cervical carcinoma cells, and HepG2 human hepatocellular cells. The results showed that rice medium could promote the secretion of antimicrobial and antitumour secondary metabolites of endophytic fungi in comparison with other cultivation media. Seventeen strains (68%) from R. stylosa exhibited inhibitory effects on indicators, especially N. protearum HHL46, which could inhibit the growth of four microbes with MIC values reaching 0.0625 mg/mL. Fifteen strains (71.4%) from R. mucronata displayed activities against human pathogenic microbes; in particular, Pestalotiopsis sp. HQD6 and N. protearum HQD5 could resist the growth of four microbes with MIC values ranging from 0.015 to 1 mg/mL. In the cytotoxicity assay, the extracts of 10 strains (40%), 9 strains (40%) and 13 strains (52%) of R. stylosa and 13 strains (61.9%), 10 strains (47.6%) and 10 strains (47.6%) of R. mucronata displayed cytotoxicity against A549, HeLa and HepG2 cancer cells with cell viability values ≤ 50%. Neopestalotiopsis protearum HHL46, Phomopsis longicolla HHL50, Botryosphaeria fusispora HQD83, Fusarium verticillioides HQD48 and Pestalotiopsis sp. HQD6 displayed significant antitumour activity with IC50 values below 20 μg/mL. These results highlighted the antimicrobial and antitumour potential of endophytic fungi from R. stylosa and R. mucronata and the possibility of exploiting their antimicrobial and cytotoxic agents.
Collapse
Affiliation(s)
- Jing Zhou
- One Health Institute, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China.,Hainan Provincial Fine Chemical Engineering Research Center, School of Life Sciences, Hainan University, Haikou, 570228, People's Republic of China
| | - Zhao Feng
- One Health Institute, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Wenfang Zhang
- One Health Institute, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Jing Xu
- One Health Institute, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China. .,Hainan Provincial Fine Chemical Engineering Research Center, School of Life Sciences, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|
28
|
Deshmukh SK, Dufossé L, Chhipa H, Saxena S, Mahajan GB, Gupta MK. Fungal Endophytes: A Potential Source of Antibacterial Compounds. J Fungi (Basel) 2022; 8:164. [PMID: 35205918 PMCID: PMC8877021 DOI: 10.3390/jof8020164] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Antibiotic resistance is becoming a burning issue due to the frequent use of antibiotics for curing common bacterial infections, indicating that we are running out of effective antibiotics. This has been more obvious during recent corona pandemics. Similarly, enhancement of antimicrobial resistance (AMR) is strengthening the pathogenicity and virulence of infectious microbes. Endophytes have shown expression of various new many bioactive compounds with significant biological activities. Specifically, in endophytic fungi, bioactive metabolites with unique skeletons have been identified which could be helpful in the prevention of increasing antimicrobial resistance. The major classes of metabolites reported include anthraquinone, sesquiterpenoid, chromone, xanthone, phenols, quinones, quinolone, piperazine, coumarins and cyclic peptides. In the present review, we reported 451 bioactive metabolites isolated from various groups of endophytic fungi from January 2015 to April 2021 along with their antibacterial profiling, chemical structures and mode of action. In addition, we also discussed various methods including epigenetic modifications, co-culture, and OSMAC to induce silent gene clusters for the production of noble bioactive compounds in endophytic fungi.
Collapse
Affiliation(s)
- Sunil K. Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, Delhi, India
- Agpharm Bioinnovations LLP, Incubatee: Science and Technology Entrepreneurs Park (STEP), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India;
| | - Laurent Dufossé
- Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO Lab) & ESIROI Agroalimentaire, Université de la Réunion, 15 Avenue René Cassin, 97744 Saint-Denis, France
| | - Hemraj Chhipa
- College of Horticulture and Forestry, Agriculture University Kota, Jhalawar 322360, Rajasthan, India;
| | - Sanjai Saxena
- Agpharm Bioinnovations LLP, Incubatee: Science and Technology Entrepreneurs Park (STEP), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India;
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | | | - Manish Kumar Gupta
- SGT College of Pharmacy, SGT University, Gurugram 122505, Haryana, India;
| |
Collapse
|
29
|
Rinaldi MA, Ferraz CA, Scrutton NS. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Nat Prod Rep 2022; 39:90-118. [PMID: 34231643 PMCID: PMC8791446 DOI: 10.1039/d1np00025j] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are a diverse group of chemicals used in a wide range of industries. Microbial terpenoid production has the potential to displace traditional manufacturing of these compounds with renewable processes, but further titre improvements are needed to reach cost competitiveness. This review discusses strategies to increase terpenoid titres in Escherichia coli with a focus on alternative metabolic pathways. Alternative pathways can lead to improved titres by providing higher orthogonality to native metabolism that redirects carbon flux, by avoiding toxic intermediates, by bypassing highly-regulated or bottleneck steps, or by being shorter and thus more efficient and easier to manipulate. The canonical 2-C-methyl-D-erythritol 4-phosphate (MEP) and mevalonate (MVA) pathways are engineered to increase titres, sometimes using homologs from different species to address bottlenecks. Further, alternative terpenoid pathways, including additional entry points into the MEP and MVA pathways, archaeal MVA pathways, and new artificial pathways provide new tools to increase titres. Prenyl diphosphate synthases elongate terpenoid chains, and alternative homologs create orthogonal pathways and increase product diversity. Alternative sources of terpenoid synthases and modifying enzymes can also be better suited for E. coli expression. Mining the growing number of bacterial genomes for new bacterial terpenoid synthases and modifying enzymes identifies enzymes that outperform eukaryotic ones and expand microbial terpenoid production diversity. Terpenoid removal from cells is also crucial in production, and so terpenoid recovery and approaches to handle end-product toxicity increase titres. Combined, these strategies are contributing to current efforts to increase microbial terpenoid production towards commercial feasibility.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Clara A Ferraz
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
30
|
A naturally inspired antibiotic to target multidrug-resistant pathogens. Nature 2022; 601:606-611. [PMID: 34987225 DOI: 10.1038/s41586-021-04264-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
Gram-negative bacteria are responsible for an increasing number of deaths caused by antibiotic-resistant infections1,2. The bacterial natural product colistin is considered the last line of defence against a number of Gram-negative pathogens. The recent global spread of the plasmid-borne mobilized colistin-resistance gene mcr-1 (phosphoethanolamine transferase) threatens the usefulness of colistin3. Bacteria-derived antibiotics often appear in nature as collections of similar structures that are encoded by evolutionarily related biosynthetic gene clusters. This structural diversity is, at least in part, expected to be a response to the development of natural resistance, which often mechanistically mimics clinical resistance. Here we propose that a solution to mcr-1-mediated resistance might have evolved among naturally occurring colistin congeners. Bioinformatic analysis of sequenced bacterial genomes identified a biosynthetic gene cluster that was predicted to encode a structurally divergent colistin congener. Chemical synthesis of this structure produced macolacin, which is active against Gram-negative pathogens expressing mcr-1 and intrinsically resistant pathogens with chromosomally encoded phosphoethanolamine transferase genes. These Gram-negative bacteria include extensively drug-resistant Acinetobacter baumannii and intrinsically colistin-resistant Neisseria gonorrhoeae, which, owing to a lack of effective treatment options, are considered among the highest level threat pathogens4. In a mouse neutropenic infection model, a biphenyl analogue of macolacin proved to be effective against extensively drug-resistant A. baumannii with colistin-resistance, thus providing a naturally inspired and easily produced therapeutic lead for overcoming colistin-resistant pathogens.
Collapse
|
31
|
Hassan SSU, Muhammad I, Abbas SQ, Hassan M, Majid M, Jin HZ, Bungau S. Stress Driven Discovery of Natural Products From Actinobacteria with Anti-Oxidant and Cytotoxic Activities Including Docking and ADMET Properties. Int J Mol Sci 2021; 22:ijms222111432. [PMID: 34768863 PMCID: PMC8584265 DOI: 10.3390/ijms222111432] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Elicitation through abiotic stress, including chemical elicitors like heavy metals, is a new technique for drug discovery. In this research, the effect of heavy metals on actinobacteria Streptomyces sp. SH-1312 for secondary metabolite production, with strong pharmacological activity, along with pharmacokinetics profile, was firstly investigated. The optimum metal stress conditions consisted of actinobacteria strain Streptomyces sp. SH-1312 with addition of mix metals (Co2+ + Zn2+) ions at 0.5 mM in Gause’s medium. Under these conditions, the stress metabolite anhydromevalonolactone (MVL) was produced, which was absent in the normal culture of strain and other metals combinations. Furthermore, the stress metabolite was also evaluated for its anti-oxidant and cytotoxic activities. The compound exhibited remarkable anti-oxidant activities, recording the IC50 value of 19.65 ± 5.7 µg/mL in DPPH, IC50 of 15.49 ± 4.8 against NO free radicals, the IC50 value of 19.65 ± 5.22 µg/mL against scavenging ability, and IC50 value of 19.38 ± 7.11 µg/mL for iron chelation capacity and the cytotoxic activities against PC3 cell lines were recorded with IC50 values of 35.81 ± 4.2 µg/mL after 24 h, 23.29 ± 3.8 µg/mL at 48 h, and 16.25 ± 6.5 µg/mL after 72 h. Further mechanistic studies have revealed that the compound MVL has shown its pharmacological efficacy by upregulation of P53 and BAX while downregulation of BCL-2 expression, indicating that MVL is following apoptosis in varying degrees. To better understand the pharmacological properties of MVL, in this work, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) were also evaluated. During ADMET predictions, MVL has displayed a safer profile in case of hepatotoxicity, cytochrome inhibition and also displayed as non-cardiotoxic. The compound MVL showed good binding energy in the molecular docking studies, and the results revealed that MVL bind in the active region of the target protein of P53 and BAX. This work triumphantly announced a prodigious effect of heavy metals on actinobacteria with fringe benefits as a key tool of MVL production with a strong pharmacological and pharmacokinetic profile.
Collapse
Affiliation(s)
- Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (S.S.u.H.); (I.M.)
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ishaq Muhammad
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (S.S.u.H.); (I.M.)
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar 25000, Pakistan;
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan;
| | - Muhammad Majid
- Department of Pharmacy, Capital University of Science and Technology, Islamabad 44000, Pakistan
- Correspondence: (M.M.); (H.-Z.J.); Tel./Fax: +86-021-34205989 (H.-Z.J.)
| | - Hui-Zi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (S.S.u.H.); (I.M.)
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (M.M.); (H.-Z.J.); Tel./Fax: +86-021-34205989 (H.-Z.J.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| |
Collapse
|
32
|
Gren T, Whitford CM, Mohite OS, Jørgensen TS, Kontou EE, Nielsen JB, Lee SY, Weber T. Characterization and engineering of Streptomyces griseofuscus DSM 40191 as a potential host for heterologous expression of biosynthetic gene clusters. Sci Rep 2021; 11:18301. [PMID: 34526549 PMCID: PMC8443760 DOI: 10.1038/s41598-021-97571-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Streptomyces griseofuscus DSM 40191 is a fast growing Streptomyces strain that remains largely underexplored as a heterologous host. Here, we report the genome mining of S. griseofuscus, followed by the detailed exploration of its phenotype, including the production of native secondary metabolites and ability to utilise carbon, nitrogen, sulphur and phosphorus sources. Furthermore, several routes for genetic engineering of S. griseofuscus were explored, including use of GusA-based vectors, CRISPR-Cas9 and CRISPR-cBEST-mediated knockouts. Two out of the three native plasmids were cured using CRISPR-Cas9 technology, leading to the generation of strain S. griseofuscus DEL1. DEL1 was further modified by the full deletion of a pentamycin BGC and an unknown NRPS BGC, leading to the generation of strain DEL2, lacking approx. 500 kbp of the genome, which corresponds to a 5.19% genome reduction. DEL2 can be characterized by faster growth and inability to produce three main native metabolites: lankacidin, lankamycin, pentamycin and their derivatives. To test the ability of DEL2 to heterologously produce secondary metabolites, the actinorhodin BGC was used. We were able to observe a formation of a blue halo, indicating a potential production of actinorhodin by both DEL2 and a wild type.
Collapse
Affiliation(s)
- Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Christopher M Whitford
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Omkar S Mohite
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Tue S Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Eftychia E Kontou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Julie B Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
33
|
The diversity and antibacterial activity of culturable actinobacteria isolated from the rhizosphere soil of Deschampsia antarctica (Galindez Island, Maritime Antarctic). Polar Biol 2021. [DOI: 10.1007/s00300-021-02924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Comparative Genomics Reveals a Remarkable Biosynthetic Potential of the Streptomyces Phylogenetic Lineage Associated with Rugose-Ornamented Spores. mSystems 2021; 6:e0048921. [PMID: 34427515 PMCID: PMC8407293 DOI: 10.1128/msystems.00489-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Streptomyces is one of the richest sources of secondary metabolite biosynthetic gene clusters (BGCs). Sequencing of a large number of genomes has provided evidence that this well-known bacterial genus still harbors a large number of cryptic BGCs, and their metabolites are yet to be discovered. When taking a gene-first approach for new natural product discovery, BGC prioritization would be the most crucial step for the discovery of novel chemotypes. We hypothesized that strains with a greater number of BGCs would also contain a greater number of silent unique BGCs due to the presence of complex regulatory systems. Based on this hypothesis, we employed a comparative genomics approach to identify a specific Streptomyces phylogenetic lineage with the highest and yet-uncharacterized biosynthetic potential. A comparison of BGC abundance and genome size across 158 phylogenetically diverse Streptomyces type strains identified that members of the phylogenetic group characterized by the formation of rugose-ornamented spores possess the greatest number of BGCs (average, 50 BGCs) and also the largest genomes (average, 11.5 Mb). The study of genetic and biosynthetic diversities using comparative genomics of 11 sequenced genomes and a genetic similarity network analysis of BGCs suggested that members of this group carry a large number of unique BGCs, the majority of which are cryptic and not associated with any known natural product. We believe that members of this Streptomyces phylogenetic group possess a remarkable biosynthetic potential and thus would be a good target for a metabolite characterization study that could lead to the discovery of novel chemotypes. IMPORTANCE It is now well recognized that members of the genus Streptomyces still harbor a large number of cryptic BGCs in their genomes, which are mostly silent under laboratory culture conditions. Activation of transcriptionally silent BGCs is technically challenging and thus forms a bottleneck when taking a gene-first approach for the discovery of new natural products. Thus, it is important to focus activation efforts on strains with BGCs that have the potential to produce novel metabolites. The clade-level analysis of biosynthetic diversity could provide insights into the relationship between phylogenetic lineage and biosynthetic diversity. By exploring BGC abundance in relation to Streptomyces phylogeny, we identified a specific monophyletic lineage associated with the highest BGC abundance. Then, using a combined analysis of comparative genomics and a genetic network, we demonstrated that members of this lineage are genetically and biosynthetically diverse, contain a large number of cryptic BGCs with novel genotypes, and thus would be a good target for metabolite characterization studies.
Collapse
|
35
|
Peng XY, Wu JT, Shao CL, Li ZY, Chen M, Wang CY. Co-culture: stimulate the metabolic potential and explore the molecular diversity of natural products from microorganisms. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:363-374. [PMID: 37073292 PMCID: PMC10077301 DOI: 10.1007/s42995-020-00077-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/11/2020] [Indexed: 05/03/2023]
Abstract
Microbial secondary metabolites have long been considered as potential sources of lead compounds for medicinal use due to their rich chemical diversity and extensive biological activities. However, many biosynthetic gene clusters remain silent under traditional laboratory culture conditions, resulting in repeated isolation of a large number of known compounds. The co-culture strategy simulates the complex ecological environment of microbial life by using an ecology-driven method to activate silent gene clusters of microorganisms and tap their metabolic potential to obtain novel bioactive secondary metabolites. In this review, representative studies from 2017 to 2020 on the discovery of novel bioactive natural products from co-cultured microorganisms are summarized. A series of natural products with diverse and novel structures have been discovered successfully by co-culture strategies, including fungus-fungus, fungus-bacterium, and bacterium-bacterium co-culture approaches. These novel compounds exhibited various bioactivities including extensive antimicrobial activities and potential cytotoxic activities, especially when it came to disparate marine-derived species and cross-species of marine strains and terrestrial strains. It could be concluded that co-culture can be an effective strategy to tap the metabolic potential of microorganisms, particularly for marine-derived species, thus providing diverse molecules for the discovery of lead compounds and drug candidates.
Collapse
Affiliation(s)
- Xiao-Yue Peng
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Jin-Tao Wu
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127 China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Zhi-Yong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 201100 China
| | - Min Chen
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127 China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
36
|
Liu Z, Zhao Y, Huang C, Luo Y. Recent Advances in Silent Gene Cluster Activation in Streptomyces. Front Bioeng Biotechnol 2021; 9:632230. [PMID: 33681170 PMCID: PMC7930741 DOI: 10.3389/fbioe.2021.632230] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Natural products (NPs) are critical sources of drug molecules for decades. About two-thirds of natural antibiotics are produced by Streptomyces. Streptomyces have a large number of secondary metabolite biosynthetic gene clusters (SM-BGCs) that may encode NPs. However, most of these BGCs are silent under standard laboratory conditions. Hence, activation of these silent BGCs is essential to current natural products discovery research. In this review, we described the commonly used strategies for silent BGC activation in Streptomyces from two aspects. One focused on the strategies applied in heterologous host, including methods to clone and reconstruct BGCs along with advances in chassis engineering; the other focused on methods applied in native host which includes engineering of promoters, regulatory factors, and ribosomes. With the metabolic network being elucidated more comprehensively and methods optimized more high-thoroughly, the discovery of NPs will be greatly accelerated.
Collapse
Affiliation(s)
- Zhenyu Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yatong Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chaoqun Huang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yunzi Luo
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| |
Collapse
|
37
|
de Felício R, Ballone P, Bazzano CF, Alves LFG, Sigrist R, Infante GP, Niero H, Rodrigues-Costa F, Fernandes AZN, Tonon LAC, Paradela LS, Costa RKE, Dias SMG, Dessen A, Telles GP, da Silva MAC, Lima AODS, Trivella DBB. Chemical Elicitors Induce Rare Bioactive Secondary Metabolites in Deep-Sea Bacteria under Laboratory Conditions. Metabolites 2021; 11:metabo11020107. [PMID: 33673148 PMCID: PMC7918856 DOI: 10.3390/metabo11020107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial genome sequencing has revealed a vast number of novel biosynthetic gene clusters (BGC) with potential to produce bioactive natural products. However, the biosynthesis of secondary metabolites by bacteria is often silenced under laboratory conditions, limiting the controlled expression of natural products. Here we describe an integrated methodology for the construction and screening of an elicited and pre-fractionated library of marine bacteria. In this pilot study, chemical elicitors were evaluated to mimic the natural environment and to induce the expression of cryptic BGCs in deep-sea bacteria. By integrating high-resolution untargeted metabolomics with cheminformatics analyses, it was possible to visualize, mine, identify and map the chemical and biological space of the elicited bacterial metabolites. The results show that elicited bacterial metabolites correspond to ~45% of the compounds produced under laboratory conditions. In addition, the elicited chemical space is novel (~70% of the elicited compounds) or concentrated in the chemical space of drugs. Fractionation of the crude extracts further evidenced minor compounds (~90% of the collection) and the detection of biological activity. This pilot work pinpoints strategies for constructing and evaluating chemically diverse bacterial natural product libraries towards the identification of novel bacterial metabolites in natural product-based drug discovery pipelines.
Collapse
Affiliation(s)
- Rafael de Felício
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
| | - Patricia Ballone
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
- Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Cristina Freitas Bazzano
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
- Institute of Computing (IC), University of Campinas (UNICAMP), Campinas 13083-852, SP, Brazil;
| | - Luiz F. G. Alves
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
| | - Renata Sigrist
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
| | - Gina Polo Infante
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
| | - Henrique Niero
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
- Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Fernanda Rodrigues-Costa
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
- Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Arthur Zanetti Nunes Fernandes
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
- Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Luciane A. C. Tonon
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
| | - Luciana S. Paradela
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
| | - Renna Karoline Eloi Costa
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
| | - Sandra Martha Gomes Dias
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, F-38000 Grenoble, France
| | - Guilherme P. Telles
- Institute of Computing (IC), University of Campinas (UNICAMP), Campinas 13083-852, SP, Brazil;
| | - Marcus Adonai Castro da Silva
- School of Sea, Science and Technology, University of Vale do Itajaí (Univali), Itajaí 88302-202, SC, Brazil; (M.A.C.d.S.); (A.O.d.S.L.)
| | - Andre Oliveira de Souza Lima
- School of Sea, Science and Technology, University of Vale do Itajaí (Univali), Itajaí 88302-202, SC, Brazil; (M.A.C.d.S.); (A.O.d.S.L.)
| | - Daniela Barretto Barbosa Trivella
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (R.d.F.); (P.B.); (C.F.B.); (L.F.G.A.); (R.S.); (G.P.I.); (H.N.); (F.R.-C.); (A.Z.N.F.); (L.A.C.T.); (L.S.P.); (R.K.E.C.); (S.M.G.D.); (A.D.)
- Correspondence: ; Tel.: +55-19-3517-5055
| |
Collapse
|
38
|
Buijs Y, Isbrandt T, Zhang SD, Larsen TO, Gram L. The Antibiotic Andrimid Produced by Vibrio coralliilyticus Increases Expression of Biosynthetic Gene Clusters and Antibiotic Production in Photobacterium galatheae. Front Microbiol 2020; 11:622055. [PMID: 33424823 PMCID: PMC7793655 DOI: 10.3389/fmicb.2020.622055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
The development and spread of multidrug resistant pathogens have reinforced the urgency to find novel natural products with antibiotic activity. In bacteria, orphan biosynthetic gene clusters (BGCs) far outnumber the BGCs for which chemistry is known, possibly because they are transcriptionally silent under laboratory conditions. A strategy to trigger the production of this biosynthetic potential is to challenge the microorganism with low concentrations of antibiotics, and by using a Burkholderia genetic reporter strain (Seyedsayamdost, Proc Natl Acad Sci 111:7266-7271), we found BGC unsilencing activity for the antimicrobial andrimid, produced by the marine bacterium Vibrio coralliilyticus. Next, we challenged another marine Vibrionaceae, Photobacterium galatheae, carrier of seven orphan BGCs with sub-inhibitory concentrations of andrimid. A combined approach of transcriptional and chemical measurements of andrimid-treated P. galatheae cultures revealed a 10-fold upregulation of an orphan BGC and, amongst others, a 1.6-2.2-fold upregulation of the gene encoding the core enzyme for biosynthesis of holomycin. Also, addition of andrimid caused an increase, based on UV-Vis peak area, of 4-fold in production of the antibiotic holomycin. Transcriptional measurements of stress response related genes in P. galatheae showed a co-occurrence of increased transcript levels of rpoS (general stress response) and andrimid induced holomycin overproduction, while in trimethoprim treated cultures attenuation of holomycin production coincided with a transcriptional increase of recA (SOS stress response). This study shows that using antimicrobial compounds as activators of secondary metabolism can be a useful strategy in eliciting biosynthetic gene clusters and facilitate natural product discovery. Potentially, such interactions could also have ecological relevant implications.
Collapse
Affiliation(s)
| | | | | | | | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
39
|
Lincomycin-Induced Secondary Metabolism in Streptomyces lividans 66 with a Mutation in the Gene Encoding the RNA Polymerase Beta Subunit. Curr Microbiol 2020; 77:2933-2939. [DOI: 10.1007/s00284-020-02126-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/09/2020] [Indexed: 01/17/2023]
|
40
|
Effects of Co-culturing with Live and Autoclaved Bacillus subtilis on Antagonistic Activity of Marine Fungi against Plant Pathogens. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Lin Z, Nielsen J, Liu Z. Bioprospecting Through Cloning of Whole Natural Product Biosynthetic Gene Clusters. Front Bioeng Biotechnol 2020; 8:526. [PMID: 32582659 PMCID: PMC7290108 DOI: 10.3389/fbioe.2020.00526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of penicillin, natural products and their derivatives have been a valuable resource for drug discovery. With recent development of genome mining approaches in the post-genome era, a great number of natural product biosynthetic gene clusters (BGCs) have been identified and these can potentially be exploited for the discovery of novel natural products that can find application as pharmaceuticals. Since many BGCs are silent or do not express in native hosts under laboratory conditions, heterologous expression of BGCs in genetically tractable hosts becomes an attractive route to activate these BGCs to discover the corresponding products. Here, we highlight recent achievements in cloning and discovery of natural product biosynthetic pathways via intact BGC capturing, and discuss the prospects of high-throughput and multiplexed cloning of rational-designed gene clusters in the future.
Collapse
Affiliation(s)
- Zhenquan Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,BioInnovation Institute, Copenhagen, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
42
|
Pishchany G. Applying microbial ecology to antimicrobial discovery. Curr Opin Microbiol 2020; 57:7-12. [PMID: 32339893 DOI: 10.1016/j.mib.2020.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/27/2023]
Abstract
Introduction of antibiotics into clinical use has contributed to some of the greatest improvements to public health in the 20th century. Most antibiotics are based on antimicrobials that were isolated from environmental microorganisms over 50 years ago, but emerging resistance requires discovery of new molecules and development of these molecules into therapeutics. Bioinformatic analyses of microbial genomes indicate that many more microbial bioactive molecules remain undiscovered. Understanding when, where, and why these molecules are produced informs efforts to tap into the hidden unexplored chemical diversity. Expanding the search to undersampled ecological niches and improving culturing techniques will ensure discovery of new antibiotics.
Collapse
Affiliation(s)
- Gleb Pishchany
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
43
|
Timmermans ML, Ross AC. Unearthing Hidden Chemical Potential from Discarded Actinobacterial Libraries. Trends Biotechnol 2019; 38:7-9. [PMID: 31785780 DOI: 10.1016/j.tibtech.2019.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 11/25/2022]
Abstract
The redundancy of natural product biosynthesis in microbes poses a practical challenge for discovering new antimicrobial compounds from bacteria. The recent application of clustered regularly interspaced short palindromic repeats (CRISPR) technology by Culp et al. to inactivate the production of abundant antibiotics generates a metabolic clean slate for the detection and/or isolation of new and less plentiful antibiotics activated in mutant strains.
Collapse
Affiliation(s)
| | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, ONT, Canada.
| |
Collapse
|