1
|
Zhai T, Zhang L, Zhang F, Su X, Chen P, Xing Z, Liu H, Zhao T. Characteristics of biofilm layer in a bio-doubling reactor and their impact on aerobic denitrifying bacteria enrichment. ENVIRONMENTAL RESEARCH 2025; 267:120730. [PMID: 39736437 DOI: 10.1016/j.envres.2024.120730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/01/2025]
Abstract
Microbial loss significantly affects wastewater treatment efficiency. This study simulated the inoculation area of a self-developed biological doubling reactor (BDR) to evaluate the retention efficiency of seven different fillers for aerobic denitrifying bacteria. Over 90 days of continuous operation, the porous filler R3 demonstrated excellent performance, with OD600 values consistently exceeding 1.0 and minimal fluctuation. On day 90, the seed liquid amplified with R3 achieved removal efficiencies of 100% for ammonia nitrogen, 97.75% for total nitrogen, and 96.4% for chemical oxygen demand, outperforming other fillers. Scanning electron microscopy and microscopic analysis revealed that R3's large large specific surface area and volume formed a unique meshed biofilm structure, enhancing oxygen and nutrient transport while minimizing detachment. This promoted effective enrichment and retention of aerobic denitrifying bacteria. Microbial diversity analysis confirmed that Acinetobacter, a key genus involved in aerobic denitrification, dominated the network biofilm on R3, accounting for an average of 35.63%. while granular fillers, due to oxygen limitation, promoted the growth of anaerobic ammonium-oxidizing Alcaligenes. The use of BDR-enhanced MBBR for treating synthetic wastewater resulted in a 29.6% increase in TN removal efficiency, with stable system operation. The use of porous fillers with a high specific volume supports stable biofilm formation and consistent seed liquid output, providing a viable solution to microbial loss in wastewater treatment processes.
Collapse
Affiliation(s)
- Tianrui Zhai
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lijie Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Fupan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xia Su
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Peipei Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hao Liu
- Chongqing shiji eco-environmental science and technology co., ltd, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
2
|
Zhang X, Liu L, Ma C, Zhang H, Liu H, Fang H. Improving the level of the cytidine biosynthesis in E. coli through atmospheric room temperature plasma mutagenesis and metabolic engineering. J Appl Microbiol 2024; 135:lxae133. [PMID: 38830792 DOI: 10.1093/jambio/lxae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
AIMS Cytidine, as an important commercial precursor in the chemical synthesis of antiviral and antitumor drugs, is in great demand in the market. Therefore, the purpose of this study is to build a microbial cell factory with high cytidine production. METHODS AND RESULTS A mutant E. coli NXBG-11-F34 with high tolerance to uridine monophosphate structural analogs and good genetic stability was obtained by atmospheric room temperature plasma (ARTP) mutagenesis combined with high-throughput screening. Then, the udk and rihA genes involved in cytidine catabolism were knocked out by CRISPR/Cas9 gene editing technology, and the recombinant strain E. coli NXBG-13 was constructed. The titer, yield, and productivity of cytidine fermented in a 5 l bioreactor were 15.7 g l-1, 0.164 g g-1, and 0.327 g l-1 h-1, respectively. Transcriptome analysis of the original strain and the recombinant strain E. coli NXBG-13 showed that the gene expression profiles of the two strains changed significantly, and the cytidine de novo pathway gene of the recombinant strain was up-regulated significantly. CONCLUSIONS ARTP mutagenesis combined with metabolic engineering is an effective method to construct cytidine-producing strains.
Collapse
Affiliation(s)
- Xiangjun Zhang
- School of Life Science, Ningxia University, Yinchuan 750021, China
| | - Lu Liu
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Cong Ma
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Haojie Zhang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Huiyan Liu
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Haitian Fang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
3
|
Wang HD, Xu JZ, Zhang WG. Reduction of acetate synthesis, enhanced arginine export, and supply of precursors, cofactors, and energy for improved synthesis of L-arginine by Escherichia coli. Appl Microbiol Biotechnol 2023; 107:3593-3603. [PMID: 37097502 DOI: 10.1007/s00253-023-12532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
L-arginine (L-Arg) is a semi-essential amino acid with many important physiological functions. However, achieving efficient manufacture of L-Arg on an industrial scale using Escherichia coli (E. coli) remains a major challenge. In previous studies, we constructed a strain of E. coli A7, which had good L-Arg production capacity. In this study, E. coli A7 was further modified, and E. coli A21 with more efficient L-Arg production capacity was obtained. Firstly, we reduced the acetate accumulation of strain A7 by weakening the poxB gene and overexpressing acs gene. Secondly, we improved the L-Arg transport efficiency of strains by overexpressing the lysE gene from Corynebacterium glutamicum (C. glutamicum). Finally, we enhanced the supplies of precursors for the synthesis of L-Arg and optimized the supplies of cofactor NADPH and energy ATP in strain. After fermentation in a 5-L bioreactor, the L-Arg titer of strain A21 was found to be 89.7 g/L. The productivity was 1.495 g/(L·h) and the glucose yield was 0.377 g/g. Our study further narrowed the titer gap between E. coli and C. glutamicum in the synthesis of L-Arg. In all recent studies on the L-Arg production by E. coli, this was the highest titer recorded. In conclusion, our study further promotes the efficient mass synthesis of L-Arg by E. coli. KEY POINTS: • The acetate accumulation of starting strain A7 was decreased. • Overexpression of gene lysE of C. glutamicum enhanced L-Arg transport in strain A10. • Enhance the supplies of precursors for the synthesis of L-Arg and optimize the supplies of cofactor NADPH and energy ATP. Finally, Strain A21 was detected to have an L-Arg titer of 89.7 g/L in a 5-L bioreactor.
Collapse
Affiliation(s)
- Hai-De Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China.
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
4
|
Sheng Q, Wu XY, Xu X, Tan X, Li Z, Zhang B. Production of l-glutamate family amino acids in Corynebacterium glutamicum: Physiological mechanism, genetic modulation, and prospects. Synth Syst Biotechnol 2021; 6:302-325. [PMID: 34632124 PMCID: PMC8484045 DOI: 10.1016/j.synbio.2021.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
l-glutamate family amino acids (GFAAs), consisting of l-glutamate, l-arginine, l-citrulline, l-ornithine, l-proline, l-hydroxyproline, γ-aminobutyric acid, and 5-aminolevulinic acid, are widely applied in the food, pharmaceutical, cosmetic, and animal feed industries, accounting for billions of dollars of market activity. These GFAAs have many functions, including being protein constituents, maintaining the urea cycle, and providing precursors for the biosynthesis of pharmaceuticals. Currently, the production of GFAAs mainly depends on microbial fermentation using Corynebacterium glutamicum (including its related subspecies Corynebacterium crenatum), which is substantially engineered through multistep metabolic engineering strategies. This review systematically summarizes recent advances in the metabolic pathways, regulatory mechanisms, and metabolic engineering strategies for GFAA accumulation in C. glutamicum and C. crenatum, which provides insights into the recent progress in l-glutamate-derived chemical production.
Collapse
Affiliation(s)
- Qi Sheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xinyi Xu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhimin Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
5
|
Liu N, Zhang TT, Rao ZM, Zhang WG, Xu JZ. Reconstruction of the Diaminopimelic Acid Pathway to Promote L-lysine Production in Corynebacterium glutamicum. Int J Mol Sci 2021; 22:9065. [PMID: 34445771 PMCID: PMC8396482 DOI: 10.3390/ijms22169065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/17/2023] Open
Abstract
The dehydrogenase pathway and the succinylase pathway are involved in the synthesis of L-lysine in Corynebacterium glutamicum. Despite the low contribution rate to L-lysine production, the dehydrogenase pathway is favorable for its simple steps and potential to increase the production of L-lysine. The effect of ammonium (NH4+) concentration on L-lysine biosynthesis was investigated, and the results indicated that the biosynthesis of L-lysine can be promoted in a high NH4+ environment. In order to reduce the requirement of NH4+, the nitrogen source regulatory protein AmtR was knocked out, resulting in an 8.5% increase in L-lysine production (i.e., 52.3 ± 4.31 g/L). Subsequently, the dehydrogenase pathway was upregulated by blocking or weakening the tetrahydrodipicolinate succinylase (DapD)-coding gene dapD and overexpressing the ddh gene to further enhance L-lysine biosynthesis. The final strain XQ-5-W4 could produce 189 ± 8.7 g/L L-lysine with the maximum specific rate (qLys,max.) of 0.35 ± 0.05 g/(g·h) in a 5-L jar fermenter. The L-lysine titer and qLys,max achieved in this study is about 25.2% and 59.1% higher than that of the original strain without enhancement of dehydrogenase pathway, respectively. The results indicated that the dehydrogenase pathway could serve as a breakthrough point to reconstruct the diaminopimelic acid (DAP) pathway and promote L-lysine production.
Collapse
Affiliation(s)
- Ning Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (N.L.); (T.-T.Z.); (W.-G.Z.)
| | - Ting-Ting Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (N.L.); (T.-T.Z.); (W.-G.Z.)
| | - Zhi-Ming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (N.L.); (T.-T.Z.); (W.-G.Z.)
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800# Lihu Road, Wuxi 214122, China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (N.L.); (T.-T.Z.); (W.-G.Z.)
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (N.L.); (T.-T.Z.); (W.-G.Z.)
| |
Collapse
|
6
|
Enhanced production of L-arginine by improving carbamoyl phosphate supply in metabolically engineered Corynebacterium crenatum. Appl Microbiol Biotechnol 2021; 105:3265-3276. [PMID: 33837829 DOI: 10.1007/s00253-021-11242-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Carbamoyl phosphate is an important precursor for L-arginine and pyrimidines biosynthesis. In view of this importance, the cell factory should enhance carbamoyl phosphate synthesis to improve related compound production. In this work, we verified that carbamoyl phosphate is essential for L-arginine production in Corynebacterium sp., followed by engineering of carbamoyl phosphate synthesis for further strain improvement. First, carAB encoding carbamoyl phosphate synthetase II was overexpressed to improve the synthesis of carbamoyl phosphate. Second, the regulation of glutamine synthetase increases the supply of L-glutamine, providing an effective substrate for carbamoyl phosphate synthetase II. Third, carbamate kinase, which catalyzes inorganic ammonia synthesis carbamoyl phosphate, was screened and selected to assist in carbamoyl phosphate supply. Finally, we disrupted ldh (encoding lactate dehydrogenase) to decrease by-production formation and save NADH to regenerate ATP through the electron transport chain. Subsequently, the resulting strain allowed a dramatically increased L-arginine production of 68.6 ± 1.2 g∙L-1, with an overall productivity of 0.71 ± 0.01 g∙L-1∙h-1 in 5-L bioreactor. Stepwise rational metabolic engineering based on an increase in the supply of carbamoyl phosphate resulted in a gradual increase in L-arginine production. The strategy described here can also be implemented to improve L-arginine and pyrimidine derivatives. KEY POINTS: • The L-arginine production strongly depended on the supply of carbamoyl phosphate. • The novel carbamoyl phosphate synthesis pathway for C. crenatum based on carbamate kinase was first applied to L-arginine synthesis. • ATP was regenerated followed with the disruption of lactate formation.
Collapse
|
7
|
Jiang Y, Sheng Q, Wu XY, Ye BC, Zhang B. l-arginine production in Corynebacterium glutamicum: manipulation and optimization of the metabolic process. Crit Rev Biotechnol 2020; 41:172-185. [PMID: 33153325 DOI: 10.1080/07388551.2020.1844625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As an important semi-essential amino acid, l-arginine is extensively used in the food and pharmaceutical fields. At present, l-arginine production depends on cost-effective, green, and sustainable microbial fermentation by using a renewable carbon source. To enhance its fermentative production, various metabolic engineering strategies have been employed, which provide valid paths for reducing the cost of l-arginine production. This review summarizes recent advances in molecular biology strategies for the optimization of l-arginine-producing strains, including manipulating the principal metabolic pathway, modulating the carbon metabolic pathway, improving the intracellular biosynthesis of cofactors and energy usage, manipulating the assimilation of ammonia, improving the transportation and membrane permeability, and performing biosensor-assisted high throughput screening, providing useful insight into the current state of l-arginine production.
Collapse
Affiliation(s)
- Yan Jiang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Qi Sheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
8
|
PII Signal Transduction Protein GlnK Alleviates Feedback Inhibition of N-Acetyl-l-Glutamate Kinase by l-Arginine in Corynebacterium glutamicum. Appl Environ Microbiol 2020; 86:AEM.00039-20. [PMID: 32060028 DOI: 10.1128/aem.00039-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
PII signal transduction proteins are ubiquitous and highly conserved in bacteria, archaea, and plants and play key roles in controlling nitrogen metabolism. However, research on biological functions and regulatory targets of PII proteins remains limited. Here, we illustrated experimentally that the PII protein Corynebacterium glutamicum GlnK (CgGlnK) increased l-arginine yield when glnK was overexpressed in Corynebacterium glutamicum Data showed that CgGlnK regulated l-arginine biosynthesis by upregulating the expression of genes of the l-arginine metabolic pathway and interacting with N-acetyl-l-glutamate kinase (CgNAGK), the rate-limiting enzyme in l-arginine biosynthesis. Further assays indicated that CgGlnK contributed to alleviation of the feedback inhibition of CgNAGK caused by l-arginine. In silico analysis of the binding interface of CgGlnK-CgNAGK suggested that the B and T loops of CgGlnK mainly interacted with C and N domains of CgNAGK. Moreover, F11, R47, and K85 of CgGlnK were identified as crucial binding sites that interact with CgNAGK via hydrophobic interaction and H bonds, and these interactions probably had a positive effect on maintaining the stability of the complex. Collectively, this study reveals PII-NAGK interaction in nonphotosynthetic microorganisms and further provides insights into the regulatory mechanism of PII on amino acid biosynthesis in corynebacteria.IMPORTANCE Corynebacteria are safe industrial producers of diverse amino acids, including l-glutamic acid and l-arginine. In this study, we showed that PII protein GlnK played an important role in l-glutamic acid and l-arginine biosynthesis in C. glutamicum Through clarifying the molecular mechanism of CgGlnK in l-arginine biosynthesis, the novel interaction between CgGlnK and CgNAGK was revealed. The alleviation of l-arginine inhibition of CgNAGK reached approximately 48.21% by CgGlnK addition, and the semi-inhibition constant of CgNAGK increased 1.4-fold. Furthermore, overexpression of glnK in a high-yield l-arginine-producing strain and fermentation of the recombinant strain in a 5-liter bioreactor led to a remarkably increased production of l-arginine, 49.978 g/liter, which was about 22.61% higher than that of the initial strain. In conclusion, this study provides a new strategy for modifying amino acid biosynthesis in C. glutamicum.
Collapse
|
9
|
Mindt M, Walter T, Kugler P, Wendisch VF. Microbial Engineering for Production of N-Functionalized Amino Acids and Amines. Biotechnol J 2020; 15:e1900451. [PMID: 32170807 DOI: 10.1002/biot.201900451] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/04/2020] [Indexed: 01/04/2023]
Abstract
N-functionalized amines play important roles in nature and occur, for example, in the antibiotic vancomycin, the immunosuppressant cyclosporine, the cytostatic actinomycin, the siderophore aerobactin, the cyanogenic glucoside linamarin, and the polyamine spermidine. In the pharmaceutical and fine-chemical industries N-functionalized amines are used as building blocks for the preparation of bioactive molecules. Processes based on fermentation and on enzyme catalysis have been developed to provide sustainable manufacturing routes to N-alkylated, N-hydroxylated, N-acylated, or other N-functionalized amines including polyamines. Metabolic engineering for provision of precursor metabolites is combined with heterologous N-functionalizing enzymes such as imine or ketimine reductases, opine or amino acid dehydrogenases, N-hydroxylases, N-acyltransferase, or polyamine synthetases. Recent progress and applications of fermentative processes using metabolically engineered bacteria and yeasts along with the employed enzymes are reviewed and the perspectives on developing new fermentative processes based on insight from enzyme catalysis are discussed.
Collapse
Affiliation(s)
- Melanie Mindt
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany.,BU Bioscience, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - Tatjana Walter
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Pierre Kugler
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| |
Collapse
|