1
|
Su M, Qin H, Tang Q, Peng D, Li H, Zou Z. Colorimetric ammonia-sensing nanocomposite films based on starch/sodium alginate and Cu-Phe nanorods for smart packaging application. Int J Biol Macromol 2024; 282:137470. [PMID: 39528196 DOI: 10.1016/j.ijbiomac.2024.137470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The development of colorimetric ammonia-sensing smart packaging materials with real-time freshness detection ability are crucial for ensuring food safe. This research involved the construction of Cu-based framework (Cu-Phe) nanorods with colorimetric ammonia-sensing ability through an easy-to-perform aqueous solution method, and their subsequent utilization as nano inclusions in starch/sodium alginate (ST/SA) substrate to foster the creation of high-performance smart packaging materials. Research findings revealed that the addition of Cu-Phe nanorods (3, 6, 9 wt%) within ST/SA substrate led to the formation of compatible nanocomposite films with significantly augmented physical performance and functionality. Especially, the film containing 9 wt% Cu-Phe presented the highest tensile strength (30.32 MPa), elongation at break (19.12 %), UV-shielding efficacy (blocking >99 % of UV passage), water vapor barrier effectiveness (1.90 × 10-6 g/m·h·Pa) and oxygen barrier ability (2.26 × 10-3 g/m2·s). In addition, the developed ST/SA/Cu-Phe nanocomposite film possessed excellent antibacterial activity (over 99.9 %) against Escherichia coli and Staphylococcus aureus, superior colorimetric ammonia-sensing ability, and long-term colour stability. Also of note, the Cu-Phe added ST/SA nanocomposite film allowed for detecting prawn and pork freshness reduction in real-time via discernible colour transition, suggesting its extensive promise for smart packaging applications.
Collapse
Affiliation(s)
- Mingze Su
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Hai Qin
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Qun Tang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| | - Daijiang Peng
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| | - Heping Li
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, PR China
| | - Zhiming Zou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| |
Collapse
|
2
|
Shi X, Yang Y, Miao W, Duan Q, Huang Y, Xiao H, Li C. Active biodegradable bacterial cellulose films with potential to minimize the plastic pollution: Preparation, antibacterial application, and mechanism. Food Chem 2024; 464:141852. [PMID: 39509890 DOI: 10.1016/j.foodchem.2024.141852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/12/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Petroleum-based films have triggered a serious global pollution crisis because they are difficult to recycle, degrade, and reuse. Developing alternative sustainable active films represents a powerful strategy to address these issues. Here, a multifunctional biodegradable bacterial cellulose (BC) film incorporated with guanidine-based polymer (PHGH)/gallic acid (GA) was constructed (termed OBC-PHGH/GA). The resulting OBC-PHGH/GA film exhibited a highly interweaved nanofiber network structure with excellent tensile strength and ductility. The OBC-PHGH/GA film showed an excellent antibacterial effect against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with inhibition efficiencies of ∼99.99 % compared with the OBC film. Moreover, the as-prepared film showed excellent UV-shielding, antioxidant, and antifungal activities, showing great potential in food packaging. More importantly, the OBC-PHGH/GA film can be degraded into safe and reusable sugars, demonstrating outstanding environmental friendliness and sustainability. This work provides a promising and unique strategy for designing and fabricating green active packaging materials.
Collapse
Affiliation(s)
- Xiaotong Shi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Yang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wanting Miao
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Qiuyi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yang Huang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Man W, Zhang S, Wang Y, Wang M, Cao C, Nian L. Iron doping enhances the bind stability of transpiration water to Zr-based MOFs packaging. Food Chem 2024; 464:141714. [PMID: 39454435 DOI: 10.1016/j.foodchem.2024.141714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
The metabolic processes of fruits induce water vapor condensation in packaging, creating a high-humidity microenvironment that exacerbates the proliferation of microorganisms and causes food spoilage. Therefore, a Fe/Zr bimetallic organic framework (Fe-MOF-801) packaging (i.e., FeMGCF) with high binding stability to transpiration water was prepared based on transition metal Fe doping strategy, and the mechanism of its enhanced binding stability towards transpiration water was investigated. The results indicate that Fe enhances the interaction between MOFs and H2O by promoting the charge depletion at the O sites coordinated with Zr, thereby increasing the aggregation tendency of H2O in the T1 and T2 cavities (characterized by strong hydrogen bonding) of Fe-MOF-801, which increased the binding energy of MOFs to H2O by 29.6 %. Accordingly, the application of FeMGCF packaging extended the shelf life of tomatoes by 6 days and delayed the degradation of lycopene and anthocyanins during postharvest tomato preservation.
Collapse
Affiliation(s)
- Wei Man
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shuo Zhang
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yunlong Wang
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Mengjun Wang
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chongjiang Cao
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Linyu Nian
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
4
|
Qiu YL, Li Y, Zhang GL, Hao H, Hou HM, Bi J. Effects of quaternization sites and crossing methods on the slow-release and antibacterial effects of hydroxypropyltrimethyl ammonium chloride chitosan/dialdehyde chitosan-based film. Int J Biol Macromol 2024; 278:134683. [PMID: 39147345 DOI: 10.1016/j.ijbiomac.2024.134683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
In this study, the active food packaging film were prepared using hydroxypropyltrimethyl ammonium chloride chitosan with different substitution sites (O-HACC & N-HACC) and dialdehyde chitosan (DCS) grafted with protocatechuic acid (PA). To explore the effect of chitosan quaternization positions and crosslinking approaches on the slow-release and antibacterial properties, the double-crosslinked film were fabricated through the self-coupling reaction of PA and Schiff base reaction between amino groups on HACC and aldehyde groups on DCS. The HACC/DCS-based film exhibited stable porous three-dimensional networks with high nisin loading ratios (>90 %). With the participation of the catechol-catechol structure, the dense double-crosslinked film effectively restricted the diffusion of the water molecules, resulting in excellent slow-release properties fitting with the Korsmeyer-Peppas kinetic model. Especially, O-HACC/PA-g-DCS film, which had more reaction sites for Schiff base crosslinking than N-HACC, exhibited the equilibrium swelling ratio of 800 % at 60 h and could sustainably release nisin via non-Fickian diffusion behavior until 48 h. Moreover, the HACC/DCS-based double-crosslinked film performed good long-time antibacterial activity and preservation effects on salmon. On the 10th day of storage, the TVBN of N-HACC/PA-g-DCS and O-HACC/PA-g-DCS groups were only 28.26 ± 1.93 and 29.06 ± 1.68 mg/100 g and still lower than the thresholds.
Collapse
Affiliation(s)
- Yu-Long Qiu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yixi Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Gong-Liang Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hongshun Hao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hong-Man Hou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jingran Bi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Sahraeian S, Abdollahi B, Rashidinejad A. Biopolymer-polyphenol conjugates: Novel multifunctional materials for active packaging. Int J Biol Macromol 2024; 280:135714. [PMID: 39288855 DOI: 10.1016/j.ijbiomac.2024.135714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
The development of natural active packaging materials and coatings presents a promising alternative to petroleum-based packaging solutions. These materials are engineered by incorporating functional ingredients with preservative capabilities. Concurrently, research has highlighted the diverse physicochemical, functional, and health-promoting properties of protein-polyphenol, polysaccharide-polyphenol, and protein-polysaccharide-polyphenol conjugates within various food formulations. However, a critical gap exists regarding the exploration of these biopolymers as active packaging materials. In contrast to conventional approaches for developing active packaging materials, this review presents a novel perspective by focusing on biopolymer-polyphenol conjugates. In this work, we delve into the realm of active packaging materials and coatings constructed from these conjugates, highlighting their potential as multifunctional active components in food packaging and preservation. This review comprehensively investigates the physicochemical properties, functionalities, and health-promoting activities associated with biopolymer-polyphenol conjugates. Their emulsification, antioxidant, and antimicrobial activities, coupled with enhancements in mechanical strength and permeability properties, contribute to their multifunctional nature. Furthermore, we explore the potential advantages and limitations of utilizing these conjugates in active packaging applications. Finally, the review concludes by proposing crucial research avenues for further exploration of biopolymer-polyphenol conjugates within the domain of active food packaging.
Collapse
Affiliation(s)
- Shahriyar Sahraeian
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|
6
|
Qi Y, Yang H, Li C, Li H. Enhanced Adsorption of Trace Ethylene on Ag/NZ5 Modified with Ammonia: Hierarchical Structure and Metal Dispersion Effects. Molecules 2024; 29:981. [PMID: 38474493 DOI: 10.3390/molecules29050981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Trace ethylene poses a significant challenge during the storage and transportation of agricultural products, causing over-ripening, reducing shelf life, and leading to food waste. Zeolite-supported silver adsorbents show promise for efficiently removing trace ethylene. Herein, hierarchical Ag/NZ5(X) adsorbents were prepared via different ammonia modifications, which featured enhanced ethylene adsorption ability. Ag/NZ5(2.5) exhibited the largest capacity and achieved near-complete removal at room temperature with prolonged efficacy. Characterization results indicated that the ammonia modification led to the formation of a hierarchical structure in the zeolite framework, reducing diffusion resistance and increasing the accessibility of the active sites. Additionally, desilication effects increased the defectiveness, generating a stronger metal-support interaction and resulting in a higher metal dispersion rate. These findings provide valuable insights into the development of efficient adsorbents for removing trace ethylene, thereby reducing food waste and extending the shelf life of agricultural products.
Collapse
Affiliation(s)
- Ying Qi
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Huaming Yang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Chunli Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
7
|
Zhuo Y, He J, Li W, Deng J, Lin Q. A review on takeaway packaging waste: Types, ecological impact, and disposal route. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122518. [PMID: 37678737 DOI: 10.1016/j.envpol.2023.122518] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Rapid economic growth and urbanization have led to significant changes in the world's consumption patterns. Accelerated urbanization, the spread of the mobile Internet, and the increasing pace of work globally have all contributed to the demand for the food takeaway industry. The rapid development of the takeaway industry inevitably brings convenience to life, and with it comes great environmental pressure from waste packaging materials. While maintaining the convenience of people's lives, further reducing the environmental pollution caused by takeaway packaging materials and promoting the recycling and reuse of takeaway packaging waste need to attract the attention and concern of the whole society. This review systematically and comprehensively introduces common takeaway food types and commonly used packaging materials, analyzes the impacts of discarded takeaway packaging materials on human health and the ecological environment, summarizes the formulation and implementation of relevant policies and regulations, proposes treatment methods and resourceful reuse pathways for discarded takeaway packaging, and also provides an outlook on the development of green takeaway packaging. Currently, only 20% of waste packaging materials are recycled worldwide, and there is still a need to develop more green takeaway packaging materials and continuously improve relevant policies and regulations to promote the sustainable development of the takeaway industry. The review is conducive to further optimizing the takeaway packaging management system, alleviating the environmental pollution problem, and providing feasible solutions and technical guidance for further optimizing takeaway food packaging materials and comprehensive utilization of resources.
Collapse
Affiliation(s)
- Yu Zhuo
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - JinTao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha, 410004, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, Jiangsu, China.
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - QinLu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha, 410004, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
8
|
Riahi Z, Khan A, Rhim JW, Shin GH, Kim JT. Gelatin/poly(vinyl alcohol)-based dual functional composite films integrated with metal-organic frameworks and anthocyanin for active and intelligent food packaging. Int J Biol Macromol 2023; 249:126040. [PMID: 37541465 DOI: 10.1016/j.ijbiomac.2023.126040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Innovative active and pH-colorimetric composite films were fabricated from gelatin/poly(vinyl alcohol) (Gel/PVA) integrated with copper-based metal-organic frameworks (Cu-MOFs) and red cabbage anthocyanin (RCA). The incorporation of Cu-MOFs improved the tensile strength, water resistance, and UV shielding properties of the developed composite films. The addition of anthocyanins and 3 wt% Cu-MOFs endowed the polymer matrix with excellent antioxidant (100 % against ABTS and DPPH radicals) and antibacterial (against Gram-positive and Gram-negative foodborne pathogenic bacteria) functions. The fabricated composite films exhibited significant color change at alkaline conditions of pH 7-12 and a marked color change upon exposure to ammonia. The designed indicator films used for shrimp freshness tracking and a visual color change from pink (for fresh shrimp) to green (for spoiled shrimp) was observed during storage at 28 °C for 24 h. The potential applications of the engineered composite films were studied by shrimp packaging, and the quality parameters of packaged samples were monitored during storage. The synergistic effects of adding anthocyanins and MOF nanostructures works for better product freshness preservation and responds well to shrimp spoilage level, introducing novel active and intelligent packaging options for practical smart packaging applications.
Collapse
Affiliation(s)
- Zohreh Riahi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
9
|
Xhafa S, Olivieri L, Di Nicola C, Pettinari R, Pettinari C, Tombesi A, Marchetti F. Copper and Zinc Metal-Organic Frameworks with Bipyrazole Linkers Display Strong Antibacterial Activity against Both Gram+ and Gram- Bacterial Strains. Molecules 2023; 28:6160. [PMID: 37630412 PMCID: PMC10459509 DOI: 10.3390/molecules28166160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Here, we report a new synthetic protocol based on microwave-assisted synthesis (MAS) for the preparation of higher yields of zinc and copper in MOFs based on different bis(pyrazolyl)-tagged ligands ([M(BPZ)]n where M = Zn(II), Cu(II), H2BPZ = 4,4'-bipyrazole, [M(BPZ-NH2)]n where M = Zn(II), Cu(II); H2BPZ-NH2 = 3-amino-4,4'-bipyrazole, and [Mx(Me4BPZPh)] where M = Zn(II), x = 1; Cu(II), x = 2; H2Me4BPZPh = bis-4'-(3',5'-dimethyl)-pyrazolylbenzene) and, for the first time, a detailed study of their antibacterial activity, tested against Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria, as representative agents of infections. The results show that all MOFs exert a broad-spectrum activity and strong efficiency in bacterial growth inhibition, with a mechanism of action based on the surface contact of MOF particles with bacterial cells through the so-called "chelation effect" and reactive oxygen species (ROS) generation, without a significant release of Zn(II) and Cu(II) ions. In addition, morphological changes were elucidated by using a scanning electron microscope (SEM) and bacterial cell damage was further confirmed by a confocal laser scanning microscopy (CLSM) test.
Collapse
Affiliation(s)
- Sonila Xhafa
- ChIP Research Center, School of Science and Technology, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy; (S.X.); (L.O.); (C.D.N.)
| | - Laura Olivieri
- ChIP Research Center, School of Science and Technology, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy; (S.X.); (L.O.); (C.D.N.)
| | - Corrado Di Nicola
- ChIP Research Center, School of Science and Technology, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy; (S.X.); (L.O.); (C.D.N.)
| | - Riccardo Pettinari
- ChIP Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy (C.P.); (A.T.)
| | - Claudio Pettinari
- ChIP Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy (C.P.); (A.T.)
| | - Alessia Tombesi
- ChIP Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy (C.P.); (A.T.)
| | - Fabio Marchetti
- ChIP Research Center, School of Science and Technology, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy; (S.X.); (L.O.); (C.D.N.)
| |
Collapse
|
10
|
Jafarzadeh S, Forough M, Kouzegaran VJ, Zargar M, Garavand F, Azizi-Lalabadi M, Abdollahi M, Jafari SM. Improving the functionality of biodegradable food packaging materials via porous nanomaterials. Compr Rev Food Sci Food Saf 2023; 22:2850-2886. [PMID: 37115945 DOI: 10.1111/1541-4337.13164] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/30/2023]
Abstract
Non-biodegradability and disposal problems are the major challenges associated with synthetic plastic packaging. This review article discusses a new generation of biodegradable active and smart packaging based on porous nanomaterials (PNMs), which maintains the quality and freshness of food products while meeting biodegradability requirements. PNMs have recently gained significant attention in the field of food packaging due to their large surface area, peculiar structures, functional flexibility, and thermal stability. We present for the first time the recently published literature on the incorporation of various PNMs into renewable materials to develop advanced, environmentally friendly, and high-quality packaging technology. Various emerging packaging technologies are discussed in this review, along with their advantages and disadvantages. Moreover, it provides general information about PNMs, their characterization, and fabrication methods. It also briefly describes the effects of different PNMs on the functionality of biopolymeric films. Furthermore, we examined how smart packaging loaded with PNMs can improve food shelf life and reduce food waste. The results indicate that PNMs play a critical role in improving the antimicrobial, thermal, physicochemical, and mechanical properties of natural packaging materials. These tailor-made materials can simultaneously extend the shelf life of food while reducing plastic usage and food waste.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- School of Civil and Mechanical Engineering, Curtin University, Bentley, Western Australia, Australia
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, Çankaya, Turkey
| | | | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Fermoy, Ireland
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
11
|
Priyanka S, Raja Namasivayam SK, Bharani RSA, John A. Biocompatible green technology principles for the fabrication of food packaging material with noteworthy mechanical and antimicrobial properties A sustainable developmental goal towards the effective, safe food preservation strategy. CHEMOSPHERE 2023; 336:139240. [PMID: 37348611 DOI: 10.1016/j.chemosphere.2023.139240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Biocompatible, eco-friendly, highly economical packaging methods should be needed as conventional packaging is known to cause undesirable effects. As food packaging is the major determining factor of food safety, the selection or methods of packaging materials plays a pioneering role. With this scope, modern food technology seeks unique sustainable approaches for the fabrication of package materials with notable desired properties. The principles, features, and fabrication methodology of modern food packaging are briefly covered in this review. We extensively revealed improved packaging (nanocoating, nanolaminates, and nano clay), active packaging (antimicrobial, oxygen scavenging, and UV barrier packaging), and intelligent/smart packaging (O2 indicator, CO2 indicator, Time Temperature Indicator, freshness indicator, and pH indicator). In particular, we described the role of nanomaterials in the fabrication of packaging material. Methods for the evaluation of mechanical, barrier properties, and anti-microbial assays have been featured. The present studies suggest the possible utilization of materials in the fabrication of food packaging for the production, utilization, and distribution of safe foods without affecting nutritional values.
Collapse
Affiliation(s)
- S Priyanka
- Department of Research & Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| | - S Karthick Raja Namasivayam
- Department of Research & Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India.
| | | | - Arun John
- Department of Molecular Analytics, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
12
|
Fu Y, Yang D, Chen Y, Shi J, Zhang X, Hao Y, Zhang Z, Sun Y, Zhang J. MOF-Based Active Packaging Materials for Extending Post-Harvest Shelf-Life of Fruits and Vegetables. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3406. [PMID: 37176288 PMCID: PMC10180191 DOI: 10.3390/ma16093406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Active packaging that can extend the shelf-life of fresh fruits and vegetables after picking can assure food quality and avoid food waste. Such packaging can prevent the growth of microbial and bacterial pathogens or delay the production of ethylene, which accelerates the ripening of fruits and vegetables after harvesting. Proposed technologies include packaging that enables the degradation of ethylene, modified atmosphere packaging, and bioactive packaging. Packaging that can efficiently adsorb/desorb ethylene, and thus control its concentration, is particularly promising. However, there are still large challenges around toxicity, low selectivity, and consumer acceptability. Metal-organic framework (MOF) materials are porous, have a specific surface area, and have excellent gas adsorption/desorption performance. They can encapsulate and release ethylene and are thus good candidates for use in ethylene-adjusting packaging. This review focuses on MOF-based active-packaging materials and their applications in post-harvest fruit and vegetable packaging. The fabrication and characterization of MOF-based materials and the ethylene adsorption/desorption mechanism of MOF-based packaging and its role in fruit and vegetable preservation are described. The design of MOF-based packaging and its applications are reviewed. Finally, the potential future uses of MOF-based active materials in fresh food packaging are considered.
Collapse
Affiliation(s)
- Yabo Fu
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Dan Yang
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yiyang Chen
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Jiazi Shi
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Xinlin Zhang
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yuwei Hao
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Zhipeng Zhang
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yunjin Sun
- Beijing Laboratory of Food Quality and Safety, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Jingyi Zhang
- Beijing Key Laboratory of Printing & Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China
| |
Collapse
|
13
|
Wang CY, Qin JC, Yang YW. Multifunctional Metal-Organic Framework (MOF)-Based Nanoplatforms for Crop Protection and Growth Promotion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37037783 DOI: 10.1021/acs.jafc.3c01094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Phytopathogen, pest, weed, and nutrient deficiency cause severe losses to global crop yields every year. As the core engine, agrochemicals drive the continuous development of modern agriculture to meet the demand for agricultural productivity and increase the environmental burden due to inefficient use. With new advances in nanotechnology, introducing nanomaterials into agriculture to realize agrochemical accurate and targeted delivery has brought new opportunities to support the sustainable development of green agriculture. Metal-Organic frameworks (MOFs), which weave metal ions/clusters and organic ligands into porous frameworks, have exhibited significant advantages in constructing biotic/abiotic stimuli-responsive nanoplatforms for controlled agrochemical delivery. This review emphasizes the recent developments of MOF-based nanoplatforms for crop protection, including phytopathogen, pest, and weed control, and crop growth promotion, including fertilizer/plant hormone delivery. Finally, forward-looking perspectives and challenges on MOF-based nanoplatforms for future applications in crop protection and growth promotion are also discussed.
Collapse
Affiliation(s)
- Chao-Yi Wang
- College of Plant Science and College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jian-Chun Qin
- College of Plant Science and College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ying-Wei Yang
- College of Plant Science and College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
14
|
Guo X, Wang L, Wang L, Huang Q, Bu L, Wang Q. Metal-organic frameworks for food contaminant adsorption and detection. Front Chem 2023; 11:1116524. [PMID: 36742039 PMCID: PMC9890379 DOI: 10.3389/fchem.2023.1116524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Metal-organic framework materials (MOFs) have been widely used in food contamination adsorption and detection due to their large specific surface area, specific pore structure and flexible post-modification. MOFs with specific pore size can be targeted for selective adsorption of some contaminants and can be used as pretreatment and pre-concentration steps to purify samples and enrich target analytes for food contamination detection to improve the detection efficiency. In addition, MOFs, as a new functional material, play an important role in developing new rapid detection methods that are simple, portable, inexpensive and with high sensitivity and accuracy. The aim of this paper is to summarize the latest and insightful research results on MOFs for the adsorption and detection of food contaminants. By summarizing Zn-based, Cu-based and Zr-based MOFs with low cost, easily available raw materials and convenient synthesis conditions, we describe their principles and discuss their applications in chemical and biological contaminant adsorption and sensing detection in terms of stability, adsorption capacity and sensitivity. Finally, we present the limitations and challenges of MOFs in food detection, hoping to provide some ideas for future development.
Collapse
|
15
|
Anyama CA, Louis H, Inah BE, Gber TE, Ogar JO, Ayi AA. Hydrothermal Synthesis, crystal structure, DFT studies, and molecular docking of Zn-BTC MOF as potential antiprotozoal agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Sajjadinezhad SM, Tanner K, Harvey PD. Metal-porphyrinic framework nanotechnologies in modern agricultural management. J Mater Chem B 2022; 10:9054-9080. [PMID: 36321474 DOI: 10.1039/d2tb01516a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metal-porphyrinic frameworks are an important subclass of metal-organic frameworks (MOFs). These porous materials exhibit a large number of applications for sustainable development and related environmental considerations. Their attractive features include (1) as a free base or metalated with zinc(II) or iron(II or III), they are environmentally benign, and (2) they absorb visible light and are emissive and semi-conducting, making them convenient tools for sensing agrochemicals. But the key feature that makes these nano-sized pristine materials or their composites in many ways superior to most MOFs is their ability to photo-generate reactive oxygen species with visible light, including singlet oxygen. This review describes important issues related to agriculture, including controlled delivery of pesticides and agrochemicals, detection of pesticides and pathogenic metals, elimination of pesticides and toxic metals, and photodynamic antimicrobial activity, and has an important implication for food safety. This comprehensive review presents the progress of the rather rapid developments of these functional and increasingly nano-sized materials and composites in the area of sustainable agriculture.
Collapse
Affiliation(s)
| | - Kevin Tanner
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ, J1K 2R1, Canada.
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ, J1K 2R1, Canada.
| |
Collapse
|
17
|
Xu Y, Rashwan AK, Osman AI, Abd El-Monaem EM, Elgarahy AM, Eltaweil AS, Omar M, Li Y, Mehanni AHE, Chen W, Rooney DW. Synthesis and potential applications of cyclodextrin-based metal-organic frameworks: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 21:447-477. [PMID: 36161092 PMCID: PMC9484721 DOI: 10.1007/s10311-022-01509-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 05/05/2023]
Abstract
Metal-organic frameworks are porous polymeric materials formed by linking metal ions with organic bridging ligands. Metal-organic frameworks are used as sensors, catalysts for organic transformations, biomass conversion, photovoltaics, electrochemical applications, gas storage and separation, and photocatalysis. Nonetheless, many actual metal-organic frameworks present limitations such as toxicity of preparation reagents and components, which make frameworks unusable for food and pharmaceutical applications. Here, we review the structure, synthesis and properties of cyclodextrin-based metal-organic frameworks that could be used in bioapplications. Synthetic methods include vapor diffusion, microwave-assisted, hydro/solvothermal, and ultrasound techniques. The vapor diffusion method can produce cyclodextrin-based metal-organic framework crystals with particle sizes ranging from 200 nm to 400 μm. Applications comprise food packaging, drug delivery, sensors, adsorbents, gas separation, and membranes. Cyclodextrin-based metal-organic frameworks showed loading efficacy of the bioactive compounds ranging from 3.29 to 97.80%.
Collapse
Affiliation(s)
- Yang Xu
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, 83523 Egypt
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, BT9 5AG Northern Ireland UK
| | | | - Ahmed M. Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| | | | - Mirna Omar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Yuting Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang China
| | - Abul-Hamd E. Mehanni
- Department of Food Science and Nutrition, Faculty of Agriculture, Sohag University, Sohag, 82524 Egypt
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, BT9 5AG Northern Ireland UK
| |
Collapse
|
18
|
Crystalline γ-cyclodextrin metal organic framework nano-containers for encapsulation of benzaldehyde and their host–guest interactions. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Design and Practical Considerations for Active Polymeric Films in Food Packaging. Int J Mol Sci 2022; 23:ijms23116295. [PMID: 35682975 PMCID: PMC9181398 DOI: 10.3390/ijms23116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 12/07/2022] Open
Abstract
Polymeric films for active food packaging have been playing an important role in food preservation due to favorable properties including high structural flexibility and high property tunability. Over the years, different polymeric active packaging films have been developed. Many of them have found real applications in food production. This article reviews, using a practical perspective, the principles of designing polymeric active packaging films. Different factors to be considered during materials selection and film generation are delineated. Practical considerations for the use of the generated polymeric films in active food packaging are also discussed. It is hoped that this article cannot only present a snapshot of latest advances in the design and optimization of polymeric active food packaging films, but insights into film development to achieve more effective active food packaging can be attained for future research.
Collapse
|