1
|
Valladares A, Oberoi G, Berg A, Beyer T, Unger E, Rausch I. Additively manufactured, solid object structures for adjustable image contrast in Magnetic Resonance Imaging. Z Med Phys 2022; 32:466-476. [PMID: 35597743 PMCID: PMC9948875 DOI: 10.1016/j.zemedi.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/08/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
Abstract
The choice of materials challenges the development of Magnetic Resonance Imaging (MRI) phantoms and, to date, is mainly limited to water-filled compartments or gel-based components. Recently, solid materials have been introduced through additive manufacturing (AM) to mimic complex geometrical structures. Nonetheless, no such manufactured solid materials are available with controllable MRI contrast to mimic organ substructures or lesion heterogeneities. Here, we present a novel AM design that allows MRI contrast manipulation by varying the partial volume contribution to a ROI/voxel of MRI-visible material within an imaging object. Two sets of 11 cubes and three replicates of a spherical tumour model were designed and printed using AM. Most samples presented varying MRI-contrast in standard MRI sequences, based mainly on spin density and partial volume signal variation. A smooth and continuous MRI-contrast gradient could be generated in a single-compartment tumour model. This concept supports the development of more complex MRI phantoms that mimic the appearance of heterogeneous tumour tissues.
Collapse
Affiliation(s)
- Alejandra Valladares
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Gunpreet Oberoi
- Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Andreas Berg
- Centre for Medical Physics and Biomedical Engineering, MR-Physics, Medical University of Vienna, Vienna, Austria,High-field MR-Center, Medical University of Vienna, Vienna, Austria
| | - Thomas Beyer
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ewald Unger
- Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Timme M, Borkert J, Nagelmann N, Schmeling A. Evaluation of secondary dentin formation for forensic age assessment by means of semi-automatic segmented ultrahigh field 9.4 T UTE MRI datasets. Int J Legal Med 2020; 134:2283-2288. [PMID: 32940844 PMCID: PMC7578159 DOI: 10.1007/s00414-020-02425-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
Abstract
Dental methods are an important element of forensic age assessment of living persons. After the development of all the teeth, including third molars, is completed, degenerative characteristics can be used to assess age. The radiologically detectable reduction of the dental pulp cavity has been described as such a feature. We investigated the suitability of ultrahigh field 9.4 T ultrashort time echo (UTE) magnetic resonance imaging (MRI) for the evaluation of pulp cavity volume in relation to the total tooth volume in 4 extracted human teeth. The volume calculations were performed after semi-automatic segmentation by software AMIRA using the different intensities of the structures in the MRI dataset. The automatically selected intensity range was adjusted manually to the structures. The visual distinction of pulp and tooth structure was possible in all cases with in-plane resolution < 70 μm. Ratios of tooth/pulp volume were calculated, which could be suitable for age estimation procedures. Intensity shifts within the pulp were not always correctly assigned by the software in the course of segmentation. 9.4 T UTE-MRI technology is a forward-looking, radiation-free procedure that allows the volume of the dental pulp to be determined at high spatial resolution and is thus potentially a valuable instrument for the age assessment of living persons.
Collapse
Affiliation(s)
- Maximilian Timme
- Institute of Legal Medicine, University Hospital Münster, Röntgenstraße 23, 48149, Münster, Germany.
| | - Jens Borkert
- Institute of Legal Medicine, University Hospital Münster, Röntgenstraße 23, 48149, Münster, Germany
| | - Nina Nagelmann
- Department of Clinical Radiology, Translational Research Imaging Center (TRIC), University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Andreas Schmeling
- Institute of Legal Medicine, University Hospital Münster, Röntgenstraße 23, 48149, Münster, Germany
| |
Collapse
|
3
|
Mastrogiacomo S, Dou W, Jansen JA, Walboomers XF. Magnetic Resonance Imaging of Hard Tissues and Hard Tissue Engineered Bio-substitutes. Mol Imaging Biol 2020; 21:1003-1019. [PMID: 30989438 DOI: 10.1007/s11307-019-01345-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive diagnostic imaging tool based on the detection of protons into the tissues. This imaging technique is remarkable because of high spatial resolution, strong soft tissue contrast and specificity, and good depth penetration. However, MR imaging of hard tissues, such as bone and teeth, remains challenging due to low proton content in such tissues as well as to very short transverse relaxation times (T2). To overcome these issues, new MRI techniques, such as sweep imaging with Fourier transformation (SWIFT), ultrashort echo time (UTE) imaging, and zero echo time (ZTE) imaging, have been developed for hard tissues imaging with promising results reported. Within this article, MRI techniques developed for the detection of hard tissues, such as bone and dental tissues, have been reviewed. The main goal was thus to give a comprehensive overview on the corresponding (pre-) clinical applications and on the potential future directions with such techniques applied. In addition, a section dedicated to MR imaging of novel biomaterials developed for hard tissue applications was given as well.
Collapse
Affiliation(s)
- Simone Mastrogiacomo
- Department of Biomaterials, Radboud University Medical Center, Philips van Leijdenlaan 25, 6525 EX, Nijmegen, The Netherlands.
- Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Building 10, 5S261, Bethesda, MD, 20892, USA.
| | - Weiqiang Dou
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- GE Healthcare, MR Research, Beijing, People's Republic of China
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Center, Philips van Leijdenlaan 25, 6525 EX, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Center, Philips van Leijdenlaan 25, 6525 EX, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Timme M, Masthoff M, Nagelmann N, Masthoff M, Faber C, Bürklein S. Imaging of root canal treatment using ultra high field 9.4T UTE-MRI - a preliminary study. Dentomaxillofac Radiol 2019; 49:20190183. [PMID: 31530016 DOI: 10.1259/dmfr.20190183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To investigate the potential of 9.4T ultrashort echo time (UTE) technology visualizing tooth anatomy and root canal treatment in vitro. In particular, it was evaluated whether the currently achievable resolution is suited presenting all anatomical structures and whether the root canal filling materials are distinguishable in UTE-MRI. METHODS Four extracted human teeth were examined using 9.4T UTE-MRI prior endodontic treatment (native teeth), after preparation and after obturation procedure. Root canal obturation was performed using warm vertical compaction (Schilder technique) with an epoxy-resin-based sealer. A single gutta-percha cone measured by MRI served as intensity-reference. MRI results were validated with corresponding histologic sections of the teeth. In addition, all teeth were examined at the different stages with CBCT and conventional X-ray. RESULTS 9.4T UTE-MRI enabled a precise visualization of root canal anatomy of all teeth at a resolution of 66 µm. After obturation, dentin, sealer and gutta-percha cones showed distinct MRI signal changes that allowed clear differentiation of the obturation materials from surrounding tooth structure. The filling materials, isthmal root canal connections and even dentin-cracks that were identified in the MR-images could be verified in histological sections. CONCLUSIONS 9.4T UTE-MRI is suitable for visualization of root canal anatomy, the evaluation of root canal preparation and obturation with a high spatial resolution and may provide a versatile tool for dental material research in endodontics.
Collapse
Affiliation(s)
- Maximilian Timme
- Department of Oral and Maxillofacial Surgery, University Hospital Münster, Muenster, Germany
| | - Max Masthoff
- Department of Clinical Radiology, University Hospital Muenster, Germany
| | - Nina Nagelmann
- Department of Clinical Radiology, University Hospital Muenster, Germany
| | | | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Muenster, Germany
| | - Sebastian Bürklein
- Central Interdisciplinary Ambulance in the School of Dentistry, University Hospital Muenster, Germany
| |
Collapse
|
5
|
Di Nardo D, Gambarini G, Capuani S, Testarelli L. Nuclear Magnetic Resonance Imaging in Endodontics: A Review. J Endod 2018; 44:536-542. [DOI: 10.1016/j.joen.2018.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/30/2017] [Accepted: 01/01/2018] [Indexed: 01/31/2023]
|
6
|
Dou W, Mastrogiacomo S, Veltien A, Alghamdi HS, Walboomers XF, Heerschap A. Visualization of calcium phosphate cement in teeth by zero echo time 1 H MRI at high field. NMR IN BIOMEDICINE 2018; 31:e3859. [PMID: 29160917 DOI: 10.1002/nbm.3859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/25/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
1 H magnetic resonance imaging (MRI) by a zero echo time (ZTE) sequence is an excellent method to image teeth. Calcium phosphate cement (CPC) materials are applied in the restoration of tooth lesions, but it has not yet been investigated whether they can be detected by computed tomography (CT) or MRI. The aim of this study was to optimize high-field ZTE imaging to enable the visualization of a new CPC formulation implanted in teeth and to apply this in the assessment of its decomposition in vivo. CPC was implanted in three human and three goat teeth ex vivo and in three goat teeth in vivo. An ultrashort echo time (UTE) sequence with multiple flip angles and echo times was applied at 11.7 T to measure T1 and T2 * values of CPC, enamel and dentin. Teeth with CPC were imaged with an optimized ZTE sequence. Goat teeth implanted with CPC in vivo were imaged after 7 weeks ex vivo. T2 * relaxation of implanted CPC, dentin and enamel was better fitted by a model assuming a Gaussian rather than a Lorentzian distribution. For CPC and human enamel and dentin, the average T2 * values were 273 ± 19, 562 ± 221 and 476 ± 147 μs, respectively, the average T2 values were 1234 ± 27, 963 ± 151 and 577 ± 41 μs, respectively, and the average T1 values were 1065 ± 45, 972 ± 40 and 903 ± 7 ms, respectively. In ZTE images, CPC had a higher signal-to-noise-ratio than dentin and enamel because of the higher water content. Seven weeks after in vivo implantation, the CPC-filled lesions showed less homogeneous structures, a lower T1 value and T2 * separated into two components. MRI by ZTE provides excellent contrast for CPC in teeth and allows its decomposition to be followed.
Collapse
Affiliation(s)
- Weiqiang Dou
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simone Mastrogiacomo
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andor Veltien
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hamdan S Alghamdi
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
- College of Dentistry Research Center, King Saud University, Riyadh, Saudi Arabia
| | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Grosse U, Syha R, Hein T, Gatidis S, Grözinger G, Schabel C, Martirosian P, Schick F, Springer F. Diagnostic value of T1and T2* relaxation times and off-resonance saturation effects in the evaluation of achilles tendinopathy by MRI at 3T. J Magn Reson Imaging 2014; 41:964-73. [DOI: 10.1002/jmri.24657] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/10/2014] [Accepted: 04/13/2014] [Indexed: 12/21/2022] Open
Affiliation(s)
- Ulrich Grosse
- Department of Diagnostic and Interventional Radiology; University Hospital Tuebingen; Tuebingen Germany
- Section on Experimental Radiology; University Hospital Tuebingen; Tuebingen Germany
| | - Roland Syha
- Department of Diagnostic and Interventional Radiology; University Hospital Tuebingen; Tuebingen Germany
- Section on Experimental Radiology; University Hospital Tuebingen; Tuebingen Germany
| | - Tobias Hein
- Department of Sports Medicine; University Hospital Tuebingen; Tuebingen Germany
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology; University Hospital Tuebingen; Tuebingen Germany
- Section on Experimental Radiology; University Hospital Tuebingen; Tuebingen Germany
| | - Gerd Grözinger
- Department of Diagnostic and Interventional Radiology; University Hospital Tuebingen; Tuebingen Germany
- Section on Experimental Radiology; University Hospital Tuebingen; Tuebingen Germany
| | - Christoph Schabel
- Department of Diagnostic and Interventional Radiology; University Hospital Tuebingen; Tuebingen Germany
- Section on Experimental Radiology; University Hospital Tuebingen; Tuebingen Germany
| | - Petros Martirosian
- Section on Experimental Radiology; University Hospital Tuebingen; Tuebingen Germany
| | - Fritz Schick
- Section on Experimental Radiology; University Hospital Tuebingen; Tuebingen Germany
| | - Fabian Springer
- Department of Diagnostic and Interventional Radiology; University Hospital Tuebingen; Tuebingen Germany
- Section on Experimental Radiology; University Hospital Tuebingen; Tuebingen Germany
| |
Collapse
|
8
|
Grosse U, Springer F, Hein T, Grözinger G, Schabel C, Martirosian P, Schick F, Syha R. Influence of physical activity on T1 and T2* relaxation times of healthy achilles tendons at 3T. J Magn Reson Imaging 2013; 41:193-201. [DOI: 10.1002/jmri.24525] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/06/2013] [Indexed: 12/22/2022] Open
Affiliation(s)
- Ulrich Grosse
- Department of Diagnostic and Interventional Radiology; University Hospital Tuebingen; Tuebingen Germany
- Section of Experimental Radiology; University Hospital Tuebingen; Tuebingen Germany
| | - Fabian Springer
- Department of Diagnostic and Interventional Radiology; University Hospital Tuebingen; Tuebingen Germany
- Section of Experimental Radiology; University Hospital Tuebingen; Tuebingen Germany
| | - Tobias Hein
- Department of Sports Medicine; University Hospital Tuebingen; Tuebingen Germany
| | - Gerd Grözinger
- Department of Diagnostic and Interventional Radiology; University Hospital Tuebingen; Tuebingen Germany
- Section of Experimental Radiology; University Hospital Tuebingen; Tuebingen Germany
| | - Christoph Schabel
- Department of Diagnostic and Interventional Radiology; University Hospital Tuebingen; Tuebingen Germany
- Section of Experimental Radiology; University Hospital Tuebingen; Tuebingen Germany
| | - Petros Martirosian
- Section of Experimental Radiology; University Hospital Tuebingen; Tuebingen Germany
| | - Fritz Schick
- Section of Experimental Radiology; University Hospital Tuebingen; Tuebingen Germany
| | - Roland Syha
- Department of Diagnostic and Interventional Radiology; University Hospital Tuebingen; Tuebingen Germany
- Section of Experimental Radiology; University Hospital Tuebingen; Tuebingen Germany
| |
Collapse
|