1
|
Liu J, Jakary A, Villanueva-Meyer JE, Butowski NA, Saloner D, Clarke JL, Taylor JW, Oberheim Bush NA, Chang SM, Xu D, Lupo JM. Automatic Brain Tissue and Lesion Segmentation and Multi-Parametric Mapping of Contrast-Enhancing Gliomas without the Injection of Contrast Agents: A Preliminary Study. Cancers (Basel) 2024; 16:1524. [PMID: 38672606 PMCID: PMC11049314 DOI: 10.3390/cancers16081524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to develop a rapid, 1 mm3 isotropic resolution, whole-brain MRI technique for automatic lesion segmentation and multi-parametric mapping without using contrast by continuously applying balanced steady-state free precession with inversion pulses throughout incomplete inversion recovery in a single 6 min scan. Modified k-means clustering was performed for automatic brain tissue and lesion segmentation using distinct signal evolutions that contained mixed T1/T2/magnetization transfer properties. Multi-compartment modeling was used to derive quantitative multi-parametric maps for tissue characterization. Fourteen patients with contrast-enhancing gliomas were scanned with this sequence prior to the injection of a contrast agent, and their segmented lesions were compared to conventionally defined manual segmentations of T2-hyperintense and contrast-enhancing lesions. Simultaneous T1, T2, and macromolecular proton fraction maps were generated and compared to conventional 2D T1 and T2 mapping and myelination water fraction mapping acquired with MAGiC. The lesion volumes defined with the new method were comparable to the manual segmentations (r = 0.70, p < 0.01; t-test p > 0.05). The T1, T2, and macromolecular proton fraction mapping values of the whole brain were comparable to the reference values and could distinguish different brain tissues and lesion types (p < 0.05), including infiltrating tumor regions within the T2-lesion. Highly efficient, whole-brain, multi-contrast imaging facilitated automatic lesion segmentation and quantitative multi-parametric mapping without contrast, highlighting its potential value in the clinic when gadolinium is contraindicated.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA; (A.J.); (D.X.)
| | - Angela Jakary
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA; (A.J.); (D.X.)
| | - Javier E. Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA; (A.J.); (D.X.)
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (N.A.B.); (J.L.C.); (S.M.C.)
| | - Nicholas A. Butowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (N.A.B.); (J.L.C.); (S.M.C.)
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA; (A.J.); (D.X.)
- Radiology Service, VA Medical Center, San Francisco, CA 94121, USA
| | - Jennifer L. Clarke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (N.A.B.); (J.L.C.); (S.M.C.)
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jennie W. Taylor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (N.A.B.); (J.L.C.); (S.M.C.)
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (N.A.B.); (J.L.C.); (S.M.C.)
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Susan M. Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (N.A.B.); (J.L.C.); (S.M.C.)
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA; (A.J.); (D.X.)
- UCSF/UC Berkeley Graduate Program in Bioengineering, University of California San Francisco and Berkeley, San Francisco, CA 94143, USA
| | - Janine M. Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA; (A.J.); (D.X.)
- UCSF/UC Berkeley Graduate Program in Bioengineering, University of California San Francisco and Berkeley, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Andrews A, Doctor P, Gaur L, Greil FG, Hussain T, Zou Q. Manifold-based denoising for Ferumoxytol-enhanced 3D cardiac cine MRI. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:3695-3712. [PMID: 38549302 DOI: 10.3934/mbe.2024163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The two-dimensional (2D) cine cardiovascular magnetic resonance (CMR) technique is the reference standard for assessing cardiac function. However, one challenge with 2D cine is that the acquisition time for the whole cine stack is long and requires multiple breath holds, which may not be feasible for pediatric or ill patients. Though single breath-hold multi-slice cine may address the issue, it can only acquire low-resolution images, and hence, affect the accuracy of cardiac function assessment. To address these challenges, a Ferumoxytol-enhanced, free breathing, isotropic high-resolution 3D cine technique was developed. The method produces high-contrast cine images with short acquisition times by using compressed sensing together with a manifold-based method for image denoising. This study included fifteen patients (9.1 $ \pm $ 5.6 yrs.) who were referred for clinical cardiovascular magnetic resonance imaging (MRI) with Ferumoxytol contrast and were prescribed the 3D cine sequence. The data was acquired on a 1.5T scanner. Statistical analysis shows that the manifold-based denoised 3D cine can accurately measure ventricular function with no significant differences when compared to the conventional 2D breath-hold (BH) cine. The multiplanar reconstructed images of the proposed 3D cine method are visually comparable to the golden standard 2D BH cine method in terms of clarity, contrast, and anatomical precision. The proposed method eliminated the need for breath holds, reduced scan times, enabled multiplanar reconstruction within an isotropic data set, and has the potential to be used as an effective tool to access cardiovascular conditions.
Collapse
Affiliation(s)
- Anna Andrews
- Department of Biomedical Engineering, Mercer University, Macon, USA
| | - Pezad Doctor
- Division of Pediatric Cardiology, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lasya Gaur
- Division of Pediatric Cardiology, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - F Gerald Greil
- Division of Pediatric Cardiology, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tarique Hussain
- Division of Pediatric Cardiology, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Zou
- Division of Pediatric Cardiology, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Yoshida T, Chen JJ, Zhou B, Finn JP, Hu P, Nguyen KL. Ferumoxytol-enhanced 4D multiphase, steady-state imaging with magnetic resonance in congenital heart disease: ventricular volume and function across 2D and 3D software platforms. Quant Imaging Med Surg 2022; 12:4377-4389. [PMID: 36060580 PMCID: PMC9403575 DOI: 10.21037/qims-21-1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/07/2022] [Indexed: 11/06/2022]
Abstract
Background Quantitative ventricular volumetry and function are important in the management of congenital heart disease (CHD). Ferumoxytol-enhanced (FE) 4D multiphase, steady state imaging with contrast enhancement (MUSIC) enables high-resolution, 3D cardiac phase-resolved magnetic resonance imaging (MRI) of the beating heart and extracardiac vessels in a single acquisition and without concerns about renal impairment. We aim to evaluate the semi-automatic quantification of ventricular volumetry and function of 4D MUSIC MRI using 2D and 3D software platforms. Methods This HIPAA-compliant and IRB-approved study prospectively recruited 50 children with CHD (3 days to 18 years) who underwent 4D MUSIC MRI at 3.0T between 2013-2017 for clinical indications. Each patient was either intubated in the neonatal intensive care unit (NICU) or underwent general anesthesia at MRI suite. For 2D analysis, we reformatted MUSIC images in Digital Imaging and Communications in Medicine (DICOM) format into ventricular short-axis slices with zero interslice gap. For 3D analysis, we imported DICOMs into a commercially available 3D software platform. Using semi-automatic thresholding, we quantified biventricular volume and ejection fraction (EF). We assessed the bias between MUSIC-derived 2D vs. 3D measurements and correlation between MUSIC vs. conventional 2D balanced steady-state free precession (bSSFP) cine images. We evaluated intra- and inter-observer agreement. Results There was a high degree of correlation between MUSIC-derived volumetric and functional measurements using 2D vs. 3D software (r=0.99, P<0.001). Volumes derived using 3D software platforms were larger than 2D by 0.2 to 2.0 mL/m2 whereas EF measurements were higher by 1.2-3.0%. MUSIC volumetric and functional measures derived from 2D and 3D software platforms corresponded highly with those derived from multi-slice SSFP cine images (r=0.99, P<0.001). The mean difference in volume for reformatted 4D MUSIC relative to bSSFP cine was 1.5 to 3.9 mL/m2. Intra- and inter-observer reliability was excellent. Conclusions Accurate and reliable ventricular volumetry and function can be derived from FE 4D MUSIC MRI studies using commercially available 2D and 3D software platforms. If fully validated in multicenter studies, the FE 4D-MUSIC pulse sequence may supercede conventional multislice 2D cine cardiovascular MRI acquisition protocols for functional evaluation of children with complex CHD.
Collapse
Affiliation(s)
- Takegawa Yoshida
- Diagnostic Cardiovascular Imaging Research Laboratory, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph J. Chen
- Diagnostic Cardiovascular Imaging Research Laboratory, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Bill Zhou
- Diagnostic Cardiovascular Imaging Research Laboratory, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - J. Paul Finn
- Diagnostic Cardiovascular Imaging Research Laboratory, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
- Physics and Biology in Medicine Graduate Program at University of California, Los Angeles, CA, USA
| | - Peng Hu
- Diagnostic Cardiovascular Imaging Research Laboratory, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
- Physics and Biology in Medicine Graduate Program at University of California, Los Angeles, CA, USA
| | - Kim-Lien Nguyen
- Diagnostic Cardiovascular Imaging Research Laboratory, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Physics and Biology in Medicine Graduate Program at University of California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Feng L. Golden-Angle Radial MRI: Basics, Advances, and Applications. J Magn Reson Imaging 2022; 56:45-62. [PMID: 35396897 PMCID: PMC9189059 DOI: 10.1002/jmri.28187] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/21/2022] Open
Abstract
In recent years, golden‐angle radial sampling has received substantial attention and interest in the magnetic resonance imaging (MRI) community, and it has become a popular sampling trajectory for both research and clinical use. However, although the number of relevant techniques and publications has grown rapidly, there is still a lack of a review paper that provides a comprehensive overview and summary of the basics of golden‐angle rotation, the advantages and challenges/limitations of golden‐angle radial sampling, and recommendations in using different types of golden‐angle radial trajectories for MRI applications. Such a review paper is expected to be helpful both for clinicians who are interested in learning the potential benefits of golden‐angle radial sampling and for MRI physicists who are interested in exploring this research direction. The main purpose of this review paper is thus to present an overview and summary about golden‐angle radial MRI sampling. The review consists of three sections. The first section aims to answer basic questions such as: what is a golden angle; how is the golden angle calculated; why is golden‐angle radial sampling useful, and what are its limitations. The second section aims to review more advanced trajectories of golden‐angle radial sampling, including tiny golden‐angle rotation, stack‐of‐stars golden‐angle radial sampling, and three‐dimensional (3D) kooshball golden‐angle radial sampling. Their respective advantages and limitations and potential solutions to address these limitations are also discussed. Finally, the third section reviews MRI applications that can benefit from golden‐angle radial sampling and provides recommendations to readers who are interested in implementing golden‐angle radial trajectories in their MRI studies.
Collapse
Affiliation(s)
- Li Feng
- BioMedical Engineering and Imaging Institute (BMEII) and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
Morris CC, Ref J, Acharya S, Johnson KJ, Squire S, Acharya T, Dennis T, Daugherty S, McArthur A, Chinyere IR, Koevary JW, Hare JM, Lancaster JJ, Goldman S, Avery R. Free-breathing gradient recalled echo-based CMR in a swine heart failure model. Sci Rep 2022; 12:3698. [PMID: 35260607 PMCID: PMC8904633 DOI: 10.1038/s41598-022-07611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/10/2022] [Indexed: 11/09/2022] Open
Abstract
In swine models, there are well-established protocols for creating a closed-chest myocardial infarction (MI) as well as protocols for characterization of cardiac function with cardiac magnetic resonance (CMR). This methods manuscript outlines a novel technique in CMR data acquisition utilizing smart-signal gradient recalled echo (GRE)-based array sequences in a free-breathing swine heart failure model allowing for both high spatial and temporal resolution imaging. Nine male Yucatan mini swine weighing 48.7 ± 1.6 kg at 58.2 ± 3.1 weeks old underwent the outlined imaging protocol before and 1-month after undergoing closed chest left anterior descending coronary artery (LAD) occlusion/reperfusion. The left ventricular ejection fraction (LVEF) at baseline was 59.3 ± 2.4% and decreased to 48.1 ± 3.7% 1-month post MI (P = 0.029). The average end-diastolic volume (EDV) at baseline was 55.2 ± 1.7 ml and increased to 74.2 ± 4.2 ml at 1-month post MI (P = 0.001). The resulting images from this novel technique and post-imaging analysis are presented and discussed. In a Yucatan swine model of heart failure via closed chest left anterior descending coronary artery (LAD) occlusion/reperfusion, we found that CMR with GRE-based array sequences produced clinical-grade images with high spatial and temporal resolution in the free-breathing setting.
Collapse
Affiliation(s)
- Craig C Morris
- Department of Medicine, Oregon Health and Sciences University, Portland, OR, USA
| | - Jacob Ref
- MD Program, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Satya Acharya
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Kevin J Johnson
- Magnetic Resonance Research Facility, University of Arizona, Tucson, AZ, USA
| | - Scott Squire
- Magnetic Resonance Research Facility, University of Arizona, Tucson, AZ, USA
| | | | - Tyler Dennis
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | | | - Alice McArthur
- Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Ikeotunye Royal Chinyere
- Sarver Heart Center, University of Arizona, Tucson, AZ, USA.,MD-PhD Program, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Jen Watson Koevary
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Joshua M Hare
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Steven Goldman
- Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Ryan Avery
- Department of Radiology, Northwestern University, 676 N Saint Clair, Suite 800, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Value CMR: Towards a Comprehensive, Rapid, Cost-Effective Cardiovascular Magnetic Resonance Imaging. Int J Biomed Imaging 2021; 2021:8851958. [PMID: 34054936 PMCID: PMC8147553 DOI: 10.1155/2021/8851958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/17/2021] [Accepted: 05/06/2021] [Indexed: 11/18/2022] Open
Abstract
Cardiac magnetic resonance imaging (CMR) is considered the gold standard for measuring cardiac function. Further, in a single CMR exam, information about cardiac structure, tissue composition, and blood flow could be obtained. Nevertheless, CMR is underutilized due to long scanning times, the need for multiple breath-holds, use of a contrast agent, and relatively high cost. In this work, we propose a rapid, comprehensive, contrast-free CMR exam that does not require repeated breath-holds, based on recent developments in imaging sequences. Time-consuming conventional sequences have been replaced by advanced sequences in the proposed CMR exam. Specifically, conventional 2D cine and phase-contrast (PC) sequences have been replaced by optimized 3D-cine and 4D-flow sequences, respectively. Furthermore, conventional myocardial tagging has been replaced by fast strain-encoding (SENC) imaging. Finally, T1 and T2 mapping sequences are included in the proposed exam, which allows for myocardial tissue characterization. The proposed rapid exam has been tested in vivo. The proposed exam reduced the scan time from >1 hour with conventional sequences to <20 minutes. Corresponding cardiovascular measurements from the proposed rapid CMR exam showed good agreement with those from conventional sequences and showed that they can differentiate between healthy volunteers and patients. Compared to 2D cine imaging that requires 12-16 separate breath-holds, the implemented 3D-cine sequence allows for whole heart coverage in 1-2 breath-holds. The 4D-flow sequence allows for whole-chest coverage in less than 10 minutes. Finally, SENC imaging reduces scan time to only one slice per heartbeat. In conclusion, the proposed rapid, contrast-free, and comprehensive cardiovascular exam does not require repeated breath-holds or to be supervised by a cardiac imager. These improvements make it tolerable by patients and would help improve cost effectiveness of CMR and increase its adoption in clinical practice.
Collapse
|
7
|
Wang Y, Zhang Y, Wen Z, Tian B, Kao E, Liu X, Xuan W, Ordovas K, Saloner D, Liu J. Deep learning based fully automatic segmentation of the left ventricular endocardium and epicardium from cardiac cine MRI. Quant Imaging Med Surg 2021; 11:1600-1612. [PMID: 33816194 DOI: 10.21037/qims-20-169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background The segmentation of cardiac medical images is a crucial step for calculating clinical indices such as wall thickness, ventricular volume, and ejection fraction. Methods In this study, we introduce a method named LsUnet that combines multi-channel, fully convolutional neural network, and annular shape level-set methods for efficiently segmenting cardiac cine magnetic resonance (MR) images. In this method, the multi-channel deep learning algorithm is applied to train the segmentation task to extract the left ventricle (LV) endocardial and epicardial contours. Next, the segmentation contours from the multi-channel deep learning method are incorporated into a level-set formulation, which is dedicated explicitly to detecting annular shapes to assure the segmentation's accuracy and robustness. Results The proposed automatic approach was evaluated on 95 volumes (total 1,076 slices, ~80% as for training datasets, ~20% 2D as for testing datasets). This combined multi-channel deep learning and annular shape level-set segmentation method achieved high accuracy with average Dice values reaching 92.15% and 95.42% for LV endocardium and epicardium delineation, respectively, in comparison to the reference standard (the manual segmentation). Conclusions A novel method for fully automatic segmentation of the LV endocardium and epicardium from different MRI datasets is presented. The proposed workflow is accurate and robust compared to the reference and other state-of-the-art methods.
Collapse
Affiliation(s)
- Yan Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Yue Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA.,Department of Radiology, Veterans Affairs Medical Center, San Francisco, USA
| | - Zhaoying Wen
- Department of Radiology, Anzhen Hospital, Beijing, China
| | - Bing Tian
- Department of Radiology, Changhai Hospital, Shanghai, China
| | - Evan Kao
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Xinke Liu
- Department of Interventional Neuroradiology, Capital Medical University, Beijing Tiantan Hospital, Beijing, China
| | - Wanling Xuan
- Medical College of Georgia at Augusta University, Augusta, USA
| | - Karen Ordovas
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA.,Department of Radiology, Veterans Affairs Medical Center, San Francisco, USA
| | - Jing Liu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| |
Collapse
|
8
|
Wu YL. Cardiac MRI Assessment of Mouse Myocardial Infarction and Regeneration. Methods Mol Biol 2021; 2158:81-106. [PMID: 32857368 DOI: 10.1007/978-1-0716-0668-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Small animal models are indispensable for cardiac regeneration research. Studies in mouse and rat models have provided important insights into the etiology and mechanisms of cardiovascular diseases and accelerated the development of therapeutic strategies. It is vitally important to be able to evaluate the therapeutic efficacy and have reliable surrogate markers for therapeutic development for cardiac regeneration research. Magnetic resonance imaging (MRI), a versatile and noninvasive imaging modality with excellent penetration depth, tissue coverage, and soft-tissue contrast, is becoming a more important tool in both clinical settings and research arenas. Cardiac MRI (CMR) is versatile, noninvasive, and capable of measuring many different aspects of cardiac functions, and, thus, is ideally suited to evaluate therapeutic efficacy for cardiac regeneration. CMR applications include assessment of cardiac anatomy, regional wall motion, myocardial perfusion, myocardial viability, cardiac function assessment, assessment of myocardial infarction, and myocardial injury. Myocardial infarction models in mice are commonly used model systems for cardiac regeneration research. In this chapter, we discuss various CMR applications to evaluate cardiac functions and inflammation after myocardial infarction.
Collapse
Affiliation(s)
- Yijen L Wu
- Department of Developmental Biology, Rangos Research Center Animal Imaging Core, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Single breath-hold saturation recovery 3D cardiac T1 mapping via compressed SENSE at 3T. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2020; 33:865-876. [PMID: 32410103 PMCID: PMC7669807 DOI: 10.1007/s10334-020-00848-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 11/06/2022]
Abstract
Objectives To propose and validate a novel imaging sequence that uses a single breath-hold whole-heart 3D T1 saturation recovery compressed SENSE rapid acquisition (SACORA) at 3T. Methods The proposed sequence combines flexible saturation time sampling, compressed SENSE, and sharing of saturation pulses between two readouts acquired at different RR intervals. The sequence was compared with a 3D saturation recovery single-shot acquisition (SASHA) implementation with phantom and in vivo experiments (pre and post contrast; 7 pigs) and was validated against the reference inversion recovery spin echo (IR-SE) sequence in phantom experiments. Results Phantom experiments showed that the T1 maps acquired by 3D SACORA and 3D SASHA agree well with IR-SE. In vivo experiments showed that the pre-contrast and post-contrast T1 maps acquired by 3D SACORA are comparable to the corresponding 3D SASHA maps, despite the shorter acquisition time (15s vs. 188s, for a heart rate of 60 bpm). Mean septal pre-contrast T1 was 1453 ± 44 ms with 3D SACORA and 1460 ± 60 ms with 3D SASHA. Mean septal post-contrast T1 was 824 ± 66 ms and 824 ± 60 ms. Conclusion 3D SACORA acquires 3D T1 maps in 15 heart beats (heart rate, 60 bpm) at 3T. In addition to its short acquisition time, the sequence achieves good T1 estimation precision and accuracy. Electronic supplementary material The online version of this article (10.1007/s10334-020-00848-2) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Najeeb F, Usman M, Aslam I, Qazi SA, Omer H. Respiratory motion-corrected, compressively sampled dynamic MR image reconstruction by exploiting multiple sparsity constraints and phase correlation-based data binning. MAGMA (NEW YORK, N.Y.) 2020; 33:411-419. [PMID: 31754909 DOI: 10.1007/s10334-019-00794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Cardiac magnetic resonance imaging (cMRI) is a standard method that is clinically used to evaluate the function of the human heart. Respiratory motion during a cMRI scan causes blurring artefacts in the reconstructed images. In conventional MRI, breath holding is used to avoid respiratory motion artefacts, which may be difficult for cardiac patients. MATERIALS AND METHODS This paper proposes a method in which phase correlation-based binning, followed by image registration-based sparsity along with spatio-temporal sparsity, is incorporated into the standard low rank + sparse (L+S) reconstruction for free-breathing cardiac cine MRI. The proposed method is validated on clinical data and simulated free-breathing cardiac cine data for different acceleration factors (AFs). The reconstructed images are analysed using visual assessment, artefact power (AP) and root-mean-square error (RMSE). The results of the proposed method are compared with the contemporary motion-corrected compressed sensing (MC-CS) method given in the literature. RESULTS Our results show that the proposed method successfully reconstructs the motion-corrected images from respiratory motion-corrupted, compressively sampled cardiac cine MR data, e.g., there is 26% and 24% improvement in terms of AP and RMSE values, respectively, at AF = 4 and 20% and 16.04% improvement in terms of AP and RMSE values, respectively, at AF = 8 in the reconstruction results from the proposed method for the cardiac phantom cine data. CONCLUSION The proposed method achieves significant improvement in the AP and RMSE values at different AFs for both the phantom and in vivo data.
Collapse
Affiliation(s)
- Faisal Najeeb
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad, Pakistan.
| | - Muhammad Usman
- Department of Computer Science, University College London, London, UK
| | - Ibtisam Aslam
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sohaib A Qazi
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad, Pakistan
| | - Hammad Omer
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
11
|
Liu J, Wang Y, Wen Z, Feng L, Lima APS, Mahadevan VS, Bolger A, Saloner D, Ordovas K. Extending Cardiac Functional Assessment with Respiratory-Resolved 3D Cine MRI. Sci Rep 2019; 9:11563. [PMID: 31399608 PMCID: PMC6689015 DOI: 10.1038/s41598-019-47869-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/25/2019] [Indexed: 01/23/2023] Open
Abstract
This study aimed to develop a cardiorespiratory-resolved 3D magnetic resonance imaging (5D MRI: x-y-z-cardiac-respiratory) approach based on 3D motion tracking for investigating the influence of respiration on cardiac ventricular function. A highly-accelerated 2.5-minute sparse MR protocol was developed for a continuous acquisition of cardiac images through multiple cardiac and respiratory cycles. The heart displacement along respiration was extracted using a 3D image deformation algorithm, and this information was used to cluster the acquired data into multiple respiratory phases. The proposed approach was tested in 15 healthy volunteers (7 females). Cardiac function parameters, including the end-systolic volume (ESV), end-diastolic volume (EDV), stroke volume (SV), and ejection fraction (EF), were measured for the left and right ventricle in both end-expiration and end-inspiration. Although with the proposed 5D cardiac MRI, there were no significant differences (p > 0.05, t-test) between end-expiration and end-inspiration measurements of the cardiac function in volunteers, incremental respiratory motion parameters that were derived from 3D motion tracking, such as the depth, expiration and inspiration distribution, correlated (p < 0.05, correlation coefficient, Mann-Whitney) with those volume-based parameters of cardiac function and varied between genders. The obtained initial results suggested that this new approach allows evaluation of cardiac function during specific respiratory phases. Thus, it can enable investigation of effects related to respiratory variability and better assessment of cardiac function for studying respiratory and/or cardiac dysfunction.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States.
| | - Yan Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States
| | - Zhaoying Wen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States.
- Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Li Feng
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ana Paula Santos Lima
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States
| | - Vaikom S Mahadevan
- Department of Cardiology, University of California San Francisco, San Francisco, California, United States
| | - Ann Bolger
- Department of Cardiology, University of California San Francisco, San Francisco, California, United States
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States
- Radiology Service, VA Medical Center, San Francisco, California, United States
| | - Karen Ordovas
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States
| |
Collapse
|
12
|
Ma J, März M, Funk S, Schulz-Menger J, Kutyniok G, Schaeffter T, Kolbitsch C. Shearlet-based compressed sensing for fast 3D cardiac MR imaging using iterative reweighting. Phys Med Biol 2018; 63:235004. [PMID: 30465546 DOI: 10.1088/1361-6560/aaea04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High-resolution three-dimensional (3D) cardiovascular magnetic resonance (CMR) is a valuable medical imaging technique, but its widespread application in clinical practice is hampered by long acquisition times. Here we present a novel compressed sensing (CS) reconstruction approach using shearlets as a sparsifying transform allowing for fast 3D CMR (3DShearCS) using 3D radial phase encoding (RPE). An iterative reweighting scheme was applied during image reconstruction to ensure fast convergence and high image quality. Shearlets are mathematically optimal for a simplified model of natural images and have been proven to be more efficient than classical systems such as wavelets. 3DShearCS was compared to three other commonly used reconstruction approaches. Image quality was assessed quantitatively using general image quality metrics and using clinical diagnostic scores from expert reviewers. The proposed technique had lower relative errors, higher structural similarity and higher diagnostic scores compared to the other reconstruction techniques especially for high undersampling factors, i.e. short scan times. 3DShearCS provided ensured accurate depiction of cardiac anatomy for fast imaging and could help to promote 3D high-resolution CMR in clinical practice.
Collapse
Affiliation(s)
- Jackie Ma
- Image and Video Coding Group, Fraunhofer Institute for Telecommunications-Heinrich Hertz Institute, Berlin, Germany. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|
13
|
Wang Y, Zhang Y, Xuan W, Kao E, Cao P, Tian B, Ordovas K, Saloner D, Liu J. Fully automatic segmentation of 4D MRI for cardiac functional measurements. Med Phys 2018; 46:180-189. [PMID: 30352129 DOI: 10.1002/mp.13245] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Segmentation of cardiac medical images, an important step in measuring cardiac function, is usually performed either manually or semiautomatically. Fully automatic segmentation of the left ventricle (LV), the right ventricle (RV) as well as the myocardium of three-dimensional (3D) magnetic resonance (MR) images throughout the entire cardiac cycle (four-dimensional, 4D), remains challenging. This study proposes a deformable-based segmentation methodology for efficiently segmenting 4D (3D + t) cardiac MR images. METHODS The proposed methodology first used the Hough transform and the local Gaussian distribution method (LGD) to segment the LV endocardial contours from cardiac MR images. Following this, a novel level set-based shape prior method was applied to generate the LV epicardial contours and the RV boundary. RESULTS This automatic image segmentation approach has been applied to studies on 17 subjects. The results demonstrated that the proposed method was efficient compared to manual segmentation, achieving a segmentation accuracy with average Dice values of 88.62 ± 5.47%, 87.35 ± 7.26%, and 82.63 ± 6.22% for the LV endocardial, LV epicardial, and RV contours, respectively. CONCLUSIONS We have presented a method for accurate LV and RV segmentation. Compared to three existing methods, the proposed method can successfully segment the LV and yield the highest Dice value. This makes it an option for clinical assessment of the volume, size, and thickness of the ventricles.
Collapse
Affiliation(s)
- Yan Wang
- Department of Radiology, University of California San Francisco, San Francisco, CA, 94121, USA
| | - Yue Zhang
- Department of Surgery, University of California San Francisco, San Francisco, CA, 94121, USA.,Veteran Affairs Medical Center, San Francisco, CA, 94121, USA
| | - Wanling Xuan
- The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210, USA
| | - Evan Kao
- Department of Radiology, University of California San Francisco, San Francisco, CA, 94121, USA.,University of California Berkeley, Berkeley, CA, 94720, USA
| | - Peng Cao
- Department of Radiology, University of California San Francisco, San Francisco, CA, 94107, USA
| | - Bing Tian
- Department of Radiology, Changhai Hospital, Shanghai, 200433, China
| | - Karen Ordovas
- Department of Radiology, University of California San Francisco, San Francisco, CA, 94121, USA
| | - David Saloner
- Department of Radiology, University of California San Francisco, San Francisco, CA, 94121, USA.,Department of Surgery, University of California San Francisco, San Francisco, CA, 94121, USA
| | - Jing Liu
- Department of Radiology, University of California San Francisco, San Francisco, CA, 94108, USA
| |
Collapse
|
14
|
Liu J, Koskas L, Faraji F, Kao E, Wang Y, Haraldsson H, Kefayati S, Zhu C, Ahn S, Laub G, Saloner D. Highly accelerated intracranial 4D flow MRI: evaluation of healthy volunteers and patients with intracranial aneurysms. MAGMA (NEW YORK, N.Y.) 2018; 31:295-307. [PMID: 28785850 PMCID: PMC5803461 DOI: 10.1007/s10334-017-0646-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 02/01/2023]
Abstract
OBJECTIVES To evaluate an accelerated 4D flow MRI method that provides high temporal resolution in a clinically feasible acquisition time for intracranial velocity imaging. MATERIALS AND METHODS Accelerated 4D flow MRI was developed by using a pseudo-random variable-density Cartesian undersampling strategy (CIRCUS) with the combination of k-t, parallel imaging and compressed sensing image reconstruction techniques (k-t SPARSE-SENSE). Four-dimensional flow data were acquired on five healthy volunteers and eight patients with intracranial aneurysms using CIRCUS (acceleration factor of R = 4, termed CIRCUS4) and GRAPPA (R = 2, termed GRAPPA2) as the reference method. Images with three times higher temporal resolution (R = 12, CIRCUS12) were also reconstructed from the same acquisition as CIRCUS4. Qualitative and quantitative image assessment was performed on the images acquired with different methods, and complex flow patterns in the aneurysms were identified and compared. RESULTS Four-dimensional flow MRI with CIRCUS was achieved in 5 min and allowed further improved temporal resolution of <30 ms. Volunteer studies showed similar qualitative and quantitative evaluation obtained with the proposed approach compared to the reference (overall image scores: GRAPPA2 3.2 ± 0.6; CIRCUS4 3.1 ± 0.7; CIRCUS12 3.3 ± 0.4; difference of the peak velocities: -3.83 ± 7.72 cm/s between CIRCUS4 and GRAPPA2, -1.72 ± 8.41 cm/s between CIRCUS12 and GRAPPA2). In patients with intracranial aneurysms, the higher temporal resolution improved capturing of the flow features in intracranial aneurysms (pathline visualization scores: GRAPPA2 2.2 ± 0.2; CIRCUS4 2.5 ± 0.5; CIRCUS12 2.7 ± 0.6). CONCLUSION The proposed rapid 4D flow MRI with a high temporal resolution is a promising tool for evaluating intracranial aneurysms in a clinically feasible acquisition time.
Collapse
Affiliation(s)
- Jing Liu
- Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA.
| | - Louise Koskas
- Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - Farshid Faraji
- Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - Evan Kao
- Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - Yan Wang
- Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - Henrik Haraldsson
- Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - Sarah Kefayati
- Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - Chengcheng Zhu
- Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | | | | | - David Saloner
- Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
- Radiology Service, VA Medical Center, San Francisco, CA, USA
| |
Collapse
|
15
|
Zhu C, Tian B, Chen L, Eisenmenger L, Raithel E, Forman C, Ahn S, Laub G, Liu Q, Lu J, Liu J, Hess C, Saloner D. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE). MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:457-467. [PMID: 29209856 DOI: 10.1007/s10334-017-0667-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/16/2017] [Accepted: 11/22/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging. MATERIALS AND METHODS A 3D accelerated T1-weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) were first optimized in 5 healthy volunteers. Ten patients with a variety of intracranial vascular disease presentations (aneurysm, atherosclerosis, dissection, vasculitis) were imaged with SPACE and optimized CS-SPACE, pre and post Gd contrast. Lumen/wall area, wall-to-lumen contrast ratio (CR), enhancement ratio (ER), sharpness, and qualitative scores (1-4) by two radiologists were recorded. RESULTS The optimized CS-SPACE protocol has ETL 60, 20% k-space under-sampling, 0.002 regularization factor with 20 iterations. In patient studies, CS-SPACE and conventional SPACE had comparable image scores both pre- (3.35 ± 0.85 vs. 3.54 ± 0.65, p = 0.13) and post-contrast (3.72 ± 0.58 vs. 3.53 ± 0.57, p = 0.15), but the CS-SPACE acquisition was 37% faster (6:48 vs. 10:50). CS-SPACE agreed with SPACE for lumen/wall area, ER measurements and sharpness, but marginally reduced the CR. CONCLUSION In the evaluation of intracranial vascular disease, CS-SPACE provides a substantial reduction in scan time compared to conventional T1-weighted SPACE while maintaining good image quality.
Collapse
Affiliation(s)
- Chengcheng Zhu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| | - Bing Tian
- Department of Radiology, Changhai Hospital, Shanghai, China
| | - Luguang Chen
- Department of Radiology, Changhai Hospital, Shanghai, China
| | - Laura Eisenmenger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | | | | | | | | | - Qi Liu
- Department of Radiology, Changhai Hospital, Shanghai, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital, Shanghai, China.
| | - Jing Liu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Christopher Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
16
|
Wang Y, Seguro F, Kao E, Zhang Y, Faraji F, Zhu C, Haraldsson H, Hope M, Saloner D, Liu J. Segmentation of lumen and outer wall of abdominal aortic aneurysms from 3D black-blood MRI with a registration based geodesic active contour model. Med Image Anal 2017; 40:1-10. [PMID: 28549310 DOI: 10.1016/j.media.2017.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 05/05/2017] [Accepted: 05/12/2017] [Indexed: 11/24/2022]
Abstract
Segmentation of the geometric morphology of abdominal aortic aneurysm is important for interventional planning. However, the segmentation of both the lumen and the outer wall of aneurysm in magnetic resonance (MR) image remains challenging. This study proposes a registration based segmentation methodology for efficiently segmenting MR images of abdominal aortic aneurysms. The proposed methodology first registers the contrast enhanced MR angiography (CE-MRA) and black-blood MR images, and then uses the Hough transform and geometric active contours to extract the vessel lumen by delineating the inner vessel wall directly from the CE-MRA. The proposed registration based geometric active contour is applied to black-blood MR images to generate the outer wall contour. The inner and outer vessel wall are then fused presenting the complete vessel lumen and wall segmentation. The results obtained from 19 cases showed that the proposed registration based geometric active contour model was efficient and comparable to manual segmentation and provided a high segmentation accuracy with an average Dice value reaching 89.79%.
Collapse
Affiliation(s)
- Yan Wang
- Radiology and Biomedical Imaging, University of California,San Francisco, San Francisco, United States.
| | - Florent Seguro
- Radiology and Biomedical Imaging, University of California,San Francisco, San Francisco, United States
| | - Evan Kao
- Radiology and Biomedical Imaging, University of California,San Francisco, San Francisco, United States; University of California, Berkeley; San Francisco, United States
| | - Yue Zhang
- Veterans Affairs Medical Center, San Francisco, United States
| | - Farshid Faraji
- Radiology and Biomedical Imaging, University of California,San Francisco, San Francisco, United States
| | - Chengcheng Zhu
- Radiology and Biomedical Imaging, University of California,San Francisco, San Francisco, United States
| | - Henrik Haraldsson
- Radiology and Biomedical Imaging, University of California,San Francisco, San Francisco, United States
| | - Michael Hope
- Radiology and Biomedical Imaging, University of California,San Francisco, San Francisco, United States
| | - David Saloner
- Radiology and Biomedical Imaging, University of California,San Francisco, San Francisco, United States; Veterans Affairs Medical Center, San Francisco, United States
| | - Jing Liu
- Radiology and Biomedical Imaging, University of California,San Francisco, San Francisco, United States
| |
Collapse
|
17
|
Wang Y, Navarro L, Zhang Y, Kao E, Zhu Y, Courbebaisse G. Intracranial Aneurysm Phantom Segmentation Using a 4D Lattice Boltzmann Method. Comput Sci Eng 2017. [DOI: 10.1109/mcse.2017.3151252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|