1
|
Bouyagoub S. A glimpse into the future: perfusion and diffusion MRI techniques for the assessment of cervical spondylotic myelopathy. Eur Radiol 2024; 34:1346-1348. [PMID: 37973634 DOI: 10.1007/s00330-023-10451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Samira Bouyagoub
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, BN1 9RR, UK.
| |
Collapse
|
2
|
Beydoun MA, Beydoun HA, Hu YH, Li Z, Wolf C, Meirelles O, Noren Hooten N, Launer LJ, Evans MK, Zonderman AB. Infection burden and its association with neurite orientation dispersion and density imaging markers in the UK Biobank. Brain Behav Immun 2024; 115:394-405. [PMID: 37858740 PMCID: PMC10873031 DOI: 10.1016/j.bbi.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/15/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Infection burden (IB), although linked to neurodegeneration, including Alzheimer's Disease (AD), has not been examined against neurite orientation, dispersion, and density imaging (NODDI) measures. METHODS Among 38,803 UK Biobank adults (Age:40-70 years), we tested associations of total IB (IBtotal, 47.5 %) and hospital-treated IB (IBhosp, 9.7 %) with NODDI measures (5-15 years later), including volume fraction of Gaussian isotropic diffusion (ISOVF), intra-cellular volume fraction (ICVF) and orientation dispersion (OD) indices, using multiple linear regression models. RESULTS Total and hospital-treated infection burdens (IBtotal and IBhosp) were associated with increased ISOVF, indicating increased free-water component. IBtotal was positively associated with OD, indicating that at higher IBtotal there was greater fanning of neurites. This was more evident in the lower cardiovascular health group. IBhosp was associated with higher OD, and lower ICVF at higher AD polygenic risk. Together, these findings indicate that both total and hospital-treated infections have effects on NODDI outcomes in the direction of poor brain health. These effects were largely homogeneous across cardiovascular health and AD polygenic risk groups, with some effects shown to be stronger at poor cardiovascular health and/or higher AD risk. CONCLUSIONS Total and hospital-treated infections were associated with poorer white matter microstructure (higher ISOVF or OD or lower ICVF), with some heterogeneity across cardiovascular health and AD risk. Longitudinal studies with multiple repeats on neuroimaging markers in comparable samples are needed.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA.
| | - Hind A Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA; Alexander T. Augusta Military Medical Center, Fort Belvoir, VA, USA
| | - Yi-Han Hu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - Zhiguang Li
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - Claudia Wolf
- Department of Education and Psychology, Freie Universitat, Berlin, Germany; Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Osorio Meirelles
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| |
Collapse
|
3
|
Zhong J, Liu X, Hu Y, Xing Y, Ding D, Ge X, Song Y, Wang S, Chen L, Zhu Y, Lu W, Zhang H, Yao W. Robustness of Quantitative Diffusion Metrics from Four Models: A Prospective Study on the Influence of Scan-Rescans, Voxel Size, Coils, and Observers. J Magn Reson Imaging 2023. [PMID: 38112305 DOI: 10.1002/jmri.29192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Quantitative diffusion metrics provide additional microstructural information of diseases. The robustness of quantitative diffusion metrics should be established before clinical application. PURPOSE To evaluate the variability and reproducibility of quantitative diffusion MRI metrics. STUDY TYPE Prospective. POPULATION 14 volunteers (7 men; median age, range, 28, 26-59 years). FIELD STRENGTH/SEQUENCE 3.0-T/Diffusion spectrum imaging. ASSESSMENT Brain MRI studies were performed four times per subject: involving different combinations of coil types and voxel sizes. Regions of interest of 13 brain anatomical sites were drawn by one observer twice and another observer once to allow interobserver and intraobserver reproducibility assessment. Twenty-five quantitative metrics were calculated using four diffusion models. STATISTICAL TESTS The variability was evaluated with coefficients of variation (CV), and quartile coefficient of dispersion (QCD). The reproducibility was assessed with intraclass correlation coefficient (ICC), and concordance correlation coefficient (CCC). Wilcoxon signed rank test was used to compare the influence of factors on robustness of quantitative diffusion metrics. A two-tailed P < 0.05 was considered statistically significant. RESULTS The variability of quantitative diffusion metrics showed CV of 2.4%-68.2%, and QCD of 0.6%-48.2%, respectively. The reproducibility of scans using 20-channel coils with voxels of 2 × 2 × 2 mm3 and 3 × 3 × 3 mm3 , respectively (ICC 0.03-0.84, CCC 0.03-0.84) was significantly worse than that of repeated scans using a 20-channel coil with a voxel size of 2 × 2 × 2 mm3 (ICC of 0.74-0.97, CCC 0.74-0.97) and that of scans using 20- and 64-channel coils, respectively, with a voxel size of 2 × 2 × 2 mm3 (ICC 0.59-0.95, CCC 0.59-0.95). The intraobserver reproducibility (ICC 0.49-0.94, CCC 0.49-0.94) was significantly better than the interobserver reproducibility (ICC 0.28-0.91, CCC 0.28-0.91). DATA CONCLUSION Our study indicated that the voxel size has a greater influence on the reproducibility of quantitative diffusion metrics than scan-rescans and coils. The reproducibility within one observer was higher than that between two observers. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianwei Liu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd, Shanghai, China
| | - Silian Wang
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwei Chen
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zhu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Lu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Mueller C, Goodman AM, Nenert R, Allendorfer JB, Philip NS, Correia S, Oster RA, LaFrance WC, Szaflarski JP. Repeatability of neurite orientation dispersion and density imaging in patients with traumatic brain injury. J Neuroimaging 2023; 33:802-824. [PMID: 37210714 PMCID: PMC10524628 DOI: 10.1111/jon.13125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to assess the repeatability of neurite orientation dispersion and density imaging in healthy controls (HCs) and traumatic brain injury (TBI). METHODS Seventeen HCs and 48 TBI patients were scanned twice over 18 weeks with diffusion imaging. Orientation dispersion (ODI), neurite density (NDI), and the fraction of isotropic diffusion (F-ISO) were quantified in regions of interest (ROIs) from a gray matter, subcortical, and white matter atlas and compared using the coefficient of variation for repeated measures (CVrep ), which quantifies the expected percent change on repeated measurement. We used a modified signed likelihood ratio test (M-SLRT) to compare the CVrep between groups in each ROI while correcting for multiple comparisons. RESULTS NDI exhibited excellent repeatability in both groups; the only group difference was found in the fusiform gyrus, where HCs exhibited better repeatability (M-SLRT = 9.463, p = .0021). ODI also had excellent repeatability in both groups, although repeatability was significantly better in HCs in 16 cortical ROIs (p < .0022) and in the bilateral white matter and bilateral cortex (p < .0027). F-ISO exhibited relatively poor repeatability in both groups, with few group differences. CONCLUSION Overall, the repeatability of the NDI, ODI, and F-ISO metrics over an 18-week period is acceptable for assessing the effects of behavioral or pharmacological interventions, though caution is advised when assessing F-ISO changes over time.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 6th Ave S, Birmingham, AL 35233
| | - Adam M. Goodman
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 6th Ave S, Birmingham, AL 35233
| | - Rodolphe Nenert
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 6th Ave S, Birmingham, AL 35233
| | - Jane B. Allendorfer
- Departments of Neurology and Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Noah S. Philip
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI
| | - Stephen Correia
- Department of Psychiatry, Butler Hospital / Brown University, Providence, RI
| | - Robert A. Oster
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - W. Curt LaFrance
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI
- Departments of Psychiatry and Neurology, Rhode Island Hospital / Brown University, Providence, RI
| | - Jerzy P. Szaflarski
- Departments of Neurology, Neurobiology and Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
5
|
Diffusion propagator metrics are biased when simultaneous multi-slice acceleration is used. Magn Reson Imaging 2021; 86:46-54. [PMID: 34801673 DOI: 10.1016/j.mri.2021.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/24/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022]
Abstract
Advanced diffusion MRI models are being explored to study the complex microstructure of the brain with higher accuracy. However, these techniques require long acquisition times. Simultaneous Multi-Slice (SMS) accelerates data acquisition by exciting multiple image slices simultaneously and separating the overlapping slices using a mathematical model, which makes use of the distinct information coming from an array of receive coils. However, SMS acceleration introduces increased noise in reconstructed images and crosstalk between simultaneously excited slices. These compounded effects from SMS acceleration could affect quantitative MRI techniques such as diffusion imaging. In this study, the effects of SMS acceleration on the accuracy of propagator metrics obtained from a model-free advanced diffusion technique called Mean Apparent Propagator MRI (MAP-MRI) was investigated. Ten healthy volunteers were scanned with SMS accelerated multi-shell diffusion MRI acquisitions. Group analyses were performed to study brain regions affected by SMS acceleration. In addition, diffusion metrics from atlas-based fiber tracts of interest were analyzed to investigate how propagator metrics in major fiber tracts were biased by 2- and 3-band SMS acceleration. Both zero-displacement metrics and non-Gaussianity metrics were significantly altered when SMS acceleration was used. MAP-MRI metrics calculated from SMS-3 showed significant differences with respect to SMS-2. Furthermore, with the shorter TR afforded by SMS acceleration, the characteristics of this bias have changed. This has implications for studies using diffusion MRI with SMS acceleration to investigate the effects of a disease or injury on the brain tissues.
Collapse
|