1
|
Cheng CW, Kou HS, Wu SM, Wang CC. A chemometric experimental design with three-step stacking capillary electrophoresis for analysis of five tobacco-specific nitrosamines in cigarette products. J Chromatogr A 2022; 1677:463283. [PMID: 35810639 DOI: 10.1016/j.chroma.2022.463283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
Tobacco-specific nitrosamines (TSNAs) as carcinogens endanger our health and life from cigarette products. However, the safe range of TSNAs levels in commercial cigarette products has not yet been established. For the purpose of safety and supervision, a three-step stacking approach including field amplified sample injection (FASI), sweeping, and analyte focusing by micelle collapse (AFMC), was developed for the simultaneous determination of five TSNAs levels in cigarette products. This approach also involved aspects of chemometric experimental design, including fractional factorial design and central composite design. After the multilevel optimization of the experimental design, the five TSNAs were well separated. The LOD (S/N = 3) values of the N´-nitrosonornicotine (NNN), N´-nitrosoanatabine (NAT), N´-nitrosoanabasine (NAB), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in the FASI-sweeping-AFMC CE approach were 1.000 ng/mL, 0.500 ng/mL, 0.125 ng/mL, 1.000 ng/mL, and 0.500 ng/mL respectively. The results of relative standard deviation (RSD) and relative error (RE) were all less than 3.35%, demonstrating good precision and accuracy. Finally, this novel approach was further applied to monitor three commercial cigarette products, and a range of 250.1-336.6 ng/g for NNN, 481.6-526.7 ng/g for NAT, 82.2-247.6 ng/g for NAB, 167.7-473.7 ng/g for NNAL, and 39.4-246.7 ng/g for NNK could be observed among these. Based on these results, the novel CE stacking strategy was successfully applied for the analysis of five TSNAs levels in cigarette products and could serve as a tool for assays of quality control of nitrosamines.
Collapse
Affiliation(s)
- Cheng-Wei Cheng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Hwang-Shang Kou
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Shou-Mei Wu
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Taiwan Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, ROC.
| | - Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC; Drug Development and Value Creation Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC.
| |
Collapse
|
2
|
Bian Y, Zhang Y, Zhou Y, Li GH, Feng XS. Progress in the pretreatment and analysis of N-nitrosamines: an update since 2010. Crit Rev Food Sci Nutr 2020; 61:3626-3660. [PMID: 32776791 DOI: 10.1080/10408398.2020.1803790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As highly toxic substances, N-nitrosamines (NAs) have been proved to cause carcinogenesis and mutagenesis in humans. Therefore, to carefully monitor safety and preserve human health, the development of rapid, accurate, and high-sensitivity determination methods of NAs is of substantial importance. This review provides a current-status comprehensive summary of the pretreatment and determination methods of NAs in various samples since 2010. Common pretreatment methods that have been used to extract and purify targets include solid-phase extraction, liquid-liquid extraction and various microextraction methods, such as solid-phase microextraction and liquid-phase microextraction, among others. Determination methods include liquid chromatography, gas chromatography, supercritical fluid chromatography and electrochemical methods, among others. In addition, we discuss and compare the advantages and disadvantages of various pretreatment and analytical methods and examine the prospects in this area.
Collapse
Affiliation(s)
- Yu Bian
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-Hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Wang Y, DiSalvo M, Gunasekara DB, Dutton J, Proctor A, Lebhar MS, Williamson IA, Speer J, Howard RL, Smiddy NM, Bultman SJ, Sims CE, Magness ST, Allbritton NL. Self-renewing Monolayer of Primary Colonic or Rectal Epithelial Cells. Cell Mol Gastroenterol Hepatol 2017; 4:165-182.e7. [PMID: 29204504 PMCID: PMC5710741 DOI: 10.1016/j.jcmgh.2017.02.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/15/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Three-dimensional organoid culture has fundamentally changed the in vitro study of intestinal biology enabling novel assays; however, its use is limited because of an inaccessible luminal compartment and challenges to data gathering in a three-dimensional hydrogel matrix. Long-lived, self-renewing 2-dimensional (2-D) tissue cultured from primary colon cells has not been accomplished. METHODS The surface matrix and chemical factors that sustain 2-D mouse colonic and human rectal epithelial cell monolayers with cell repertoires comparable to that in vivo were identified. RESULTS The monolayers formed organoids or colonoids when placed in standard Matrigel culture. As with the colonoids, the monolayers exhibited compartmentalization of proliferative and differentiated cells, with proliferative cells located near the peripheral edges of growing monolayers and differentiated cells predominated in the central regions. Screening of 77 dietary compounds and metabolites revealed altered proliferation or differentiation of the murine colonic epithelium. When exposed to a subset of the compound library, murine organoids exhibited similar responses to that of the monolayer but with differences that were likely attributable to the inaccessible organoid lumen. The response of the human primary epithelium to a compound subset was distinct from that of both the murine primary epithelium and human tumor cells. CONCLUSIONS This study demonstrates that a self-renewing 2-D murine and human monolayer derived from primary cells can serve as a physiologically relevant assay system for study of stem cell renewal and differentiation and for compound screening. The platform holds transformative potential for personalized and precision medicine and can be applied to emerging areas of disease modeling and microbiome studies.
Collapse
Key Words
- 2-D, two-dimensional
- 3-D, three-dimensional
- ALP, alkaline phosphatase
- CAG, cytomegalovirus enhancer plus chicken actin promoter
- CI, confidence interval
- Colonic Epithelial Cells
- Compound Screening
- ECM, extracellular matrix
- EDU, 5-ethynyl-2′-deoxyuridine
- EGF, epidermal growth factor
- ENR-W, cell medium with [Wnt-3A] of 30 ng/mL
- ENR-w, cell medium with [Wnt-3A] of 10 ng/mL
- HISC, human intestinal stem cell medium
- IACUC, Institutional Animal Care and Use Committee
- ISC, intestinal stem cell
- Monolayer
- Organoids
- PBS, phosphate-buffered saline
- PDMS, polydimethylsiloxane
- RFP, red fluorescent protein
- SEM, scanning electron microscope
- SSMD, strictly standardized mean difference
- UNC, University of North Carolina
- α-ChgA, anti-chromogranin A
- α-Muc2, anti-mucin2
Collapse
Affiliation(s)
- Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Matthew DiSalvo
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Dulan B. Gunasekara
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Johanna Dutton
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Angela Proctor
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Michael S. Lebhar
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Ian A. Williamson
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Jennifer Speer
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Riley L. Howard
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina
| | - Nicole M. Smiddy
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Scott J. Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Scott T. Magness
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina,Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina,Correspondence Address correspondence to: Nancy L. Allbritton, MD, PhD, Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599. fax: (919) 962-2388.Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina 27599
| |
Collapse
|