1
|
Ailuno G, Baldassari S, Balboni A, Drava G, Spalletti C, Tantillo E, Mazzanti M, Barbieri F, Thellung S, Florio T, Caviglioli G. Development and validation of a GC-MS method for determination of metformin in normal brain and in glioblastoma tissues. J Pharm Biomed Anal 2023; 234:115503. [PMID: 37295189 DOI: 10.1016/j.jpba.2023.115503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Metformin hydrochloride (MH) has recently been repurposed as an anticancer agent, showing antiproliferative activity in vitro and in vivo. In particular, experimental evidence has suggested its potential clinical efficacy in glioblastoma (GBM), a very aggressive tumor frequently characterized by gloomy prognosis. Unfortunately, the published literature concerning experimental applications of MH in glioblastoma animal models report no data on metformin levels reached in the brain, which, considering the high hydrophilicity of the drug, are likely very low. Therefore, new sensitive analytical methods to be applied on biological tissues are necessary to improve our knowledge of MH in vivo biodistribution and biological effects on tumors. In this research work, a GC-MS method for MH quantification in brain tissues is proposed. MH has been derivatized using N-methyl-bis(trifluoroacetamide), as already described in the literature, but the derivatization conditions have been optimized; moreover, deuterated MH has been selected as the best internal standard, after a comparative evaluation including other internal standards employed in published methods. After ascertaining method linearity, its accuracy, precision, specificity, repeatability, LOD and LOQ (0.373 µM and 1.242 µM, respectively, corresponding to 0.887 and 2.958 pmol/mg of wet tissue) have been evaluated on mouse brain tissue samples, obtained through a straightforward preparation procedure involving methanolic extraction from lyophilized brain homogenates and solid phase purification. The method has been validated on brain samples obtained from mice, either healthy or xenografted with GBM cells, receiving metformin dissolved in the drinking water. This analytical method can be usefully applied in preclinical studies aiming at clarifying MH mechanism of action in brain tumors.
Collapse
Affiliation(s)
- Giorgia Ailuno
- Department of Pharmacy, Università degli Studi di Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Sara Baldassari
- Department of Pharmacy, Università degli Studi di Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Alice Balboni
- Department of Pharmacy, Università degli Studi di Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Giuliana Drava
- Department of Pharmacy, Università degli Studi di Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Cristina Spalletti
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Elena Tantillo
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Michele Mazzanti
- Department of Biosciences, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Federica Barbieri
- Department of Internal Medicine, Università degli Studi di Genova, Viale Benedetto XV 2, 16132 Genova, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Stefano Thellung
- Department of Internal Medicine, Università degli Studi di Genova, Viale Benedetto XV 2, 16132 Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine, Università degli Studi di Genova, Viale Benedetto XV 2, 16132 Genova, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Gabriele Caviglioli
- Department of Pharmacy, Università degli Studi di Genova, Viale Cembrano 4, 16148 Genova, Italy.
| |
Collapse
|
2
|
Yang FC, Yang Y, Yan L, Wang FY, Wu L, Xia MZ, Li XS. Fluoride derivatization-enabled sensitive and simultaneous detection of biomarkers for nitrogen mustard in human plasma and urine via gas chromatography tandem mass spectrometry. RSC Adv 2023; 13:27535-27548. [PMID: 37720833 PMCID: PMC10501049 DOI: 10.1039/d3ra04697d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
Methyl-diethanolamine (CAS: 105-59-9), ethyl-diethanolamine (CAS: 139-87-7), and triethanolamine (CAS: 102-71-6) were identified as the degradation products and bio-markers of nitrogen mustard exposure. Sensitive and convenient detection methods for amino alcohol are of great importance to identify nitrogen mustard exposure in forensic analysis. Herein, analytical methods including gas chromatography-tandem mass spectrometry combined with heptafluorobutyryl derivatization and solid phase extraction were established for retrospective detection of the biomarkers in human plasma and urine samples. The efficiency of the method was improved by optimizing the conditions for sample preparation and the GC-MS/MS method. The optimization included the derivatization temperature, reaction time, reagent dosage and solid phase extraction cartridges, eluent and pH of the loading sample. The results indicated that the SCX cartridge resulted in better enrichment and purification effects, and the best recovery could be obtained with pH = 3-4 for the loading samples and an eluent of 2 mL 10% NH4OH/MeOH. The GC-MS/MS parameters were also optimized for better specificity and sensitivity. The established method was fully validated for each analyte both in plasma and urine matrixes. The linear range of analytes in plasma was 1.0-1000 ng mL-1 with a correlation parameter (R2) of ≥0.994, intra-day/inter-day accuracy of 93.7-117%, and relative standard deviation (RSD) of ≤6.5%. Meanwhile the results in urine were 1.0-1000 ng mL-1 with R2 of ≥0.996, intra-day/inter-day accuracy of 94.3-122%, and RSD of ≤6.6%. The detection limit of the analytes was 1.0 ng mL-1. The method was applied for the detection and identification of trace amino alcohols present in urine samples dispatched by the Organization for the Prohibition of Chemical Weapons (OPCW) and the results were confirmed to be correct.
Collapse
Affiliation(s)
- Fang-Chao Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Sciences & Technology Nanjing 210094 P. R. China +86 25 84315190
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China +86 10 69760259
| | - Long Yan
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China +86 10 69760259
| | - Feng-Yun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Sciences & Technology Nanjing 210094 P. R. China +86 25 84315190
| | - Lei Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Sciences & Technology Nanjing 210094 P. R. China +86 25 84315190
| | - Ming-Zhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Sciences & Technology Nanjing 210094 P. R. China +86 25 84315190
| | - Xiao-Sen Li
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China +86 10 69760259
| |
Collapse
|
3
|
Abadie C, Lalande J, Tcherkez G. Exact mass GC-MS analysis: Protocol, database, advantages and application to plant metabolic profiling. PLANT, CELL & ENVIRONMENT 2022; 45:3171-3183. [PMID: 35899865 PMCID: PMC9543805 DOI: 10.1111/pce.14407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 05/14/2023]
Abstract
Plant metabolomics has been used widely in plant physiology, in particular to analyse metabolic responses to environmental parameters. Derivatization (via trimethylsilylation and methoximation) followed by GC-MS metabolic profiling is a major technique to quantify low molecular weight, common metabolites of primary carbon, sulphur and nitrogen metabolism. There are now excellent opportunities for new generation analyses, using high resolution, exact mass GC-MS spectrometers that are progressively becoming relatively cheap. However, exact mass GC-MS analyses for routine metabolic profiling are not common, since there is no dedicated available database. Also, exact mass GC-MS is usually dedicated to structural resolution of targeted secondary metabolites. Here, we present a curated database for exact mass metabolic profiling (made of 336 analytes, 1064 characteristic exact mass fragments) focused on molecules of primary metabolism. We show advantages of exact mass analyses, in particular to resolve isotopic patterns, localise S-containing metabolites, and avoid identification errors when analytes have common nominal mass peaks in their spectrum. We provide a practical example using leaves of different Arabidopsis ecotypes and show how exact mass GC-MS analysis can be applied to plant samples and identify metabolic profiles.
Collapse
Affiliation(s)
- Cyril Abadie
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAeBeaucouzéFrance
| | - Julie Lalande
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAeBeaucouzéFrance
| | - Guillaume Tcherkez
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAeBeaucouzéFrance
- Research School of Biology, College of Science, Australian National UniversityCanberra ACTAustralia
| |
Collapse
|
4
|
Raman-probes for monitoring metabolites and nutrient fate in Yarrowia lipolytica using deuterated glucose. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Katuri GP, Fan X, Kosarac I, Siddique S, Kubwabo C. Synthetic Musk Compounds in Human Biological Matrices: Analytical Methods and Occurrence-A Review. J AOAC Int 2021; 104:368-383. [PMID: 33283860 DOI: 10.1093/jaoacint/qsaa154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022]
Abstract
Extensive use of synthetic musk compounds (SMs) in numerous consumer and personal care products has resulted in direct human exposures via dermal absorption, inhalation of contaminated dust and volatilized fragrances, and oral ingestion of contaminated foods and liquids. SMs and their metabolites are lipophilic, hence commonly detected in various biological matrices such as blood, breast milk, and adipose tissue. Appropriate analytical techniques are needed to detect and quantify SMs in biological matrices to assess their potential effects on human health. Different methods to process and analyze SMs in biological matrices, including sample-pretreatment, solvent extraction, cleanup, and instrumental analysis, are presented in this review. The concentration levels of selected musk compounds in biological samples from different countries/regions are summarized. Finally, research gaps and questions pertaining to the analysis of SMs are identified and suggestions made for future research studies.
Collapse
Affiliation(s)
- Guru Prasad Katuri
- Environmental Health Science and Research Bureau, Health Canada, Ottawa Ontario, Canada
| | - Xinghua Fan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa Ontario, Canada
| | - Ivana Kosarac
- Science Division, Tobacco Control Directorate, Health Canada, Ottawa Ontario, Canada
| | - Shabana Siddique
- Environmental Health Science and Research Bureau, Health Canada, Ottawa Ontario, Canada
| | - Cariton Kubwabo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa Ontario, Canada
| |
Collapse
|
6
|
Vondran J, Furst MRL, Eastham GR, Seidensticker T, Cole-Hamilton DJ. Magic of Alpha: The Chemistry of a Remarkable Bidentate Phosphine, 1,2-Bis(di- tert-butylphosphinomethyl)benzene. Chem Rev 2021; 121:6610-6653. [PMID: 33961414 DOI: 10.1021/acs.chemrev.0c01254] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bidentate phosphine ligand 1,2-bis(di-tert-butylphosphinomethyl)benzene (1,2-DTBPMB) has been reported over the years as being one of, if not the, best ligands for achieving the alkoxycarbonylation of various unsaturated compounds. Bonded to palladium, the ligand provides the basis for the first step in the commercial (Alpha) production of methyl methacrylate as well as very high selectivity to linear esters and acids from terminal or internal double bonds. The present review is an overview covering the literature dealing with the 1,2-DTBPMB ligand: from its first reference, its catalysis, including the alkoxycarbonylation reaction and its mechanism, its isomerization abilities including the highly selective isomerizing methoxycarbonylation, other reactions such as cross-coupling, recycling approaches, and the development of improved, modified ligands, in which some tert-butyl ligands are replaced by 2-pyridyl moieties and which show exceptional rates for carbonylation reactions at low temperatures.
Collapse
Affiliation(s)
- Johanna Vondran
- Laboratory for Industrial Chemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Marc R L Furst
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, KY16 9ST Scotland, U.K.,Athénée du Luxembourg, 24, Boulevard Pierre Dupong, L-1430 Luxembourg, Luxembourg
| | | | - Thomas Seidensticker
- Laboratory for Industrial Chemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - David J Cole-Hamilton
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, KY16 9ST Scotland, U.K
| |
Collapse
|
7
|
Alshehri YM, Alghamdi TS, Aldawsari FS. HS-SPME-GC-MS as an alternative method for NDMA analysis in ranitidine products. J Pharm Biomed Anal 2020; 191:113582. [DOI: 10.1016/j.jpba.2020.113582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/14/2023]
|
8
|
Pokryshkin SA, Kosyakov DS, Kozhevnikov AY, Lakhmanov DE, Ul’yanovskii NV. Highly Sensitive Determination of Chlorophenols in Sea Water by Gas Chromatography−Tandem Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934818100088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Schenk DJ, Lockley WJS, Elmore CS, Hesk D, Roberts D. Determining the isotopic abundance of a labeled compound by mass spectrometry and how correcting for natural abundance distribution using analogous data from the unlabeled compound leads to a systematic error. J Labelled Comp Radiopharm 2016; 59:136-46. [PMID: 26916110 DOI: 10.1002/jlcr.3370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/27/2015] [Accepted: 12/21/2015] [Indexed: 11/08/2022]
Abstract
When the isotopic abundance or specific activity of a labeled compound is determined by mass spectrometry (MS), it is necessary to correct the raw MS data to eliminate ion intensity contributions, which arise from the presence of heavy isotopes at natural abundance (e.g., a typical carbon compound contains ~1.1% (13) C per carbon atom). The most common approach is to employ a correction in which the mass-to-charge distribution of the corresponding unlabeled compound is used to subtract the natural abundance contributions from the raw mass-to-charge distribution pattern of the labeled compound. Following this correction, the residual intensities should be due to the presence of the newly introduced labeled atoms only. However, this will only be the case when the natural abundance mass isotopomer distribution of the unlabeled compound is the same as that of the labeled species. Although this may be a good approximation, it cannot be accurate in all cases. The implications of this approximation for the determination of isotopic abundance and specific activity have been examined in practice. Isotopically mixed stable-atom labeled valine batches were produced, and both these and [(14) C6 ]carbamazepine were analyzed by MS to determine the extent of the error introduced by the approach. Our studies revealed that significant errors are possible for small highly-labeled compounds, such as valine, under some circumstances. In the case with [(14) C6 ]carbamazepine, the errors introduced were minor but could be significant for (14) C-labeled compounds with particular isotopic distributions. This source of systematic error can be minimized, although not eliminated, by the selection of an appropriate isotopic correction pattern or by the use of a program that varies the natural abundance distribution throughout the correction.
Collapse
Affiliation(s)
- David J Schenk
- Department of Process and Analytical Chemistry, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | | | - Charles S Elmore
- Isotope Chemistry, DMPK, Drug Safety and Metabolism, AstraZeneca, Mölndal, Sweden
| | - Dave Hesk
- Department of Process and Analytical Chemistry, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | - Drew Roberts
- High Performance Computing, Informatics IT (Rahway), Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|