1
|
Catani M, De Luca C, Medeiros Garcia Alcântara J, Manfredini N, Perrone D, Marchesi E, Weldon R, Müller-Späth T, Cavazzini A, Morbidelli M, Sponchioni M. Oligonucleotides: Current Trends and Innovative Applications in the Synthesis, Characterization, and Purification. Biotechnol J 2020; 15:e1900226. [PMID: 32298041 DOI: 10.1002/biot.201900226] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/17/2020] [Indexed: 12/12/2022]
Abstract
Oligonucleotides (ONs) are gaining increasing importance as a promising novel class of biopharmaceuticals. Thanks to their fundamental role in gene regulation, they can be used to develop custom-made drugs (also called N-to-1) able to act on the gene expression at pre-translational level. With recent approvals of ON-based therapeutics by the Food and Drug Administration (FDA), a growing demand for high-quality chemically modified ONs is emerging and their market is expected to impressively prosper in the near future. To satisfy this growing market demand, a scalable and economically sustainable ON production is needed. In this paper, the state of the art of the whole ON production process is illustrated with the aim of highlighting the most promising routes toward the auspicated market-size production. In particular, the most recent advancements in both the upstream stage, mainly based on solid-phase synthesis and recombinant technology, and the downstream one, focusing on chromatographic techniques, are reviewed. Since ON production is projected to expand to the large scale, automatized multicolumn countercurrent technologies will reasonably be required soon to replace the current ones based on batch single-column operations. This consideration is supported by a recent cutting-edge application of continuous chromatography for the ON purification.
Collapse
Affiliation(s)
- Martina Catani
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, Ferrara, 44121, Italy
| | - Chiara De Luca
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, Ferrara, 44121, Italy
| | - João Medeiros Garcia Alcântara
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta,", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Nicolò Manfredini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta,", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Daniela Perrone
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, Ferrara, 44121, Italy
| | - Elena Marchesi
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, Ferrara, 44121, Italy
| | - Richard Weldon
- ChromaCon AG, Technoparkstrasse 1, Zürich, 8005, Switzerland
| | | | - Alberto Cavazzini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, Ferrara, 44121, Italy
| | - Massimo Morbidelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta,", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta,", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| |
Collapse
|
2
|
Qiao JQ, Liang C, Zhu ZY, Cao ZM, Zheng WJ, Lian HZ. Monolithic alkylsilane column: A promising separation medium for oligonucleotides by ion-pair reversed-phase liquid chromatography. J Chromatogr A 2018; 1569:168-177. [PMID: 30077461 DOI: 10.1016/j.chroma.2018.07.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
In this paper, a monolithic octadecylsilane column and particle-packed octadecylsilane columns were used to investigate the retention behaviors of oligonucleotides by ion-pair reversed-phase liquid chromatography (IP-RPLC). Results showed that, with same base composition, hairpin oligonucleotides always had weaker retention than corresponding random coil oligonucleotides on the monolithic column, but not on the particle-packed columns. In addition, the linear correlation between the retention factor k of oligonucleotides and the reciprocal of temperature (1/T), especially for hairpins, was relatively weaker on the particle-packed columns, as compared to the correlation on the monolithic column. The correlation between k and 1/T became weaker with decreasing particle size of the particle-packed columns. Moreover, results revealed that the overall retention order on the particle-packed column with small particles (3 μm) differed greatly from that on the monolithic column. In contrast, the retention order on the 10 μm particle-packed column was very close to that on the monolithic column. From the above, we inferred that oligonucleotides could keep their primary conformations unchanged when passing through the monolithic column, attributed to the special pore structures of the monolith. However, the conformations of oligonucleotides were suppressed or even destroyed when oligonucleotides passed through the particle-packed columns. This because the narrow and tortuous channels created by the stacked stationary phase particles could lead to more complex and unequable retention behaviors. Therefore, the monolithic column exhibited better retention regularity for oligonucleotides of secondary structure especially for hairpins than the particle-packed columns. It is noteworthy that the monolith-based IP-RPLC opens an intriguing prospect in accurately elucidating the retention behaviors of oligonucleotides.
Collapse
Affiliation(s)
- Jun-Qin Qiao
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Chao Liang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhen-Yu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhao-Ming Cao
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Wei-Juan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|