1
|
Xie S, Jin Z, Huang Y, Huang Q. Quantitative analysis of carbohydrate residues in dextran 40 from various sources: a comparative study using high-performance liquid chromatography coupled with a charged aerosol detector. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 39898466 DOI: 10.1039/d4ay02242d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Dextran 40, a typical high molecular weight carbohydrate drug refined through fermentation, is widely used in the clinical field in an injectable form. The final product obtained through fermentation may contain by-products such as fructose and residual sucrose, which carry a risk of adverse reactions. Current quality standards do not effectively control for the possible presence of carbohydrate residues, and methods for detecting such residues are lacking. This gap in quality control exists in the vast majority of existing carbohydrate drugs. This study established and compared liquid chromatography methods equipped with three different detectors (RID, MS, and CAD), selecting a convenient, rapid, and efficient HILIC-CAD method. This method combines the high sensitivity of the HILIC-MS method with the high throughput of the HILIC-RID method, using porous silica as the stationary phase and a high-precision charged aerosol detector in tandem, achieving rapid separation and quantification of fructose and sucrose. Additionally, pretreatment optimization was conducted to eliminate the impact of dextran 40 on the detection of fructose and sucrose. The method was validated, showing good repeatability, recovery, robustness, and linearity, capable of quantifying carbohydrate residues at approximately 3.3 ppm. This study compared the residual levels of fructose and sucrose in dextran 40 obtained from different purification processes, analyzing key purification operations that influence the extent of carbohydrate residues. These findings provide a reference for optimizing the production process of dextran 40, ensuring the quality of the drug and public drug safety. Furthermore, the approach used in this study for detecting carbohydrate residues is applicable to the quality control of other carbohydrate drugs produced via fermentation.
Collapse
Affiliation(s)
- Shenggu Xie
- Zhejiang Institute for Food and Drug Control, National Medical Products Administration Key Laboratory for Core Technology of Generic Drug Evaluation, Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Hangzhou 310052, China
| | - Zhuyu Jin
- Zhejiang Institute for Food and Drug Control, National Medical Products Administration Key Laboratory for Core Technology of Generic Drug Evaluation, Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Hangzhou 310052, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Huang
- Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiaoqiao Huang
- Zhejiang Institute for Food and Drug Control, National Medical Products Administration Key Laboratory for Core Technology of Generic Drug Evaluation, Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Hangzhou 310052, China
| |
Collapse
|
2
|
Petrásková L, Bojarová P. Recent trends in the separation and analysis of chitooligomers. Carbohydr Res 2025; 548:109337. [PMID: 39642757 DOI: 10.1016/j.carres.2024.109337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Chitosan is a widely used linear biopolymer composed mainly of glucosamine and to a lesser extent of N-acetylglucosamine units. Many biological activities of chitosan are attributed to its shorter oligomeric chains, which consist of chitosan prepared either by enzyme activity (lysozyme, bacterial chitinase) or chemically by acid-catalyzed hydrolysis (e.g. in the stomach). However, these processes always result in a mixture of shorter chitooligosaccharides with varying degrees of acetylation whereas for relevant results of biological studies it is necessary to work with a precisely defined material. In this review, we provide an overview and comparison of analytical methods leading to the determination of the degree of polymerization (DP), the degree of acetylation (DA), the fraction of acetylation (FA) and the acetylation patterns (PA) of chitooligosaccharide chains and of the current state of knowledge on chitooligosaccharide separation. This review aims to present the most promising routes to well-defined low molecular weight chitosan with low dispersity.
Collapse
Affiliation(s)
- Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200, Prague, Czech Republic.
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200, Prague, Czech Republic
| |
Collapse
|
3
|
Gao J, Wang Q, Wei X, Zhu B, Wang J, Wang F. Quantitative analysis of the impurities in Etimicin using hydrophilic interaction liquid chromatography coupled with charged aerosol detector. J Pharm Biomed Anal 2024; 249:116384. [PMID: 39083918 DOI: 10.1016/j.jpba.2024.116384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Etimicin is a typical aminoglycoside antibiotic (AG). High performance liquid chromatography-evaporation light scattering detector (HPLC-ELSD) method is a commonly used method for determining impurities in Etimicin. However, due to the poor reproducibility, low sensitivity and narrow linear range of the ELSD, high-throughput quantitative analysis of impurities in Etimicin currently poses a challenge. In this study, a sensitive method using hydrophilic interaction liquid chromatography coupled with charged aerosol detector (HILIC-CAD) was developed for the analysis of the impurities in Etimicin. The liquid phase conditions for determination impurities in Etimicin were optimized using Box Behnken design (BBD) and response surface methodology (RSM), resulting in satisfactory separation and optimal CAD output signal. We also studied the influence of CAD parameters on the signal-to-noise ratio and linearity of Etimicin and its impurities. This method has also been proven to be effective in separating impurities from two other typical AGs, Isepamicin and Amikacin. In the method validation, the coefficient of determination (R2) of Etimicin, Isepamicin and Amikacin and their impurities were all greater than 0.999, within the range of 0.5-50 μg/mL. The average recoveries of the impurities of three typical AGs were 99.03 %-101.22 %, RSDs all were less than 2.5 % for intra-day and inter-day precision, with good precision and accuracy. The developed HILIC-CAD quantification method was sensitive, accurate and highly selective for quantitative analysis of impurities in the AGs without need ion-pairing reagents, which is ensure the public medication safety. The method is first reported application of HILIC-CAD method for quantitative analysis of the impurities in AGs.
Collapse
Affiliation(s)
- Jiarui Gao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Quan Wang
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Wei
- Zhejiang University-University of Edinburgh Institute, Haining 314400, China
| | - Bingqi Zhu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jian Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory for Core Technology of Generic Drug Evaluation National Medical Product Administration & Key laboratory of drug contacting materials quality control of zhejiang province, Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China.
| | - Fan Wang
- Key Laboratory for Core Technology of Generic Drug Evaluation National Medical Product Administration & Key laboratory of drug contacting materials quality control of zhejiang province, Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China; School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
5
|
Liu Y, Li R, Zhang Y, Jiao S, Xu T, Zhou Y, Wang Y, Wei J, Du W, Fujita M, Du Y, Wang ZA. Unveiling the inverse antimicrobial impact of a hetero-chitooligosaccharide on Candida tropicalis growth and biofilm formation. Carbohydr Polym 2024; 333:121999. [PMID: 38494241 DOI: 10.1016/j.carbpol.2024.121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
Chitosan and chitooligosaccharide (COS) are renowned for their potent antimicrobial prowess, yet the precise antimicrobial efficacy of COS remains elusive due to scant structural information about the utilized saccharides. This study delves into the antimicrobial potential of COS, spotlighting a distinct hetero-chitooligosaccharide dubbed DACOS. In contrast to other COS, DACOS remarkably fosters the growth of Candida tropicalis planktonic cells and fungal biofilms. Employing gradient alcohol precipitation, DACOS was fractionated, unveiling diverse structural characteristics and differential impacts on C. tropicalis. Notably, in a murine model of systemic candidiasis, DACOS, particularly its 70 % alcohol precipitates, manifests a promotive effect on Candida infection. This research unveils a new pathway for exploring the intricate nexus between the structural attributes of chitosan oligosaccharides and their physiological repercussions, underscoring the imperative of crafting chitosan and COS with meticulously defined structural configurations.
Collapse
Affiliation(s)
- Yangyang Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122,China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruilian Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Tong Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhang Zhou
- Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China; Department of Gastroenterology, China-Japan Friendship Hospital, 100029 Beijing, China
| | - Yujing Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Du
- Agilent Technologies (China) Co., Ltd., Beijing 100102, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122,China; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhuo A Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|