1
|
Bao X, Chong P, He C, Wang X, Zhang F. Mechanism on the promotion of host growth and enhancement of salt tolerance by Bacillaceae isolated from the rhizosphere of Reaumuria soongorica. Front Microbiol 2024; 15:1408622. [PMID: 38881656 PMCID: PMC11176432 DOI: 10.3389/fmicb.2024.1408622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Salt stress is a major abiotic stress that affects the growth of Reaumuria soongorica and many psammophytes in the desert areas of Northwest China. However, various Plant Growth-Promoting Rhizobacteria (PGPR) have been known to play an important role in promoting plant growth and alleviating the damaging effects of salt stress. In this study, three PGPR strains belonging to Bacillaceae were isolated from the rhizosphere of Reaumuria soongorica by morphological and molecular identification. All isolated strains exhibited capabilities of producing IAA, solubilizing phosphate, and fixing nitrogen, and were able to tolerate high levels of NaCl stress, up to 8-12%. The results of the pot-based experiment showed that salt (400 mM NaCl) stress inhibited Reaumuria soongorica seedlings' growth performance as well as biomass production, but after inoculation with strains P2, S37, and S40, the plant's height significantly increased by 26.87, 17.59, and 13.36%, respectively (p < 0.05), and both aboveground and root fresh weight significantly increased by more than 2 times compared to NaCl treatment. Additionally, inoculation with P2, S37, and S40 strains increased the content of photosynthetic pigments, proline, and soluble protein in Reaumuria soongorica seedlings under NaCl stress, while reducing the content of malondialdehyde and soluble sugars. Metabolomic analysis showed that strain S40 induces Reaumuria soongorica seedling leaves metabolome reprogramming to regulate cell metabolism, including plant hormone signal transduction and phenylalanine, tyrosine, and tryptophan biosynthesis pathways. Under NaCl stress, inoculation with strain S40 upregulated differential metabolites in plant hormone signal transduction pathways including plant hormones such as auxins (IAA), cytokinins, and jasmonic acid. The results indicate that inoculation with Bacillaceae can promote the growth of Reaumuria soongorica seedlings under NaCl stress and enhance salt tolerance by increasing the content of photosynthetic pigments, accumulating osmoregulatory substances, regulating plant hormone levels This study contributes to the enrichment of PGPR strains capable of promoting the growth of desert plants and has significant implications for the psammophytes growth and development in desert regions, as well as the effective utilization and transformation of saline-alkali lands.
Collapse
Affiliation(s)
- Xinguang Bao
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Peifang Chong
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Cai He
- Wuwei Academy of Forestry, Wuwei, China
| | - Xueying Wang
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Feng Zhang
- College of Forest of Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
2
|
Nisha FA, Tagoe JNA, Pease AB, Horne SM, Ugrinov A, Geddes BA, Prüß BM. Plant seedlings of peas, tomatoes, and cucumbers exude compounds that are needed for growth and chemoattraction of Rhizobium leguminosarum bv. viciae 3841 and Azospirillum brasilense Sp7. Can J Microbiol 2024; 70:150-162. [PMID: 38427979 DOI: 10.1139/cjm-2023-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on.
Collapse
Affiliation(s)
- Fatema A Nisha
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Janice N A Tagoe
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Amanda B Pease
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Shelley M Horne
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, USA
| | - Barney A Geddes
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Birgit M Prüß
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
3
|
Patani A, Prajapati D, Ali D, Kalasariya H, Yadav VK, Tank J, Bagatharia S, Joshi M, Patel A. Evaluation of the growth-inducing efficacy of various Bacillus species on the salt-stressed tomato ( Lycopersicon esculentum Mill.). FRONTIERS IN PLANT SCIENCE 2023; 14:1168155. [PMID: 37056512 PMCID: PMC10089305 DOI: 10.3389/fpls.2023.1168155] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Plants are affected by salt stress in a variety of ways, including water deficiency, ion toxicity, nutrient imbalance, and oxidative stress, all of which can cause cellular damage or plant death. Halotolerant plant growth-promoting rhizobacteria (PGPR) could be a viable alternative for tomato plants growing in arid and semi-arid environments. The aim of this research was to isolate halotolerant plant growth promoting Bacillus sp. to promote tomato (Lycopersicon esculentum Mill.) growth and salt stress resistance. 107 PGPR strains were isolated from the rhizospheres of 'Kesudo' (Butea monosperma Lam.), 'Kawaria' (Cassia tora L.), and 'Arjun' (Terminalia arjuna Roxb.) plants to test their plant growth promoting abilities, including indole-3-acetic acid, phosphate solubilization, siderophore production, and ACC deaminase activity. Five bacterial strains (Bacillus pumilus (NCT4), Bacillus firmus (NCT1), Bacillus licheniformis (LCT4), Bacillus cereus (LAT3), and Bacillus safensis (LBM4)) were chosen for 16S rRNA on the basis of PGPR traits. Compared to PGPR untreated plants, tomato plants developed from PGPR-treated seeds had considerably increased germination percentage, seedling growth, plant height, dry weight, and leaf area. As comparison to PGPR non-inoculated plants, salt-stressed tomato plants treated with PGPR strains had higher levels of total soluble sugar, proline, and chlorophyll as well as higher levels of SOD, CAT, APX, and GR activity. PGPR-inoculated salt-stressed tomato plants had lower MDA, sodium, and chloride levels than non-inoculated plants. In addition, magnesium, calcium, potassium, phosphorus, and iron levels were higher in PGPR treated plants when subjected to salt stress. These results indicate that halotolerant PGPR strains can increase tomato productivity and tolerance to salt stress by removing salt stress's negative effects on plant growth.
Collapse
Affiliation(s)
- Anil Patani
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Dharmendra Prajapati
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haresh Kalasariya
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Jigna Tank
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Snehal Bagatharia
- Gujarat State Biotechnology Mission (GSBTM), Udyog Bhavan, Gandhinagar, Gujarat, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
4
|
Mousavi SS, Karami A, Maggi F. Photosynthesis and chlorophyll fluorescence of Iranian licorice ( Glycyrrhiza glabra l.) accessions under salinity stress. FRONTIERS IN PLANT SCIENCE 2022; 13:984944. [PMID: 36275588 PMCID: PMC9585319 DOI: 10.3389/fpls.2022.984944] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
While salinity is increasingly becoming a prominent concern in arable farms around the globe, various treatments can be used for the mitigation of salt stress. Here, the effective presence of Azotobacter sp. inoculation (A1) and absence of inoculation (A0) was evaluated on Iranian licorice plants under NaCl stress (0 and 200 mM) (S0 and S1, respectively). In this regard, 16 Iranian licorice (Glycyrrhiza glabra L.) accessions were evaluated for the effects on photosynthesis and chlorophyll fluorescence. Leaf samples were measured for photosynthetic pigments (via a spectrophotometer), stomatal and trichome-related features (via SEM), along with several other morphological and biochemical features. The results revealed an increase in the amount of carotenoids that was caused by bacterial inoculation, which was 28.3% higher than the non-inoculated treatment. Maximum initial fluorescence intensity (F0) (86.7) was observed in the 'Bardsir' accession. Meanwhile, the highest variable fluorescence (Fv), maximal fluorescence intensity (Fm), and maximum quantum yield (Fv/Fm) (0.3, 0.4, and 0.8, respectively) were observed in the 'Eghlid' accession. Regarding anatomical observations of the leaf structure, salinity reduced stomatal density but increased trichome density. Under the effect of bacterial inoculation, salinity stress was mitigated. With the effect of bacterial inoculation under salinity stress, stomatal length and width increased, compared to the condition of no bacterial inoculation. Minimum malondialdehyde content was observed in 'Mahabad' accession (17.8 μmol/g FW). Principle component analysis (PCA) showed that 'Kashmar', 'Sepidan', 'Bajgah', 'Kermanshah', and 'Taft' accessions were categorized in the same group while being characterized by better performance in the aerial parts of plants. Taken together, the present results generally indicated that selecting the best genotypes, along with exogenous applications of Azotobacter, can improve the outcomes of licorice cultivation for industrial purposes under harsh environments.
Collapse
Affiliation(s)
- Seyyed Sasan Mousavi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Akbar Karami
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
5
|
Effect of Salinity and Plant Growth Promoters on Secondary Metabolism and Growth of Milk Thistle Ecotypes. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101530. [PMID: 36294965 PMCID: PMC9605483 DOI: 10.3390/life12101530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary The present study shed light on the effect of salinity on the plant growth and secondary metabolites of medicinally important milk thistle plant ecotypes. At the same time, we also studied the effect of external supplementation with ascorbic acid, thiourea, and moringa leaf extract on improving growth-related attributes and secondary metabolites under salinity stress. Various parameters were studied related to stress alleviation. Ascorbic acid, followed by moringa leaf extract, was the most effective in improving growth under salt stress conditions. The present study demonstrated that milk thistle could withstand moderate doses of salt stress, while externally supplemented media improved all the growth parameters by increasing the accumulation of secondary metabolites. Abstract Milk thistle (Silybum marianum (L.)) is a wild medicinal herbal plant that is widely used in folk medicine due to its high content of secondary metabolites (SMs) and silymarin; however, the data regarding the response of milk thistle to salinity are still scarce and scanty. The present study evaluated the effect of salinity on a geographically diverse population of milk thistle and on the role of medium supplementation (MS) with ascorbic acid, thiourea, and moringa leaf extract in improving the SMs and growth-related attributes under salinity stress (SS). For germination, a 120 mM level of salinity was applied in the soil during the seedling stage. After salinity development, predetermined levels of the following compounds were used for MS: thiourea (250 µM), moringa leaf extract (3%), and ascorbic acid (500 µM). The data regarding growth attributes showed that SS impaired plant growth and development and increased SM production, including alkaloids, anthocyanin, and saponins. Moreover, ascorbic acid, followed by moringa leaf extract, was the most effective in improving growth by virtue of increased SMs, especially under salt stress conditions. The present study demonstrated that milk thistle could withstand moderate doses of SS, while MS improved all the growth parameters by increasing the accumulation of SMs.
Collapse
|
6
|
Fusco GM, Nicastro R, Rouphael Y, Carillo P. The Effects of the Microbial Biostimulants Approved by EU Regulation 2019/1009 on Yield and Quality of Vegetable Crops. Foods 2022; 11:2656. [PMID: 36076841 PMCID: PMC9455239 DOI: 10.3390/foods11172656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 12/04/2022] Open
Abstract
The use of microbial biostimulants such as plant growth-promoting rhizobacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) has gained popularity in recent years as a sustainable approach to boost yield as well as the quality of produce. The beneficial effects of microbial biostimulants have been reported numerous times. However, information is missing concerning quantitative assessment of the overall impact of microbial biostimulants on the yield and quality of vegetable crops. Here we provide for the first time a comprehensive, semi-systematic review of the effects of microbial biostimulants allowed by Regulation (EU) 2019/1009, including microorganisms belonging to the AMF (phylum Glomeromycota), or to Azospirillum, Azotobacter and Rhizobium genera, on vegetable crops' quality and yield, with rigorous inclusion and exclusion criteria based on the PRISMA method. We identified, selected and critically evaluated all the relevant research studies from 2010 onward in order to provide a critical appraisal of the most recent findings related to these EU-allowed microbial biostimulants and their effects on vegetable crops' quality and yield. Moreover, we highlighted which vegetable crops received more beneficial effects from specific microbial biostimulants and the protocols employed for plant inoculation. Our study is intended to draw more attention from the scientific community to this important instrument to produce nutrient-dense vegetables in a sustainable manner. Finally, our semi-systematic review provides important microbial biostimulant application guidelines and gives extension specialists and vegetable growers insights into achieving an additional benefit from microbial biostimulant application.
Collapse
Affiliation(s)
- Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosalinda Nicastro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
7
|
El-Beltagi HS, Basit A, Mohamed HI, Ali I, Ullah S, Kamel EAR, Shalaby TA, Ramadan KMA, Alkhateeb AA, Ghazzawy HS. Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review. AGRONOMY 2022; 12:1881. [DOI: 10.3390/agronomy12081881] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
This research was carried out in order to demonstrate that mulching the ground helps to conserve water, because agricultural sustainability in dryland contexts is threatened by drought, heat stress, and the injudicious use of scarce water during the cropping season by minimizing surface evaporation. Improving soil moisture conservation is an ongoing priority in crop outputs where water resources are restricted and controlled. One of the reasons for the desire to use less water in agriculture is the rising demand brought on by the world’s growing population. In this study, the use of organic or biodegradable mulches was dominated by organic materials, while inorganic mulches are mostly comprised of plastic-based components. Plastic film, crop straw, gravel, volcanic ash, rock pieces, sand, concrete, paper pellets, and livestock manures are among the materials put on the soil surface. Mulching has several essential applications, including reducing soil water loss and soil erosion, enriching soil fauna, and improving soil properties and nutrient cycling in the soil. It also reduces the pH of the soil, which improves nutrient availability. Mulching reduces soil deterioration by limiting runoff and soil loss, and it increases soil water availability by reducing evaporation, managing soil temperature, or reducing crop irrigation requirements. This review paper extensively discusses the benefits of organic or synthetic mulches for crop production, as well as the uses of mulching in soil and water conservation. As a result, it is very important for farmers to choose mulching rather than synthetic applications.
Collapse
|
8
|
Impacts of Ascorbic Acid and Alpha-Tocopherol on Chickpea (Cicer arietinum L.) Grown in Water Deficit Regimes for Sustainable Production. SUSTAINABILITY 2022. [DOI: 10.3390/su14148861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Drought is a major abiotic stress forced by the changing climate that affects plant production and soil structure and functions. A study was conducted to explore the impacts of ascorbic acid (AsA) and α-tocopherol (α-toc) on the agro-physiological attributes and antioxidant enzymes of chickpea grown in water deficit regions. The results of the soil analysis showed that the electrical conductivity (EC) and pH were decreased from 521 mS/m and 7.08 to 151 mS/m and 6.6 in 20-day drought regimes, respectively. Agronomic outcomes showed that exogenous application of AsA and α-toc increased the germination rate index (GRI), mean germination time (MGT), germination energy (GE), water use efficiency (WUE), germination percentage (GP), and seed vigor index (SVI). However, all the above attributes experienced a decline under 10- and 20-day drought stress. Similarly, the Chl. a, Chl. b, carotenoids, proline, protein, sugar, glycine betaine, and hydrogen peroxide contents were significantly increased. Meanwhile, malondialdehyde, glutathione reductase, and enzymatic antioxidants (APOX, SOD, and POD) increased during 10- and 20-day drought, except CAT, which decreased during drought. The exogenous fertigation of these growth regulators improved the photosynthetic pigments and enzymatic and non-enzymatic antioxidants in stressed plants. The current research concludes that simultaneous dusting of AsA and α-toc could be an efficient technique to mitigate the antagonistic impacts of drought, which might be linked to the regulation of antioxidant defense systems.
Collapse
|
9
|
Shalaby TA, Taha NA, Taher DI, Metwaly MM, El-Beltagi HS, Rezk AA, El-Ganainy SM, Shehata WF, El-Ramady HR, Bayoumi YA. Paclobutrazol Improves the Quality of Tomato Seedlings to Be Resistant to Alternaria solani Blight Disease: Biochemical and Histological Perspectives. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030425. [PMID: 35161406 PMCID: PMC8840709 DOI: 10.3390/plants11030425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 05/09/2023]
Abstract
The production and quality of tomato seedlings needs many growth factors and production requirements besides controlling the phytopathogens. Paclobutrazol (PBZ) has benefit applications in improving crop productivity under biotic stress (Alternaria solani, the causal agent of early blight disease in tomatoes). In the current study, the foliar application of PBZ, at rates of 25, 50, and 100 mg L-1, was evaluated against early blight disease in tomatoes under greenhouse conditions. The roles of PBZ to extend tomato seedling lives and handling in nurseries were also investigated by measuring different the biochemical (leaf enzymes, including catalase and peroxidase) and histological attributes of tomato seedlings. Disease assessment confirmed that PBZ enhanced the quality of tomato seedlings and induced resistance to early blight disease post inoculation, at 7, 14, and 21 days. Higher values in chlorophyll content, enzyme activities, and anatomical features of stem (cuticle thickness) and stomata (numbers and thickness) were recorded, due to applied PBZ. This may support the delay of the transplanting of tomato seedlings without damage. The reason for this extending tomato seedling life may be due to the role of PBZ treatment in producing seedlings to be greener, more compact, and have a better root system. The most obvious finding to emerge from this study is that PBZ has a distinguished impact in ameliorating biotic stress, especially of the early blight disease under greenhouse conditions. Further studies, which consider molecular variables, will be conducted to explore the role of PBZ in more detail.
Collapse
Affiliation(s)
- Tarek A. Shalaby
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
- Correspondence: (T.A.S.); (H.S.E.-B.)
| | - Naglaa A. Taha
- Agricultural Research Center, Plant Pathology Research Institute, Giza 12619, Egypt; (N.A.T.); (A.A.R.)
| | - Dalia I. Taher
- Agricultural Research Center (ARC), Vegetable Crops Research Department, Horticulture Research Institute, Giza 12619, Egypt;
| | - Metwaly M. Metwaly
- Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Hossam S. El-Beltagi
- Department of Agricultural Biotechnology, College of Agricultural and Food Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence: (T.A.S.); (H.S.E.-B.)
| | - Adel A. Rezk
- Agricultural Research Center, Plant Pathology Research Institute, Giza 12619, Egypt; (N.A.T.); (A.A.R.)
- Department of Agricultural Biotechnology, College of Agricultural and Food Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
| | - Sherif M. El-Ganainy
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Agricultural Research Center, Plant Pathology Research Institute, Giza 12619, Egypt; (N.A.T.); (A.A.R.)
| | - Wael F. Shehata
- Department of Agricultural Biotechnology, College of Agricultural and Food Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Plant Production Department, College of Environmental Agricultural Science, El–Arish University, North Sinai 45511, Egypt
| | - Hassan R. El-Ramady
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Yousry A. Bayoumi
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
- Physiology & Breeding of Horticultural Crops Laboratory, Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| |
Collapse
|