1
|
Mokhtar HI, Khodeer DM, Alzahrani S, Qushawy M, Alshaman R, Elsherbiny NM, Ahmed ES, Abu El Wafa EG, El-Kherbetawy MK, Gardouh AR, Zaitone SA. Formulation and characterization of cholesterol-based nanoparticles of gabapentin protecting from retinal injury. Front Chem 2024; 12:1449380. [PMID: 39502139 PMCID: PMC11537204 DOI: 10.3389/fchem.2024.1449380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction This study aimed to prepare cholesterol and stearic acid-based solid lipid nanoparticles of gabapentin (GAB-SLNs) for protection against streptozotocin (STZ)-induced retinal injury in rats. Methods We prepared four preparations of GAB-SLNs using a hot high-shear homogenization ultrasonication process, and the best formulation was selected and tested for biological activity. The retinal injury was brought in male adult albino rats while gabapentin doses continued for 6 weeks. Six groups of rats were assigned as the vehicle, diabetic, diabetic + gabapentin (10-20 mg/kg), and diabetic + GAB-SLNs (10-20 mg/kg). GAB-SLN#2 was selected as the optimized formulation with high entrapment efficacy (EE%, 98.64% ± 1.97%), small particle size (185.65 ± 2.41 nm), high negative Zeta potential (-32.18 ± 0.98 mV), low polydispersity index (0.28 ± 0.02), and elevated drug release (99.27% ± 3.48%). The TEM image of GAB-SLN#2 revealed a smooth surface with a spherical shape. Results GAB-SLNs provided greater protection against retinal injury than free gabapentin as indicated by the histopathology data which demonstrated more organization of retinal layers and less degeneration in ganglion cell layer in rats treated with GAB-SLN#2. Further, GAB-SLN#2 reduced the inflammatory proteins (IL-6/JAK2/STAT3) and vascular endothelial growth factor (VEGF). Conclusion The preparation of GAB-SLNs enhanced the physical properties of gabapentin and improved its biological activity as a neuroprotectant. Further studies are warranted to validate this technique for the use of oral gabapentin in other neurological disorders.
Collapse
Affiliation(s)
- Hatem I. Mokhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| | - Dina M. Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sharifa Alzahrani
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nehal M. Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Esam Sayed Ahmed
- Department of Ophthalmology, Al-Azher Asyut Faculty of Medicine for Men, Asyut, Egypt
| | | | | | - Ahmed R. Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
2
|
Robinson R, Glass J, Sharma A, Sharma S. Generation and characterization of a Müller-glial-cell-specific Il6ra knockout mouse to delineate the effects of IL-6 trans-signaling in the retina. Sci Rep 2022; 12:17626. [PMID: 36271280 PMCID: PMC9587029 DOI: 10.1038/s41598-022-22329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023] Open
Abstract
Interleukin-6 (IL-6) is implicated in various retinal and vascular complications associated with diabetic retinopathy (DR). This cytokine functions through two main modalities: classical signaling, in cells expressing the membrane-bound receptor (IL-6Rα); and trans-signaling, possible in most cells through a soluble form of the receptor (sIL-6R). These pathways are considered to be anti-inflammatory and pro-inflammatory, respectively. Our recent studies in retinal endothelial cells and diabetic mice have shown that inhibiting only IL-6 trans-signaling is sufficient to prevent increased vascular leakage, oxidative stress, and inflammation characteristic of DR. Isolating the specific effects of each signaling pathway, however, remains difficult in cells expressing IL-6Rα that are thus capable of both classical and trans-signaling. Müller glial cells (MGCs), the most abundant retinal macroglial cells, span the entire retinal thickness with vital roles in maintaining retinal homeostasis and regulating the blood-retinal barrier through secreted factors. The specific effects of IL-6 trans-signaling in MGCs remain poorly understood given their responsiveness to both IL-6 signaling modalities. In this study, we addressed these concerns by generating an MGC-specific knockout mouse using Cre-loxP deletion of the Il6ra cytokine-binding region. We assessed transcriptional and translational Il6ra expression to confirm the knockout and characterized the effects of knockout on visual functioning in these mice.
Collapse
Affiliation(s)
- Rebekah Robinson
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CAII 4139, Augusta, GA, 30912, USA
| | - Joshua Glass
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CAII 4139, Augusta, GA, 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CAII 4139, Augusta, GA, 30912, USA
- Department of Population Health Sciences, Augusta University, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Augusta University, Augusta, GA, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CAII 4139, Augusta, GA, 30912, USA.
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA.
- Department of Ophthalmology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
3
|
Mason RH, Minaker SA, Lahaie Luna G, Bapat P, Farahvash A, Garg A, Bhambra N, Muni RH. Changes in aqueous and vitreous inflammatory cytokine levels in proliferative diabetic retinopathy: a systematic review and meta-analysis. Eye (Lond) 2022:10.1038/s41433-022-02127-x. [PMID: 35672457 DOI: 10.1038/s41433-022-02127-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/05/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic retinopathy is a major complication of diabetes mellitus, where in its most advanced form ischemic changes lead to the development of retinal neovascularization, termed proliferative diabetic retinopathy (PDR). While the development of PDR is often associated with angiogenic and inflammatory cytokines, studies differ on which cytokines are implicated in disease pathogenesis and on the strength of these associations. We therefore conducted a systematic review and meta-analysis to quantitatively assess the existing body of data on intraocular cytokines as biomarkers in PDR. METHODS A comprehensive search of the literature without year limitation was conducted to January 18, 2021, which identified 341 studies assessing vitreous or aqueous cytokine levels in PDR, accounting for 10379 eyes with PDR and 6269 eyes from healthy controls. Effect sizes were calculated as standardized mean differences (SMD) of cytokine concentrations between PDR and control patients. RESULTS Concentrations (SMD, 95% confidence interval, and p-value) of aqueous IL-1β, IL-6, IL-8, MCP-1, TNF-α, and VEGF, and vitreous IL-2, IL-4, IL-6, IL-8, angiopoietin-2, eotaxin, erythropoietin, GM-CSF, GRO, HMGB-1, IFN-γ, IGF, IP-10, MCP-1, MIP-1, MMP-9, PDGF-AA, PlGF, sCD40L, SDF-1, sICAM-1, sVEGFR, TIMP, TNF-α, and VEGF were significantly higher in patients with PDR when compared to healthy nondiabetic controls. For all other cytokines no differences, failed sensitivity analyses or insufficient data were found. CONCLUSIONS This extensive list of cytokines speaks to the complexity of PDR pathogenesis, and informs future investigations into disease pathogenesis, prognosis, and management.
Collapse
Affiliation(s)
- Ryan H Mason
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Samuel A Minaker
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | | | - Priya Bapat
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Armin Farahvash
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Anubhav Garg
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Nishaant Bhambra
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Rajeev H Muni
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada.
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada.
- Kensington Vision and Research Centre, Toronto, ON, Canada.
- University of Toronto/Kensington Health Ophthalmology Biobank and Cytokine Laboratory, Toronto, ON, Canada.
| |
Collapse
|
4
|
Sharma S. Interleukin-6 Trans-signaling: A Pathway With Therapeutic Potential for Diabetic Retinopathy. Front Physiol 2021; 12:689429. [PMID: 34093244 PMCID: PMC8170152 DOI: 10.3389/fphys.2021.689429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Affiliation(s)
- Shruti Sharma
- Center for Biotechnology & Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
5
|
Robinson R, Youngblood H, Iyer H, Bloom J, Lee TJ, Chang L, Lukowski Z, Zhi W, Sharma A, Sharma S. Diabetes Induced Alterations in Murine Vitreous Proteome Are Mitigated by IL-6 Trans-Signaling Inhibition. Invest Ophthalmol Vis Sci 2021; 61:2. [PMID: 32870245 PMCID: PMC7476668 DOI: 10.1167/iovs.61.11.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Diabetic retinopathy (DR) is a microvascular complication caused by prolonged hyperglycemia and characterized by leaky retinal vasculature and ischemia-induced angiogenesis. Vitreous humor is a gel-like biofluid in the posterior segment of the eye between the lens and the retina. Disease-related changes are observed in the biochemical constituents of the vitreous, including proteins and macromolecules. Recently, we found that IL-6 trans-signaling plays a significant role in the vascular leakage and retinal pathology associated with DR. Therefore, in this study, comprehensive proteomic profiling of the murine vitreous was performed to identify diabetes-induced alterations and to determine effects of IL-6 trans-signaling inhibition on these changes. Methods Vitreous samples from mice were collected by evisceration, and proteomic analyses were performed using liquid chromatography–tandem mass spectrometry (LC-MS/MS). Results A total of 154 proteins were identified with high confidence in control mice and were considered to be characteristic of healthy murine vitreous fluid. The levels of 72 vitreous proteins were significantly altered in diabetic mice, including several members of heat shock proteins, 14-3-3 proteins, and tubulins. Alterations in 52 out of 72 proteins in diabetic mice were mitigated by IL-6 trans-signaling inhibition. Conclusions Proteomic analysis of murine vitreous fluid performed in this study provides important information about the changes caused by diabetes in the ocular microenvironment. These diabetes-induced alterations in the murine vitreous proteome were mitigated by IL-6 trans-signaling inhibition. These findings further support that IL-6 trans-signaling may be an important therapeutic target for the treatment of DR.
Collapse
Affiliation(s)
- Rebekah Robinson
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Hannah Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
| | - Hersha Iyer
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Justin Bloom
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Luke Chang
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| | - Zachary Lukowski
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States.,Department of Ophthalmology, Augusta University, Augusta, Georgia, United States.,Department of Population Health Sciences, Augusta University, Augusta, Georgia, United States.,Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States.,Department of Ophthalmology, Augusta University, Augusta, Georgia, United States.,Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
6
|
Zhang J, Zhang M, Zhao H, Xu X. Identification of proliferative diabetic retinopathy-associated genes on the protein–protein interaction network by using heat diffusion algorithm. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165794. [DOI: 10.1016/j.bbadis.2020.165794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
|
7
|
Yao Y, Li R, Du J, Long L, Li X, Luo N. Interleukin-6 and Diabetic Retinopathy: A Systematic Review and Meta-Analysis. Curr Eye Res 2019; 44:564-574. [PMID: 30644770 DOI: 10.1080/02713683.2019.1570274] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Interleukin-6 (IL-6) is produced by a variety of cells involved in inflammation and acts as local intensification signals in pathological processes associated with chronic eye inflammation. This meta-analysis was performed to provide a better understanding of the relationship between IL-6 and diabetic retinopathy. METHODS The study was started with systematic search for literatures by using the PubMed, Web of Science and Embase online databases. The standard mean difference (SMD) and its 95% confidence intervals (CIs) were was included and then pooled with a random effects model. RESULTS Thirty-one articles, containing1099 DR patients and 1010 controls, were included in this meta-analysis. The level of IL-6 in the DR group was found to be higher than that in the control group (SMD: 2.12, 95% CI: 1.53-2.70, p < 0.00001).Obvious heterogeneity existed between the studies (p < 0.00001, I2 = 96%). So a subgroup analysis and sensitivity analysis were performed. Removing the sensitivity studies, the stability of the overall treatment effect was good. Subgroup analysis showed that the levels of IL-6 in case group were observed to be higher than those in the control group; and the IL-6 levels in the proliferative diabetic retinopathy (PDR) group were also higher than those in the non-proliferative diabetic retinopathy (NPDR) group. (SMD: 0.78, 95% CI: 0.26-1.31, p= 0.003) Conclusion: The results from this current meta-analysis indicated that increased level of IL-6 generally exist in DR patients. And it may associated with the severity of DR. However, large-scale and high-quality studies in future are required to confirm the present findings.
Collapse
Affiliation(s)
- Yang Yao
- a Department of Central Laboratory, The First Affiliated Hospital , Xi'an Medical University , Xi'an , Shaanxi , China
| | - Rong Li
- b Department of Ophthalmology, The First Affiliated Hospital , Xi'an Medical University , Xi'an , Shaanxi , PR China
| | - Junhui Du
- c Department of Ophthalmology, Xi'an Ninth Hospital , Medical College of Xi'an Jiaotong University , Xi'an , Shanxi , China
| | - Lihui Long
- d Department of pharmacy, The First Affiliated Hospital , Xi'an Medical University , Xi'an , Shaanxi , PR China
| | - Xiangnan Li
- e Clinical Medicine (Four-year program) of Grade 2014 , Xi'an Medical University , Xi'an , Shaanxi , PR China
| | - Na Luo
- e Clinical Medicine (Four-year program) of Grade 2014 , Xi'an Medical University , Xi'an , Shaanxi , PR China
| |
Collapse
|
8
|
Ye EA, Steinle JJ. miR-146a suppresses STAT3/VEGF pathways and reduces apoptosis through IL-6 signaling in primary human retinal microvascular endothelial cells in high glucose conditions. Vision Res 2017; 139:15-22. [PMID: 28433754 DOI: 10.1016/j.visres.2017.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/26/2017] [Accepted: 03/30/2017] [Indexed: 01/10/2023]
Abstract
microRNA (miRNA) play critical roles in the pathological processes of diabetic retinopathy, including inflammatory responses, insulin signaling, and angiogenesis. In addition to their regulatory functions on gene expression, miRNA is considered as a potential therapeutic target, as well as a diagnostic marker for many diseases. Our understanding on the pathological mechanisms underlying diabetic retinopathy is still incomplete and additional investigations are required to develop novel therapeutic strategies. The aim of this study was to investigate our hypothesis that miR-146a plays a role in suppressing pro-inflammatory pathways, involving STAT3 and VEGF, through regulating IL-6 signaling to reduce apoptosis of human retinal endothelial cells (REC) in high glucose conditions. Human REC were cultured in normal (5mM) glucose or high glucose medium (25mM) for 3days. We performed transfections on REC with miRNA mimics (hsa-miR-146a-5p). Overexpression of miR-146a reduced IL-6 levels, STAT3 phosphorylation, and VEGF levels in REC cultured in high glucose. Cellular apoptosis was decreased in REC overexpressing miR-146a, as demonstrated by the inhibition of DNA fragmentation. More importantly, we demonstrated that the regulatory role of miR-146a on STAT3/VEGF and apoptosis was mediated by IL-6 receptor signaling in REC. Overall, we report that miR-146a suppressed IL-6 signaling, leading to reduced levels of STAT3 and VEGF in REC in high glucose conditions, leading to decreased apoptosis. The outcome suggests that miR-146a is a potential molecular target for inhibiting inflammation and apoptosis in the diabetic retina through the suppression of the IL-6-mediated STAT3/VEGF pathway.
Collapse
Affiliation(s)
- Eun-Ah Ye
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States; Ophthalmology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
9
|
Fogli S, Mogavero S, Egan CG, Del Re M, Danesi R. Pathophysiology and pharmacological targets of VEGF in diabetic macular edema. Pharmacol Res 2016; 103:149-57. [DOI: 10.1016/j.phrs.2015.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 11/08/2015] [Accepted: 11/08/2015] [Indexed: 01/27/2023]
|
10
|
Effects of intravitreal injection of bevacizumab on inflammatory cytokines in the vitreous with proliferative diabetic retinopathy. Retina 2014; 34:165-71. [PMID: 23851630 DOI: 10.1097/iae.0b013e3182979df6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND To investigate the effects of preoperative intravitreal injection of bevacizumab (IVB) on the levels of 27 inflammatory cytokines, including interleukins (ILs) and vascular endothelial growth factor. METHODS From among 200 patients who had proliferative diabetic retinopathy and underwent vitrectomy in our department from September 2009 to October 2010, 8 study subjects met the enrollment criteria in which both eyes at nearly equivalent stages underwent vitrectomy. The first vitrectomy for each patient was performed without IVB (control group), whereas the second vitrectomy on the contralateral eye was performed with IVB treatment (1.25 mg/0.05 mL) 3 days before surgery (IVB group). Undiluted vitreous fluid was collected at the start of each vitrectomy. A multiplex assay was used to simultaneously determine the levels of 27 inflammatory cytokines and growth factors. RESULTS Mean vascular endothelial growth factor levels were significantly lower in the IVB group (519.69 pg/mL) than in the control group (11,807.44 pg/mL) (P = 0.012, Wilcoxon signed rank test). Moreover, the mean levels (IVB/control, pg/mL) of IL-1RA (38.50/62.31, P = 0.036), IL-5 (27.75/34.00, P = 0.018), IL-10 (433.63/1,995.94, P = 0.012), IL-12 (246.69/1,033.69, P = 0.012), IL-13 (707.50/1,450.38, P = 0.012), and interferon γ (71.13/84.69, P = 0.036) were significantly lower in the IVB group. No other significant differences were observed in the levels of the other 20 cytokines and growth factors between the 2 groups. CONCLUSION Preoperative IVB reduced not only the intravitreal vascular endothelial growth factor level but also the intravitreal levels of other inflammatory cytokines, including IL-1RA, IL-5, IL-10, IL-12, IL-13, and interferon γ. These results indicate the interaction of some cytokines in the vitreous fluid of proliferative diabetic retinopathy patients and suggest the possibility that preoperative IVB may not only reduce vascular proliferation by its direct antivascular endothelial growth factor effect but also modulate the inflammatory response through putative cytokine networks. None of the other cytokines examined were elevated after IVB.
Collapse
|
11
|
Ryba-Stanisławowska M, Skrzypkowska M, Myśliwska J, Myśliwiec M. The serum IL-6 profile and Treg/Th17 peripheral cell populations in patients with type 1 diabetes. Mediators Inflamm 2013; 2013:205284. [PMID: 23533301 PMCID: PMC3595664 DOI: 10.1155/2013/205284] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/20/2013] [Indexed: 11/18/2022] Open
Abstract
IL-6 is a pleiotropic cytokine involved in the regulation of the immune response, inflammation, and hematopoeisis. Its elevated levels are found in a range of autoimmune and chronic inflammatory diseases. IL-6 is also involved in regulation of the balance between two T cell subsets: Tregs and Th17, which have contradictory functions in the control of inflammation. The present study provides a quantitative analysis regarding the Th17/Treg cell balance in peripheral blood of children with type 1 diabetes and its association with serum IL-6 level.
Collapse
|
12
|
Zhou J, Wang S, Xia X. Role of intravitreal inflammatory cytokines and angiogenic factors in proliferative diabetic retinopathy. Curr Eye Res 2012; 37:416-20. [PMID: 22409294 DOI: 10.3109/02713683.2012.661114] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Inflammatory reaction has been shown to involve the progress of type 2 (non-insulin-dependent) diabetes. We, therefore, examined the effects of inflammatory cytokines and angiogenic factors in the pathogenesis of proliferative diabetic retinopathy (PDR) in type 2 diabetes. PATIENTS AND METHODS Vitreous fluid samples were obtained by vitrectomy from 62 eyes of PDR patients with type 2 diabetes and from 20 eyes of age-matched non-diabetic patients. The concentrations of interleukin 1 beta (IL1B), IL6, IL8, IL10, chemokine (C-C motif) ligand 2 (CCL2), endothelin 1 (EDN1), vascular endothelial growth factor (VEGF), and tumor necrosis factor (TNF) in the vitreous samples were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS The concentrations of LI1B, IL6, IL8, CCL2, EDN1, VEGF, and TNF in the vitreous samples were considerably higher in PDR patients in comparison with the controls. However, the level of IL10 in PDR patients was similar to that obtained in the controls. Analysis of the correlations of the studied factors revealed the correlation of VEGF and IL6, VEGF and EDN1, IL8 and CCL2, and EDN1 and TNF in PDR patients. In addition, a significant positive correlation was observed between vitreous TNF as well as EDN1 and serum HbA(1)c levels in PDR patients. CONCLUSIONS The inflammatory cytokines and angiogenic factors IL1B, IL6, IL8, CCL2, EDN1, VEGF, and TNF are increased in the vitreous of PDR patients without an increase in IL-10. These results add support to the role of inflammatory cytokines and angiogenic factors in the genesis of PDR. Understanding the implication of these cytokines may provide diagnostic tools and therapeutic targets for treatment and prevention of PDR.
Collapse
Affiliation(s)
- Jinzi Zhou
- Department of Ophthalmology, Huaian No.1 People's Hospital Affiliated to Nanjing Medical University, Huaian, Jiangsu, PR China.
| | | | | |
Collapse
|
13
|
Ma Y, Tao Y, Lu Q, Jiang YR. Intraocular expression of serum amyloid a and interleukin-6 in proliferative diabetic retinopathy. Am J Ophthalmol 2011; 152:678-685.e2. [PMID: 21704966 DOI: 10.1016/j.ajo.2011.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 03/03/2011] [Accepted: 03/08/2011] [Indexed: 11/17/2022]
Abstract
PURPOSE Because serum amyloid A can regulate angiogenesis, we searched for an association between serum amyloid A and interleukin-6 (IL-6), as proinflammatory factors, and proliferative diabetic retinopathy (PDR). DESIGN Retrospective, comparative study. METHODS Seventy-six patients (76 eyes) with PDR and 31 patients (31 eyes) with nondiabetic ocular disease (control group), including idiopathic epiretinal membranes (8 eyes) and idiopathic macular holes (23 eyes), were enrolled. Enzyme-linked immunosorbent assay, dual-color immunofluorescence staining, and semiquantitative reverse-transcription polymerase chain reaction were used to examine the serum amyloid A and IL-6 levels in vitreous and plasma, expression of protein and mRNA of serum amyloid A in the excised membranes, respectively. RESULTS Vitreous serum amyloid A and IL-6 levels in the study group were significantly higher than those in the control group (both P < .001), whereas the plasma concentrations of serum amyloid A and IL-6 did not vary significantly between the groups (P = .555 and P = .621, respectively). A significant correlation was observed between the vitreous and plasma levels of serum amyloid A in subjects with PDR (r = 0.525; P < .001). In fibrovascular membranes of the study group, colocalization of endothelial marker CD31 with serum amyloid A and colocalization of fibrillar structure markers fibronectin with serum amyloid A were observed. Expression of serum amyloid A mRNA was significantly higher in fibrovascular membranes with PDR than in idiopathic epiretinal membranes (P = .004). CONCLUSIONS Serum amyloid A and IL-6 may be involved with the inflammatory process in the development of PDR. Local expression of serum amyloid A may exist in PDR.
Collapse
Affiliation(s)
- Yan Ma
- Department of Ophthalmology, People's Hospital, Peking University, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | | | | | | |
Collapse
|
14
|
Delano FA, Chen AY, Wu KIS, Tran ED, Rodrigues SF, Schmid-Schönbein GW. THE AUTODIGESTION HYPOTHESIS AND RECEPTOR CLEAVAGE IN DIABETES AND HYPERTENSION. ACTA ACUST UNITED AC 2011; 8:37-46. [PMID: 22081770 DOI: 10.1016/j.ddmod.2011.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the key features of cardiovascular complications, such as hypertension or diabetes, is that they often appear at the same time in the same individual together with other forms of co-morbidities. While clinically a recognized phenomenon, no molecular mechanism for such co-morbidities has received universal acceptance. We propose a new hypothesis that provides a molecular basis for co-morbidities in hypertension due to unchecked proteolytic activity and receptor destruction. Testing of the hypothesis in the spontaneously hypertensive rat reveals an unchecked matrix metalloproteinase and serine protease activity in plasma and on several cardiovascular and parenchymal cells. The elevated proteolytic activity causes extracellular cleavage of multiple receptor types, such that cleavage of one receptor type leads to loss of the function carried out by this receptor. Proteolytic cleavage of the extracellular domain of the β(2) adrenergic receptor in arteries and arterioles causes vasoconstriction and elevation of the central blood pressure while cleavage of the extracellular domain of the insulin receptor leads to insulin resistance and lack of transmembrane glucose transport. A diverse set of cell dysfunctions in the spontaneously hypertensive rat are accompanied by cleavage of the membrane receptors that are involved in these functions. Chronic inhibition of the unchecked protease activity in the spontaneously hypertensive rat serves to restore the extracellular receptor density and alleviates the corresponding cell dysfunctions. The mild unchecked proteolytic activity in the spontaneously hypertensive rat points towards a chronic autodigestion process as a contributor to the end organ injury encountered in this rat strain. The presence of various soluble receptors, which consist of extracellular fragments of membrane receptors, in the plasma of hypertensive and diabetic patients suggest that the autodigestion process may also be present in man.
Collapse
Affiliation(s)
- F A Delano
- Department of Bioengineering, Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA 92093 - 0412
| | | | | | | | | | | |
Collapse
|
15
|
Adamiec-Mroczek J, Oficjalska-Młyńczak J, Misiuk-Hojło M. Roles of endothelin-1 and selected proinflammatory cytokines in the pathogenesis of proliferative diabetic retinopathy: Analysis of vitreous samples. Cytokine 2009; 49:269-74. [PMID: 20015663 DOI: 10.1016/j.cyto.2009.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/28/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate the roles of endothelin-1(ET-1), TNF-alpha, IL-6 in the pathogenesis of proliferative diabetic retinopathy (PDR) in type 2 diabetes. METHODS Vitreous and blood serum samples were collected during vitrectomy from 19 patients with PDR and 15 patients who underwent vitrectomy for other reasons. The concentrations of ET-1, TNF-alpha, IL-6, vWF, sE-selectin were determined by ELISA. RESULTS Intraocular and serous concentrations of ET-1, TNF-alpha, IL-6, vWF, sE-selectin were higher in patients with PDR than in the control group. The vitreous ET-1/plasma ET-1 ratios the group of diabetic patients and in the control group were similar. Also TNF-alpha, IL-6 vitreous/plasma ratio were not statistically different between the analysed groups. Correlation between intraocular ET-1 and TNF-alpha concentrations in patients with PDR and between the increases in both factors in the vitreous and HbA(1)c concentration were shown. In the vitreous the increase in vWF depended on elevated levels of vWF in the serum. E-selectin concentration correlated with diastolic blood pressure. CONCLUSION These data provide evidence of the activation of the local synthesis of ET-1, TNF-alpha, IL-6 in PDR. The relationship between the increase in vitreous ET-1, TNF-alpha concentrations and HbA(1)c concentration is a important confirmation of the necessity to optimise diabetes treatment.
Collapse
|