1
|
Rode KD, Van Hemert C, Wilson RR, Woodruff SP, Pabilonia K, Ballweber L, Kwok O, Dubey JP. Increased pathogen exposure of a marine apex predator over three decades. PLoS One 2024; 19:e0310973. [PMID: 39441768 PMCID: PMC11498681 DOI: 10.1371/journal.pone.0310973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Environmental changes associated with global warming create new opportunities for pathogen and parasite transmission in Arctic wildlife. As an apex predator ranging over large, remote areas, changes in pathogens and parasites in polar bears are a useful indicator of changing transmission dynamics in Arctic ecosystems. We examined prevalence and risk factors associated with exposure to parasites and viral and bacterial pathogens in Chukchi Sea polar bears. Serum antibodies to six pathogens were detected and prevalence increased between 1987-1994 and 2008-2017 for five: Toxoplasma gondii, Neospora caninum, Francisella tularensis, Brucella abortus/suis, and canine distemper virus. Although bears have increased summer land use, this behavior was not associated with increased exposure. Higher prevalence of F. tularensis, Coxiella burnetii, and B. abortus/suis antibodies in females compared to males, however, could be associated with terrestrial denning. Exposure was related to diet for several pathogens indicating increased exposure in the food web. Elevated white blood cell counts suggest a possible immune response to some pathogens. Given that polar bears face multiple stressors in association with climate change and are a subsistence food, further work is warranted to screen for signs of disease.
Collapse
Affiliation(s)
- Karyn D. Rode
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| | - Caroline Van Hemert
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| | - Ryan R. Wilson
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, Alaska, United States of America
| | - Susannah P. Woodruff
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, Alaska, United States of America
| | - Kristy Pabilonia
- Colorado State University Veterinary Diagnostic Laboratory, Fort Collins, Colorado, United States of America
| | - Lora Ballweber
- Colorado State University Veterinary Diagnostic Laboratory, Fort Collins, Colorado, United States of America
| | - Oliver Kwok
- US Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Jitender P. Dubey
- US Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
| |
Collapse
|
2
|
Fry TL, Friedrichs KR, Ketz AC, Duncan C, Van Deelen TR, Goldberg TL, Atwood TC. Long-term assessment of relationships between changing environmental conditions and the physiology of southern Beaufort Sea polar bears (Ursus maritimus). GLOBAL CHANGE BIOLOGY 2023; 29:5524-5539. [PMID: 37503782 DOI: 10.1111/gcb.16883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
Climate change is influencing polar bear (Ursus maritimus) habitat, diet, and behavior but the effects of these changes on their physiology is not well understood. Blood-based biomarkers are used to assess the physiologic health of individuals but their usefulness for evaluating population health, especially as it relates to changing environmental conditions, has rarely been explored. We describe links between environmental conditions and physiologic functions of southern Beaufort Sea polar bears using data from blood samples collected from 1984 to 2018, a period marked by extensive environmental change. We evaluated associations between 13 physiologic biomarkers and circumpolar (Arctic oscillation index) and regional (wind patterns and ice-free days) environmental metrics and seasonal and demographic co-variates (age, sex, season, and year) known to affect polar bear ecology. We observed signs of dysregulation of water balance in polar bears following years with a lower annual Arctic oscillation index. In addition, liver enzyme values increased over time, which is suggestive of potential hepatocyte damage as the Arctic has warmed. Biomarkers of immune function increased with regional-scale wind patterns and the number of ice-free days over the Beaufort Sea continental shelf and were lower in years with a lower winter Arctic oscillation index, suggesting an increased allocation of energetic resources for immune processes under these conditions. We propose that the variation in polar bear immune and metabolic function is likely indicative of physiologic plasticity, a response that allows polar bears to remain in homeostasis even as they experience changes in nutrition and habitat in response to changing environments.
Collapse
Affiliation(s)
- Tricia L Fry
- School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Alison C Ketz
- Department of Forest and Wildlife Ecology, Wisconsin Cooperative Research Unit, University of Wisconsin, Madison, Wisconsin, USA
| | - Colleen Duncan
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Timothy R Van Deelen
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin, USA
| | - Tony L Goldberg
- School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Todd C Atwood
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| |
Collapse
|
3
|
Fry TL, Owens LA, Ketz AC, Atwood TC, Dunay E, Goldberg TL. Serum Virome of Southern Beaufort Sea polar bears ( Ursus maritimus) during a period of rapid climate change. CONSERVATION PHYSIOLOGY 2023; 11:coad054. [PMID: 39070777 PMCID: PMC10375943 DOI: 10.1093/conphys/coad054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2024]
Abstract
Climate change affects the behavior, physiology and life history of many Arctic wildlife species. It can also influence the distribution and ecology of infectious agents. The southern Beaufort Sea (SB) subpopulation of polar bears (Ursus maritimus) has experienced dramatic behavioral changes due to retreating sea ice and other climate-related factors, but the effects of these changes on physiology and infection remain poorly understood. Using serum from polar bears sampled between 2004 and 2015 and metagenomic DNA sequencing, we identified 48 viruses, all of the family Anelloviridae. Anelloviruses are small, ubiquitous infectious agents with circular single-stranded DNA genomes that are not known to cause disease but, in humans, covary in diversity and load with immunological compromise. We therefore examined the usefulness of anelloviruses as biomarkers of polar bear physiological stress related to climate and habitat use. Polar bear anelloviruses sorted into two distinct clades on a phylogenetic tree, both of which also contained anelloviruses of giant pandas (Ailuropoda melanoleuca), another ursid. Neither anellovirus diversity nor load were associated with any demographic variables, behavioral factors or direct physiological measures. However, pairwise genetic distances between anelloviruses were positively correlated with pairwise differences in sampling date, suggesting that the polar bear "anellome" is evolving over time. These findings suggest that anelloviruses are not a sensitive indicator of polar physiological stress, but they do provide a baseline for evaluating future changes to polar bear viromes.
Collapse
Affiliation(s)
- Tricia L Fry
- School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53706
| | - Leah A Owens
- School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53706
| | - Alison C Ketz
- Wisconsin Cooperative Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, 53706
| | - Todd C Atwood
- Alaska Science Center, U. S. Geological Survey, Anchorage, AK 99508
| | - Emily Dunay
- School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53706
| | - Tony L Goldberg
- School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53706
| |
Collapse
|
4
|
Barratclough A, Ferguson SH, Lydersen C, Thomas PO, Kovacs KM. A Review of Circumpolar Arctic Marine Mammal Health-A Call to Action in a Time of Rapid Environmental Change. Pathogens 2023; 12:937. [PMID: 37513784 PMCID: PMC10385039 DOI: 10.3390/pathogens12070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The impacts of climate change on the health of marine mammals are increasingly being recognised. Given the rapid rate of environmental change in the Arctic, the potential ramifications on the health of marine mammals in this region are a particular concern. There are eleven endemic Arctic marine mammal species (AMMs) comprising three cetaceans, seven pinnipeds, and the polar bear (Ursus maritimus). All of these species are dependent on sea ice for survival, particularly those requiring ice for breeding. As air and water temperatures increase, additional species previously non-resident in Arctic waters are extending their ranges northward, leading to greater species overlaps and a concomitant increased risk of disease transmission. In this study, we review the literature documenting disease presence in Arctic marine mammals to understand the current causes of morbidity and mortality in these species and forecast future disease issues. Our review highlights potential pathogen occurrence in a changing Arctic environment, discussing surveillance methods for 35 specific pathogens, identifying risk factors associated with these diseases, as well as making recommendations for future monitoring for emerging pathogens. Several of the pathogens discussed have the potential to cause unusual mortality events in AMMs. Brucella, morbillivirus, influenza A virus, and Toxoplasma gondii are all of concern, particularly with the relative naivety of the immune systems of endemic Arctic species. There is a clear need for increased surveillance to understand baseline disease levels and address the gravity of the predicted impacts of climate change on marine mammal species.
Collapse
Affiliation(s)
- Ashley Barratclough
- National Marine Mammal Foundation, 2240 Shelter Island Drive, San Diego, CA 92106, USA
| | - Steven H. Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada;
| | - Christian Lydersen
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway; (C.L.); (K.M.K.)
| | - Peter O. Thomas
- Marine Mammal Commission, 4340 East-West Highway, Room 700, Bethesda, MD 20814, USA;
| | - Kit M. Kovacs
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway; (C.L.); (K.M.K.)
| |
Collapse
|
5
|
Pilfold NW, Richardson ES, Ellis J, Jenkins E, Scandrett WB, Hernández‐Ortiz A, Buhler K, McGeachy D, Al‐Adhami B, Konecsni K, Lobanov VA, Owen MA, Rideout B, Lunn NJ. Long-term increases in pathogen seroprevalence in polar bears (Ursus maritimus) influenced by climate change. GLOBAL CHANGE BIOLOGY 2021; 27:4481-4497. [PMID: 34292654 PMCID: PMC8457125 DOI: 10.1111/gcb.15537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/28/2020] [Indexed: 05/10/2023]
Abstract
The influence of climate change on wildlife disease dynamics is a burgeoning conservation and human health issue, but few long-term studies empirically link climate to pathogen prevalence. Polar bears (Ursus maritimus) are vulnerable to the negative impacts of sea ice loss as a result of accelerated Arctic warming. While studies have associated changes in polar bear body condition, reproductive output, survival, and abundance to reductions in sea ice, no long-term studies have documented the impact of climate change on pathogen exposure. We examined 425 serum samples from 381 adult polar bears, collected in western Hudson Bay (WH), Canada, for antibodies to selected pathogens across three time periods: 1986-1989 (n = 157), 1995-1998 (n = 159) and 2015-2017 (n = 109). We ran serological assays for antibodies to seven pathogens: Toxoplasma gondii, Neospora caninum, Trichinella spp., Francisella tularensis, Bordetella bronchiseptica, canine morbillivirus (CDV) and canine parvovirus (CPV). Seroprevalence of zoonotic parasites (T. gondii, Trichinella spp.) and bacterial pathogens (F. tularensis, B. bronchiseptica) increased significantly between 1986-1989 and 1995-1998, ranging from +6.2% to +20.8%, with T. gondii continuing to increase into 2015-2017 (+25.8% overall). Seroprevalence of viral pathogens (CDV, CPV) and N. caninum did not change with time. Toxoplasma gondii seroprevalence was higher following wetter summers, while seroprevalences of Trichinella spp. and B. bronchiseptica were positively correlated with hotter summers. Seroprevalence of antibodies to F. tularensis increased following years polar bears spent more days on land, and polar bears previously captured in human settlements were more likely to be seropositive for Trichinella spp. As the Arctic has warmed due to climate change, zoonotic pathogen exposure in WH polar bears has increased, driven by numerous altered ecosystem pathways.
Collapse
Affiliation(s)
- Nicholas W. Pilfold
- Conservation Science and Wildlife HealthSan Diego Zoo Wildlife AllianceEscondidoCAUSA
| | - Evan S. Richardson
- Wildlife Research Division, Science and Technology BranchEnvironment and Climate Change CanadaWinnipegMBCanada
| | - John Ellis
- Department of Veterinary MicrobiologyUniversity of SaskatchewanSaskatoonSKCanada
| | - Emily Jenkins
- Department of Veterinary MicrobiologyUniversity of SaskatchewanSaskatoonSKCanada
| | - W. Brad Scandrett
- Centre for Food‐borne and Animal ParasitologyCanadian Food Inspection AgencySaskatoonSKCanada
| | | | - Kayla Buhler
- Department of Veterinary MicrobiologyUniversity of SaskatchewanSaskatoonSKCanada
| | - David McGeachy
- Wildlife Research Division, Science and Technology BranchEnvironment and Climate Change CanadaEdmontonABCanada
| | - Batol Al‐Adhami
- Centre for Food‐borne and Animal ParasitologyCanadian Food Inspection AgencySaskatoonSKCanada
| | - Kelly Konecsni
- Centre for Food‐borne and Animal ParasitologyCanadian Food Inspection AgencySaskatoonSKCanada
| | - Vladislav A. Lobanov
- Centre for Food‐borne and Animal ParasitologyCanadian Food Inspection AgencySaskatoonSKCanada
| | - Megan A. Owen
- Conservation Science and Wildlife HealthSan Diego Zoo Wildlife AllianceEscondidoCAUSA
| | - Bruce Rideout
- Conservation Science and Wildlife HealthSan Diego Zoo Wildlife AllianceEscondidoCAUSA
| | - Nicholas J. Lunn
- Wildlife Research Division, Science and Technology BranchEnvironment and Climate Change CanadaEdmontonABCanada
| |
Collapse
|
6
|
Dubey JP, Murata FHA, Cerqueira-Cézar CK, Kwok OCH, Su C. EPIDEMIOLOGIC AND PUBLIC HEALTH SIGNIFICANCE OF TOXOPLASMA GONDII INFECTIONS IN BEARS (URSUS SPP.): A 50 YEAR REVIEW INCLUDING RECENT GENETIC EVIDENCE. J Parasitol 2021; 107:519-528. [PMID: 34167147 DOI: 10.1645/21-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Toxoplasma gondii infections are common in humans and animals worldwide. The present review summarizes worldwide information on the prevalence of clinical and subclinical infections, epidemiology, and genetic diversity of T. gondii infections in bears. Seroprevalence estimates of T. gondii in black bears (Ursus americanus) are one of the highest of all animals. In Pennsylvania, seroprevalence is around 80% and has remained stable for the past 4 decades. Approximately 3,500 bears are hunted yearly in Pennsylvania alone. The validity of different serological tests is discussed based on bioassay and serological comparisons. Seroprevalence in grizzly bears (Ursus arctos) is lower than that in black bears. Even polar bears (Ursus maritimus) are infected; infections in these animals are ecologically interesting because of the absence of felids in the Arctic. Clinical toxoplasmosis in bears is rare and not documented in adult animals. The few reports of fatal toxoplasmosis in young bears need confirmation. Viable T. gondii has been isolated from black bears and a grizzly bear. The genetic diversity of isolates based on DNA from viable T. gondii isolates is discussed. Genetic typing of a total of 26 T. gondii samples from bears using 10 PCR-RFLP markers revealed 8 PCR-RFLP ToxoDB genotypes: #1 (clonal type II) in 3 samples, #2 (clonal type III) in 8 samples, #4 (haplogroup 12) in 3 samples, #5 (haplogroup 12) in 3 samples, #74 in 5 samples, #90 in 1 sample, #147 in 1 sample, and #216 in 2 samples. These results suggest relatively high genetic diversity of T. gondii in bears. Overall, T. gondii isolates in bears range from those circulating in a domestic cycle (genotypes #1 and #2) to those mainly associated with wildlife (such as genotypes #4 and #5, together known as haplogroup 12). A patient who acquired clinical Trichinella spiralis infection after eating undercooked bear meat also acquired T. gondii infection. Freezing of infected meat kills T. gondii, including the strains isolated from bears.
Collapse
Affiliation(s)
- J P Dubey
- U.S. Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, Maryland 20705-2350
| | - F H A Murata
- U.S. Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, Maryland 20705-2350
| | - C K Cerqueira-Cézar
- U.S. Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, Maryland 20705-2350
| | - O C H Kwok
- U.S. Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, Maryland 20705-2350
| | - C Su
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996-0845
| |
Collapse
|
7
|
Rode KD, Regehr EV, Bromaghin JF, Wilson RR, St Martin M, Crawford JA, Quakenbush LT. Seal body condition and atmospheric circulation patterns influence polar bear body condition, recruitment, and feeding ecology in the Chukchi Sea. GLOBAL CHANGE BIOLOGY 2021; 27:2684-2701. [PMID: 33644944 DOI: 10.1111/gcb.15572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Polar bears (Ursus maritimus) are experiencing loss of sea ice habitats used to access their marine mammal prey. Simultaneously, ocean warming is changing ecosystems that support marine mammal populations. The interactive effects of sea ice and prey are not well understood yet may explain spatial-temporal variation in the response of polar bears to sea ice loss. Here, we examined the potential combined effects of sea ice, seal body condition, and atmospheric circulation patterns on the body condition, recruitment, diet, and feeding probability of 469 polar bears captured in the Chukchi Sea, 2008-2017. The body condition of ringed seals (Pusa hispida), the primary prey of females and subadults, was related to dietary proportions of ringed seal, feeding probability, and the body condition of females and cubs. In contrast, adult males consumed more bearded seals (Erignathus barbatus) and exhibited better condition when bearded seal body condition was higher. The litter size, number of yearlings per adult female, and the condition of dependent young were higher following winters characterized by low Arctic Oscillation conditions, consistent with a growing number of studies. Body condition, recruitment, and feeding probability were either not associated or negatively associated with sea ice conditions, suggesting that, unlike some subpopulations, Chukchi Sea bears are not currently limited by sea ice availability. However, spring sea ice cover declined 2% per year during our study reaching levels not previously observed in the satellite record and resulting in the loss of polar bear hunting and seal pupping habitat. Our study suggests that the status of ice seal populations is likely an important factor that can either compound or mitigate the response of polar bears to sea ice loss over the short term. In the long term, neither polar bears nor their prey are likely robust to limitless loss of their sea ice habitat.
Collapse
Affiliation(s)
- Karyn D Rode
- Alaska Science Center, U.S. Geological Survey, Anchorage, AK, USA
| | - Eric V Regehr
- Polar Science Center, University of Washington, Seattle, WA, USA
| | | | - Ryan R Wilson
- Marine Mammals Management, U.S. Fish and Wildlife Service, Anchorage, AK, USA
| | - Michelle St Martin
- Marine Mammals Management, U.S. Fish and Wildlife Service, Anchorage, AK, USA
| | | | | |
Collapse
|
8
|
Reiling SJ, Dixon BR. Toxoplasma gondii: How an Amazonian parasite became an Inuit health issue. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2019; 45:183-190. [PMID: 31355827 PMCID: PMC6615440 DOI: 10.4745/ccdr.v45i78a03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Toxoplasma gondii is a protozoan parasite that originated in the Amazon. Felids (mammals in the cat family) are the only definitive hosts. These animals shed large numbers of infectious oocysts into the environment, which can subsequently infect many intermediate hosts, including birds, mammals and, possibly, fish. Human T. gondii seroprevalence is high in some parts of the Canadian Arctic and is associated with adverse health consequences among Inuit population. Since the range of felids does not extend to the Arctic, it is not immediately obvious how this parasite got from the Amazon to the Arctic. The objectives of this overview are to summarize the health impacts of T. gondii infection in Inuit in Canada's North and to consider how this infection could have reached them. This article reviews the prevalence of T. gondii infection in terrestrial and marine animals in the Canadian Arctic and discusses their potential role in the foodborne transmission of this parasite to humans. Two distribution factors seem plausible. First, felids in more southern habitats may release infectious oocysts into waterways. As these oocysts remain viable for months, they can be transported northward via rivers and ocean currents and could infect Arctic fish and eventually the marine mammals that prey on the fish. Second, migratory terrestrial and marine intermediate hosts may be responsible for carrying T. gondii tissue cysts to the Arctic, where they may then pass on the infection to carnivores. The most likely source of T. gondii in Inuit is from consumption of traditionally-prepared country foods including meat and organs from intermediate hosts, which may be consumed raw. With climate change, northward migration of felids may increase the prevalence of T. gondii in Arctic wildlife.
Collapse
Affiliation(s)
- SJ Reiling
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON
| | - BR Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON
| |
Collapse
|
9
|
Reiling SJ, Dixon BR. Toxoplasma gondii: How an Amazonian parasite became an Inuit health issue. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2019; 45:183-190. [PMID: 31355827 PMCID: PMC6615440 DOI: 10.14745/ccdr.v45i78a03] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Toxoplasma gondii is a protozoan parasite that originated in the Amazon. Felids (mammals in the cat family) are the only definitive hosts. These animals shed large numbers of infectious oocysts into the environment, which can subsequently infect many intermediate hosts, including birds, mammals and, possibly, fish. Human T. gondii seroprevalence is high in some parts of the Canadian Arctic and is associated with adverse health consequences among Inuit population. Since the range of felids does not extend to the Arctic, it is not immediately obvious how this parasite got from the Amazon to the Arctic. The objectives of this overview are to summarize the health impacts of T. gondii infection in Inuit in Canada's North and to consider how this infection could have reached them. This article reviews the prevalence of T. gondii infection in terrestrial and marine animals in the Canadian Arctic and discusses their potential role in the foodborne transmission of this parasite to humans. Two distribution factors seem plausible. First, felids in more southern habitats may release infectious oocysts into waterways. As these oocysts remain viable for months, they can be transported northward via rivers and ocean currents and could infect Arctic fish and eventually the marine mammals that prey on the fish. Second, migratory terrestrial and marine intermediate hosts may be responsible for carrying T. gondii tissue cysts to the Arctic, where they may then pass on the infection to carnivores. The most likely source of T. gondii in Inuit is from consumption of traditionally-prepared country foods including meat and organs from intermediate hosts, which may be consumed raw. With climate change, northward migration of felids may increase the prevalence of T. gondii in Arctic wildlife.
Collapse
Affiliation(s)
- SJ Reiling
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON
| | - BR Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON
| |
Collapse
|
10
|
Whiteman JP, Harlow HJ, Durner GM, Regehr EV, Amstrup SC, Ben-David M. Heightened Immune System Function in Polar Bears Using Terrestrial Habitats. Physiol Biochem Zool 2019; 92:1-11. [DOI: 10.1086/698996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Stimmelmayr R, Rotstein DS, Maboni G, Person BT, Sanchez S. Morbillivirus-associated lipid pneumonia in Arctic foxes. J Vet Diagn Invest 2018; 30:933-936. [PMID: 30205787 DOI: 10.1177/1040638718797382] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We describe lipid pneumonia in 5 of 24 Arctic foxes ( Vulpes lagopus) in association with morbillivirus infection, and lymphoid depletion in 3 of these 5 foxes. Canine distemper virus (CDV) immunohistochemistry yielded positive staining in lung, lymph nodes, spleen, adipose tissue, and renal pelvic urothelial cells in 5 cases. Liver and bone marrow samples collected from these cases tested positive for morbillivirus by reverse-transcription PCR assay. Strains belonged to the CDV Arctic lineage based on sequencing of the hemagglutinin gene followed by phylogenetic analysis. Phylogenetic analysis of the phosphoprotein gene showed that the identified CDV strains were not closely related to any previously documented strains responsible for outbreaks in different animals in other parts of the world.
Collapse
Affiliation(s)
- Raphaela Stimmelmayr
- Department of Wildlife Management, North Slope Borough, Utqiagvik, AK (Stimmelmayr; Person).,Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK (Stimmelmayr).,Marine Mammal Pathology Services, Olney, MD (Rotstein).,Athens Veterinary Diagnostic Laboratory (Maboni, Sanchez), Department of Infectious Diseases, College of Veterinary Medicine (Sanchez), The University of Georgia, Athens, GA
| | - David S Rotstein
- Department of Wildlife Management, North Slope Borough, Utqiagvik, AK (Stimmelmayr; Person).,Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK (Stimmelmayr).,Marine Mammal Pathology Services, Olney, MD (Rotstein).,Athens Veterinary Diagnostic Laboratory (Maboni, Sanchez), Department of Infectious Diseases, College of Veterinary Medicine (Sanchez), The University of Georgia, Athens, GA
| | - Grazieli Maboni
- Department of Wildlife Management, North Slope Borough, Utqiagvik, AK (Stimmelmayr; Person).,Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK (Stimmelmayr).,Marine Mammal Pathology Services, Olney, MD (Rotstein).,Athens Veterinary Diagnostic Laboratory (Maboni, Sanchez), Department of Infectious Diseases, College of Veterinary Medicine (Sanchez), The University of Georgia, Athens, GA
| | - Brian T Person
- Department of Wildlife Management, North Slope Borough, Utqiagvik, AK (Stimmelmayr; Person).,Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK (Stimmelmayr).,Marine Mammal Pathology Services, Olney, MD (Rotstein).,Athens Veterinary Diagnostic Laboratory (Maboni, Sanchez), Department of Infectious Diseases, College of Veterinary Medicine (Sanchez), The University of Georgia, Athens, GA
| | - Susan Sanchez
- Department of Wildlife Management, North Slope Borough, Utqiagvik, AK (Stimmelmayr; Person).,Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK (Stimmelmayr).,Marine Mammal Pathology Services, Olney, MD (Rotstein).,Athens Veterinary Diagnostic Laboratory (Maboni, Sanchez), Department of Infectious Diseases, College of Veterinary Medicine (Sanchez), The University of Georgia, Athens, GA
| |
Collapse
|
12
|
Beineke A, Baumgärtner W, Wohlsein P. Cross-species transmission of canine distemper virus-an update. One Health 2015; 1:49-59. [PMID: 28616465 PMCID: PMC5462633 DOI: 10.1016/j.onehlt.2015.09.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 01/13/2023] Open
Abstract
Canine distemper virus (CDV) is a pantropic morbillivirus with a worldwide distribution, which causes fatal disease in dogs. Affected animals develop dyspnea, diarrhea, neurological signs and profound immunosuppression. Systemic CDV infection, resembling distemper in domestic dogs, can be found also in wild canids (e.g. wolves, foxes), procyonids (e.g. raccoons, kinkajous), ailurids (e.g. red pandas), ursids (e.g. black bears, giant pandas), mustelids (e.g. ferrets, minks), viverrids (e.g. civets, genets), hyaenids (e.g. spotted hyenas), and large felids (e.g. lions, tigers). Furthermore, besides infection with the closely related phocine distemper virus, seals can become infected by CDV. In some CDV outbreaks including the mass mortalities among Baikal and Caspian seals and large felids in the Serengeti Park, terrestrial carnivores including dogs and wolves have been suspected as vectors for the infectious agent. In addition, lethal infections have been described in non-carnivore species such as peccaries and non-human primates demonstrating the remarkable ability of the pathogen to cross species barriers. Mutations affecting the CDV H protein required for virus attachment to host-cell receptors are associated with virulence and disease emergence in novel host species. The broad and expanding host range of CDV and its maintenance within wildlife reservoir hosts considerably hampers disease eradication.
Collapse
Affiliation(s)
- Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
| |
Collapse
|
13
|
Fagre AC, Patyk KA, Nol P, Atwood T, Hueffer K, Duncan C. A Review of Infectious Agents in Polar Bears (Ursus maritimus) and Their Long-Term Ecological Relevance. ECOHEALTH 2015; 12:528-39. [PMID: 25791679 DOI: 10.1007/s10393-015-1023-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 11/13/2014] [Accepted: 02/06/2015] [Indexed: 05/27/2023]
Abstract
Disease was a listing criterion for the polar bear (Ursus maritimus) as threatened under the Endangered Species Act in 2008; it is therefore important to evaluate the current state of knowledge and identify any information gaps pertaining to diseases in polar bears. We conducted a systematic literature review focused on infectious agents and associated health impacts identified in polar bears. Overall, the majority of reports in free-ranging bears concerned serosurveys or fecal examinations with little to no information on associated health effects. In contrast, most reports documenting illness or pathology referenced captive animals and diseases caused by etiologic agents not representative of exposure opportunities in wild bears. As such, most of the available infectious disease literature has limited utility as a basis for development of future health assessment and management plans. Given that ecological change is a considerable risk facing polar bear populations, future work should focus on cumulative effects of multiple stressors that could impact polar bear population dynamics.
Collapse
Affiliation(s)
- Anna C Fagre
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO, 80524, USA
| | - Kelly A Patyk
- Center for Epidemiology and Animal Health, Science Technology and Analysis Services (STAS), Veterinary Services (VS), Animal and Plant Health Inspection Service (APHIS), United States Department of Agriculture (USDA), 2150 Centre Ave., Fort Collins, CO, 80526, USA
| | - Pauline Nol
- Wildlife-Livestock Disease Investigations Team, STAS, VS, APHIS, USDA, 4101 LaPorte Avenue, Fort Collins, CO, 80521, USA
| | - Todd Atwood
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| | - Karsten Hueffer
- Department of Veterinary Medicine, College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Colleen Duncan
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO, 80524, USA.
| |
Collapse
|
14
|
|
15
|
Jenkins EJ, Castrodale LJ, de Rosemond SJ, Dixon BR, Elmore SA, Gesy KM, Hoberg EP, Polley L, Schurer JM, Simard M, Thompson RCA. Tradition and transition: parasitic zoonoses of people and animals in Alaska, northern Canada, and Greenland. ADVANCES IN PARASITOLOGY 2013; 82:33-204. [PMID: 23548085 DOI: 10.1016/b978-0-12-407706-5.00002-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Zoonotic parasites are important causes of endemic and emerging human disease in northern North America and Greenland (the North), where prevalence of some parasites is higher than in the general North American population. The North today is in transition, facing increased resource extraction, globalisation of trade and travel, and rapid and accelerating environmental change. This comprehensive review addresses the diversity, distribution, ecology, epidemiology, and significance of nine zoonotic parasites in animal and human populations in the North. Based on a qualitative risk assessment with criteria heavily weighted for human health, these zoonotic parasites are ranked, in the order of decreasing importance, as follows: Echinococcus multilocularis, Toxoplasma gondii, Trichinella and Giardia, Echinococcus granulosus/canadensis and Cryptosporidium, Toxocara, anisakid nematodes, and diphyllobothriid cestodes. Recent and future trends in the importance of these parasites for human health in the North are explored. For example, the incidence of human exposure to endemic helminth zoonoses (e.g. Diphyllobothrium, Trichinella, and Echinococcus) appears to be declining, while water-borne protozoans such as Giardia, Cryptosporidium, and Toxoplasma may be emerging causes of human disease in a warming North. Parasites that undergo temperature-dependent development in the environment (such as Toxoplasma, ascarid and anisakid nematodes, and diphyllobothriid cestodes) will likely undergo accelerated development in endemic areas and temperate-adapted strains/species will move north, resulting in faunal shifts. Food-borne pathogens (e.g. Trichinella, Toxoplasma, anisakid nematodes, and diphyllobothriid cestodes) may be increasingly important as animal products are exported from the North and tourists, workers, and domestic animals enter the North. Finally, key needs are identified to better assess and mitigate risks associated with zoonotic parasites, including enhanced surveillance in animals and people, detection methods, and delivery and evaluation of veterinary and public health services.
Collapse
|
16
|
Castellini JM, Rea LD, Lieske CL, Beckmen KB, Fadely BS, Maniscalco JM, O'Hara TM. Mercury concentrations in hair from neonatal and juvenile Steller Sea Lions (Eumetopias jubatus): implications based on age and region in this northern Pacific marine sentinel piscivore. ECOHEALTH 2012; 9:267-277. [PMID: 22815134 DOI: 10.1007/s10393-012-0784-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 06/13/2012] [Accepted: 06/24/2012] [Indexed: 06/01/2023]
Abstract
Mercury is a global contaminant of concern for the fetus and the neonate of piscivores. Methylmercury, produced within marine ecosystems, is of particular concern as a readily absorbed neurotoxicant transported across the blood brain barrier and transplacentally. In the North Pacific Ocean, Steller sea lions are broadly distributed apex predators and, as such, integrate complex food webs and the associated exposure and possible adverse effects of toxic and infectious agents. Hair, including lanugo, was examined using regional and age groupings to assess mercury concentrations in young Alaskan Steller sea lions. The highest concentrations of mercury occurred in the youngest animals, likely via in utero exposure. Based on the adverse developmental outcomes of methylmercury toxicity this specific cohort is of concern. Regionally, higher concentrations of mercury were observed in the endangered western population of Steller sea lions and mirrored patterns observed in human biomonitoring studies of Alaskan coastal communities. These data have broader implications with respect to human and ecosystem health as Steller sea lions rely on similar prey species and foraging areas as those targeted by commercial fisheries and subsistence users and are therefore valuable sentinels of marine ecosystem health.
Collapse
Affiliation(s)
- J Margaret Castellini
- Institute of Marine Science, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775-7220, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Elmore SA, Jenkins EJ, Huyvaert KP, Polley L, Root JJ, Moore CG. Toxoplasma gondiiin Circumpolar People and Wildlife. Vector Borne Zoonotic Dis 2012; 12:1-9. [DOI: 10.1089/vbz.2011.0705] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Stacey A. Elmore
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan
| | - Emily J. Jenkins
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan
| | - Kathryn P. Huyvaert
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado
| | - Lydden Polley
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan
| | - J. Jeffrey Root
- United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado
| | - Chester G. Moore
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
18
|
Davidson R, Simard M, Kutz SJ, Kapel CMO, Hamnes IS, Robertson LJ. Arctic parasitology: why should we care? Trends Parasitol 2011; 27:239-45. [PMID: 21419701 DOI: 10.1016/j.pt.2011.02.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 02/03/2023]
Abstract
The significant impact on human and animal health from parasitic infections in tropical regions is well known, but parasites of medical and veterinary importance are also found in the Arctic. Subsistence hunting and inadequate food inspection can expose people of the Arctic to foodborne parasites. Parasitic infections can influence the health of wildlife populations and thereby food security. The low ecological diversity that characterizes the Arctic imparts vulnerability. In addition, parasitic invasions and altered transmission of endemic parasites are evident and anticipated to continue under current climate changes, manifesting as pathogen range expansion, host switching, and/or disease emergence or reduction. However, Arctic ecosystems can provide useful models for understanding climate-induced shifts in host-parasite ecology in other regions.
Collapse
|
19
|
Hueffer K, O'Hara TM, Follmann EH. Adaptation of mammalian host-pathogen interactions in a changing arctic environment. Acta Vet Scand 2011; 53:17. [PMID: 21392401 PMCID: PMC3061946 DOI: 10.1186/1751-0147-53-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/11/2011] [Indexed: 12/02/2022] Open
Abstract
Many arctic mammals are adapted to live year-round in extreme environments with low winter temperatures and great seasonal variations in key variables (e.g. sunlight, food, temperature, moisture). The interaction between hosts and pathogens in high northern latitudes is not very well understood with respect to intra-annual cycles (seasons). The annual cycles of interacting pathogen and host biology is regulated in part by highly synchronized temperature and photoperiod changes during seasonal transitions (e.g., freezeup and breakup). With a warming climate, only one of these key biological cues will undergo drastic changes, while the other will remain fixed. This uncoupling can theoretically have drastic consequences on host-pathogen interactions. These poorly understood cues together with a changing climate by itself will challenge host populations that are adapted to pathogens under the historic and current climate regime. We will review adaptations of both host and pathogens to the extreme conditions at high latitudes and explore some potential consequences of rapid changes in the Arctic.
Collapse
|