1
|
Chen S, Shang K, Chen J, Yu Z, Wei Y, He L, Ding K. Global distribution, cross-species transmission, and receptor binding of canine parvovirus-2: Risks and implications for humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172307. [PMID: 38599392 DOI: 10.1016/j.scitotenv.2024.172307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
For canine parvovirus -2 (CPV-2), a zoonotic virus capable of cross-species transmission in animals, the amino acid changes of capsid protein VP2 are key factors when binding to other species' transferrin receptors (TfR). CPV-2 variants can spread from felines and canines, for example, to Carnivora, Artiodactyla, and Pholidota species, and CPV-2c variants are essential to spread from Carnivora to Artiodactyla and Pholidota species in particular. In our study, a CPV-2a variant maintained a relatively stable trend, and the proportion of CPV-2c gradually rose from 1980 to 2021. The VP2 amino acid sequence analysis showed that five amino acid mutations at 426E/D, 305H/D, and 297S may be necessary for the virus to bind to different host receptors. Meanwhile, receptor-binding loop regions and amino acid sites 87 L, 93 N, 232I, and 305Y were associated with CPV-2 cross-species transmission. The homology of TfRs in different hosts infected with CPV-2 ranged from 77.2 % to 99.0 %, and from pig to feline, canine, and humans was 80.7 %, 80.4 %, and 77.2 %, respectively. The amino acid residues of TfRs involved in the viral binding in those hosts are highly conserved, which suggests that CPV-2 may be capable of pig-to-human transmission. Our analysis of the origin, evolutionary trend, cross-species transmission dynamics, and genetic characteristics of CPV-2 when binding to host receptors provides a theoretical basis for further research on CPV-2's mechanism of cross-species transmission and for establishing an early warning and monitoring mechanism for the possible threat of CPV-2 to animal-human public security.
Collapse
Affiliation(s)
- Songbiao Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan, China
| | - Ke Shang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Jian Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ying Wei
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Lei He
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China.
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan, China.
| |
Collapse
|
2
|
Hess SC, Weiss KCB, Custer JM, Lewis JS, Kraberger S, Varsani A. Identification of small circular DNA viruses in coyote fecal samples from Arizona (USA). Arch Virol 2023; 169:12. [PMID: 38151635 DOI: 10.1007/s00705-023-05937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
Coyotes (Canis latrans) have a broad geographic distribution across North and Central America. Despite their widespread presence in urban environments in the USA, there is limited information regarding viruses associated with coyotes in the USA and in particular the state of Arizona. To explore viruses associated with coyotes, particularly small DNA viruses, 44 scat samples were collected (April-June 2021 and November 2021-January 2022) along the Salt River near Phoenix, Arizona (USA), along 43 transects (500 m). From these samples, we identified 11 viral genomes: two novel circoviruses, six unclassified cressdnaviruses, and two anelloviruses. One of the circoviruses is most closely related to a circovirus sequence identified from an aerosolized dust sample in Arizona, USA. The second circovirus is most closely related to a rodent-associated circovirus and canine circovirus. Of the unclassified cressdnaviruses, three encode replication-associated proteins that are similar to those found in protists (Histomonas meleagridis and Monocercomonoides exilis), implying an evolutionary relationship with or a connection to similar unidentified protist hosts. The two anelloviruses are most closely related to those found in rodents, and this suggests a diet-related identification.
Collapse
Affiliation(s)
- Savage C Hess
- The School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Katherine C B Weiss
- The School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287, USA
| | - Jesse S Lewis
- College of Integrative Sciences and Arts, Arizona State University, Polytechnic Campus, 6073 South Backus Mall, Mesa, AZ, 85212, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287, USA
| | - Arvind Varsani
- The School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA.
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287, USA.
- Center of Evolution and Medicine, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| |
Collapse
|
3
|
Kurucay HN, Tamer C, Muftuoglu B, Elhag AE, Gozel S, Cicek-Yildiz Y, Demirtas S, Ozan E, Albayrak H, Okur-Gumusova S, Yazici Z. First isolation and molecular characterization of canine parvovirus-type 2b (CPV-2b) from red foxes (Vulpes vulpes) living in the wild habitat of Turkey. Virol J 2023; 20:27. [PMID: 36774498 PMCID: PMC9921602 DOI: 10.1186/s12985-023-01988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND The canine parvovirus, with its many variants, is responsible for a pivotal and common viral infection affecting millions of dogs and other carnivore species worldwide, particularly the wild ones, which are considered as the main reservoir hosts. To that end, this study investigated the presence of canine parvovirus (CPV) in red foxes (Vulpes vulpes) living in wild habitats of several regions of Turkey. METHODS We randomly collected 630 archival fox stool specimens from rural areas of 22 provinces and used real-time PCR to detect CPV. RESULTS Two of the 630 (0.3%) stool samples were positive for CPV-DNA, named Tr-Fox/128(Aydın) and Tr-Fox/159(Manisa). We attempted to isolate the virus in a MDCK cell line, and cytopathic effects were observed four days post-inoculation. Three regions corresponding to the CPV capsid protein VP2 gene from extracted DNA of positive samples were amplified by conventional PCR, and the products were visualised, purified, and Sanger sequenced. Three overlapping DNA raw sequence fragments, were read, assembled, and aligned to obtain approximately 1.5 kb-long regions that cover most of the VP2 gene, then deposited in GenBank. After comparing the isolates with parvovirus sequences data of domestic and wild carnivores by BLAST processing, our isolates' similarity rate with each other was 99.40%, with base differences in 9 nucleotide positions. They were classified as 2b variant closely related to isolates from dogs in Turkey, Egypt, Iraq, Italy, Thailand, and China. CONCLUSION This study presents evidence of interspecies transmission of CPV, of which there are no reports on prevalence in wildlife carnivores of our country. Identification of CPV in red foxes threatens local and hunting dogs, which may contract the infection or disseminate it to other wild animal species or vice-versa.
Collapse
Affiliation(s)
- Hanne Nur Kurucay
- grid.411049.90000 0004 0574 2310Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun Turkey
| | - Cuneyt Tamer
- grid.411049.90000 0004 0574 2310Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun Turkey
| | - Bahadir Muftuoglu
- grid.411049.90000 0004 0574 2310Department of Veterinary Experimental Animals, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun Turkey
| | - Ahmed Eisa Elhag
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Atakum, Samsun, Turkey. .,Department of Preventive Medicine and Clinical Studies, Faculty of Veterinary Sciences, University of Gadarif, 32211, Al Qadarif, Sudan.
| | - Seda Gozel
- grid.411049.90000 0004 0574 2310Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun Turkey
| | - Yasemin Cicek-Yildiz
- Samsun Veterinary Control Institute, Ministry of Agriculture and Forestry, 55200 Atakum, Samsun Turkey
| | - Sadik Demirtas
- grid.411049.90000 0004 0574 2310Department of Biology, Faculty of Science, Ondokuz Mayis University, 55270 Atakum, Samsun Turkey
| | - Emre Ozan
- grid.411049.90000 0004 0574 2310Department of Veterinary Experimental Animals, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun Turkey
| | - Harun Albayrak
- grid.411049.90000 0004 0574 2310Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun Turkey
| | - Semra Okur-Gumusova
- grid.411049.90000 0004 0574 2310Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun Turkey
| | - Zafer Yazici
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Atakum, Samsun, Turkey.
| |
Collapse
|
4
|
Orozco L, López-Pérez AM, Zarza H, Suzán G, List R. Dog demography and husbandry practices facilitate dog-wildlife conflict in a suburban-forest interface. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Luna Espinoza LR, Carhuaricra Huamán D, Quino Quispe R, Rosadio Alcántara RH, Maturrano Hernández AL. Carnivore protoparvovirus 1 in Peruvian dogs: Temporal/geographical and evolutionary dynamics of virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105255. [PMID: 35227878 DOI: 10.1016/j.meegid.2022.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/27/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Canine parvovirus (CPV) has been recognized all around the world as the causal agent of a contagious and highly mortal disease in domestic dogs. In Peru, the infection is endemic and unvaccinated animals and puppies are the most at risk. In order to analyze viral diversity and determine the evolutionary genetic relationships and transmission dynamic of Peruvian CPV-2, were collected during the period of 2016-2017 rectal swabs from puppies with parvovirosis compatible symptoms. Viral DNA was amplified by PCR using primers that flanked the ends of the viral genome and sequenced by Illumina Miseq platform. Twenty-six genomic sequences (NSP1-VP1) of CPV from several districts in Lima Metropolitan area were obtained. The VP2 gene analysis demonstrated the presence of the New CPV-2a, New CPV-2b and 2c variants. The phylodynamic analysis of the viral genomes determined that all Peruvian sequences were clustered into a big clade named South American clade that emerged from the west region of Europe (Italy). The Time to the Most Recent Common Ancestor (TMRCA) of the South American clade was dated to 1993. Peruvian sequences were distributed into three subclades, and the 92% of these sequences were related to Ecuadorian CPV-2. The results suggests that three independent introduction events of virus from other countries could have occurred, in two of these events, CPV-2 from Ecuador were introduced in Peru in 2003 and 2009, and another introduction event, in 2000, from Europe. Overall, these results indicate a viral genetic relationship between Peruvian with Ecuadorian and European virus, and the circulation of several viral subpopulations in Lima Metropolitan.
Collapse
Affiliation(s)
- Luis R Luna Espinoza
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru.
| | - Dennis Carhuaricra Huamán
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru.
| | - Raquel Quino Quispe
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru.
| | - Raúl H Rosadio Alcántara
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru.
| | - Abelardo Lenin Maturrano Hernández
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru.
| |
Collapse
|
6
|
Ortega R, Mena J, Grecco S, Pérez R, Panzera Y, Napolitano C, Zegpi NA, Sandoval A, Sandoval D, González-Acuña D, Cofré S, Neira V, Castillo-Aliaga C. Domestic dog origin of Carnivore Protoparvovirus 1 infection in a rescued free-ranging guiña (Leopardus guigna) in Chile. Transbound Emerg Dis 2020; 68:1062-1068. [PMID: 32815299 DOI: 10.1111/tbed.13807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022]
Abstract
Carnivore protoparvovirus 1 is one of the most important pathogens affecting both wild and domestic carnivores. Here, we reported the genetic characterization of canine parvovirus (CPV-2) strains from a rescued guiña (Leopardus guigna) and domestic dogs from Chile. Guiña strain was classified as CPV-2c, and phylogenetic analysis of the complete coding genome showed that the guiña CPV-2c strain shares a recent common ancestor with Chilean domestic dogs' strains. These viruses showed >99% identity and exhibited three changes in the NS1 protein (V596A, E661K and L582F). This is the first detection and genetic characterization of CPV-2c infection in guiña worldwide, and one of the few comparative studies that show the source of infection was domestic dogs. The current findings highlight the fact that guiña is a susceptible species to protoparvovirus infection and that domestic dogs represent an important threat to its conservation. The CPV-2 cross-species transmission between domestic dogs and guiña should be taken into account for protection programmes of this endangered species.
Collapse
Affiliation(s)
- René Ortega
- Departamentode PatologíayMedicina Preventiva, FacultaddeCiencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Juan Mena
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Sofía Grecco
- Sección Genética Evolutiva, Departamento de Biología Animal, Facultad deCiencias, Instituto de Biología, Universidad de la República, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Departamento de Biología Animal, Facultad deCiencias, Instituto de Biología, Universidad de la República, Uruguay
| | - Yanina Panzera
- Sección Genética Evolutiva, Departamento de Biología Animal, Facultad deCiencias, Instituto de Biología, Universidad de la República, Uruguay
| | - Constanza Napolitano
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile.,Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
| | - Nhur-Aischa Zegpi
- Departamentode PatologíayMedicina Preventiva, FacultaddeCiencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Alberto Sandoval
- Departamentode PatologíayMedicina Preventiva, FacultaddeCiencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Daniel Sandoval
- Departamentode PatologíayMedicina Preventiva, FacultaddeCiencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Daniel González-Acuña
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Sergio Cofré
- Departamento de Ciencias Clínicas, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Víctor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Cristóbal Castillo-Aliaga
- Departamentode PatologíayMedicina Preventiva, FacultaddeCiencias Veterinarias, Universidad de Concepción, Chillán, Chile
| |
Collapse
|
7
|
Kelman M, Harriott L, Carrai M, Kwan E, Ward MP, Barrs VR. Phylogenetic and Geospatial Evidence of Canine Parvovirus Transmission between Wild Dogs and Domestic Dogs at the Urban Fringe in Australia. Viruses 2020; 12:E663. [PMID: 32575609 PMCID: PMC7354627 DOI: 10.3390/v12060663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 01/22/2023] Open
Abstract
Canine parvovirus (CPV) is an important cause of disease in domestic dogs. Sporadic cases and outbreaks occur across Australia and worldwide and are associated with high morbidity and mortality. Whether transmission of CPV occurs between owned dogs and populations of wild dogs, including Canis familiaris, Canis lupus dingo and hybrids, is not known. To investigate the role of wild dogs in CPV epidemiology in Australia, PCR was used to detect CPV DNA in tissue from wild dogs culled in the peri-urban regions of two Australian states, between August 2012 and May 2015. CPV DNA was detected in 4.7% (8/170). There was a strong geospatial association between wild-dog CPV infections and domestic-dog CPV cases reported to a national disease surveillance system between 2009 and 2015. Postcodes in which wild dogs tested positive for CPV were 8.63 times more likely to also have domestic-dog cases reported than postcodes in which wild dogs tested negative (p = 0.0332). Phylogenetic analysis of CPV VP2 sequences from wild dogs showed they were all CPV-2a variants characterized by a novel amino acid mutation (21-Ala) recently identified in CPV isolates from owned dogs in Australia with parvoviral enteritis. Wild-dog CPV VP2 sequences were compared to those from owned domestic dogs in Australia. For one domestic-dog case located approximately 10 km from a wild-dog capture location, and reported 3.5 years after the nearest wild dog was sampled, the virus was demonstrated to have a closely related common ancestor. This study provides phylogenetic and geospatial evidence of CPV transmission between wild and domestic dogs in Australia.
Collapse
Affiliation(s)
- Mark Kelman
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (M.C.); (E.K.); (M.P.W.); (V.R.B.)
| | - Lana Harriott
- Pest Animal Research Centre, Biosecurity Queensland, Department of Agriculture and Fisheries, Toowoomba, QLD 4350, Australia;
| | - Maura Carrai
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (M.C.); (E.K.); (M.P.W.); (V.R.B.)
- Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Emily Kwan
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (M.C.); (E.K.); (M.P.W.); (V.R.B.)
| | - Michael P. Ward
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (M.C.); (E.K.); (M.P.W.); (V.R.B.)
| | - Vanessa R. Barrs
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (M.C.); (E.K.); (M.P.W.); (V.R.B.)
- Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| |
Collapse
|