1
|
Pierron M, Sueur C, Shimada M, MacIntosh AJJ, Romano V. Epidemiological Consequences of Individual Centrality on Wild Chimpanzees. Am J Primatol 2024; 86:e23682. [PMID: 39245992 DOI: 10.1002/ajp.23682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Disease outbreaks are one of the key threats to great apes and other wildlife. Because the spread of some pathogens (e.g., respiratory viruses, sexually transmitted diseases, ectoparasites) are mediated by social interactions, there is a growing interest in understanding how social networks predict the chain of pathogen transmission. In this study, we built a party network from wild chimpanzees (Pan troglodytes), and used agent-based modeling to test: (i) whether individual attributes (sex, age) predict individual centrality (i.e., whether it is more or less socially connected); (ii) whether individual centrality affects an individual's role in the chain of pathogen transmission; and, (iii) whether the basic reproduction number (R0) and infectious period modulate the influence of centrality on pathogen transmission. We show that sex and age predict individual centrality, with older males presenting many (degree centrality) and strong (strength centrality) relationships. As expected, males are more central than females within their network, and their centrality determines their probability of getting infected during simulated outbreaks. We then demonstrate that direct measures of social interaction (strength centrality), as well as eigenvector centrality, strongly predict disease dynamics in the chimpanzee community. Finally, we show that this predictive power depends on the pathogen's R0 and infectious period: individual centrality was most predictive in simulations with the most transmissible pathogens and long-lasting diseases. These findings highlight the importance of considering animal social networks when investigating disease outbreaks.
Collapse
Affiliation(s)
- Maxime Pierron
- Département de Biologie, Faculté des Sciences et Technologies, Université de Lille, Lille, France
| | - Cédric Sueur
- IPHC UMR 7178, CNRS, Université de Strasbourg, Strasbourg, France
- Institut Universitaire de France, Paris, France
- Anthropo-Lab, ETHICS EA7446, Lille Catholic University, Lille, France
| | - Masaki Shimada
- Department of Animal Sciences, Teikyo University of Science, Uenohara, Yamanashi, Japan
| | | | - Valéria Romano
- IPHC UMR 7178, CNRS, Université de Strasbourg, Strasbourg, France
- Wildlife Research Center, Kyoto University, Inuyama, Japan
- IMBE, Aix Marseille University, Avignon University, CNRS, IRD, Marseille, France
| |
Collapse
|
2
|
Cooksey KE, Sanz C, Massamba JM, Ebombi TF, Teberd P, Abea G, Mbebouti G, Kienast I, Brogan S, Stephens C, Morgan D. Predictors of respiratory illness in western lowland gorillas. Primates 2024; 65:557-569. [PMID: 36653552 PMCID: PMC9849104 DOI: 10.1007/s10329-022-01045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2022] [Indexed: 01/20/2023]
Abstract
Infectious disease is hypothesized to be one of the most important causes of morbidity and mortality in wild great apes. Specific socioecological factors have been shown to influence incidences of respiratory illness and disease prevalence in some primate populations. In this study, we evaluated potential predictors (including age, sex, group size, fruit availability, and rainfall) of respiratory illness across three western lowland gorilla groups in the Republic of Congo. A total of 19,319 observational health assessments were conducted during daily follows of habituated gorillas in the Goualougo and Djéké Triangles over a 4-year study period. We detected 1146 incidences of clinical respiratory signs, which indicated the timing of probable disease outbreaks within and between groups. Overall, we found that males were more likely to exhibit signs than females, and increasing age resulted in a higher likelihood of respiratory signs. Silverback males showed the highest average monthly prevalence of coughs and sneezes (Goualougo: silverback Loya, 9.35 signs/month; Djéké: silverback Buka, 2.65 signs/month; silverback Kingo,1.88 signs/month) in each of their groups. Periods of low fruit availability were associated with an increased likelihood of respiratory signs. The global pandemic has increased awareness about the importance of continuous monitoring and preparedness for infectious disease outbreaks, which are also known to threaten wild ape populations. In addition to the strict implementation of disease prevention protocols at field sites focused on great apes, there is a need for heightened vigilance and systematic monitoring across sites to protect both wildlife and human populations.
Collapse
Affiliation(s)
- Kristena E Cooksey
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1114, Saint Louis, MO, 63130, USA.
| | - Crickette Sanz
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1114, Saint Louis, MO, 63130, USA
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Jean Marie Massamba
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Thierry Fabrice Ebombi
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Prospère Teberd
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Gaston Abea
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Gaeton Mbebouti
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Ivonne Kienast
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14850, USA
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Sean Brogan
- Wildlife Conservation Society, Congo Program, B.P. 14537, Brazzaville, Republic of Congo
| | - Colleen Stephens
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1114, Saint Louis, MO, 63130, USA
| | - David Morgan
- Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, 2001 N. Clark Street, Chicago, IL, 60614, USA
| |
Collapse
|
3
|
Pandey A, Wojan C, Feuka A, Craft ME, Manlove K, Pepin KM. The influence of social and spatial processes on the epidemiology of environmentally transmitted pathogens in wildlife: implications for management. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220532. [PMID: 39230447 PMCID: PMC11449208 DOI: 10.1098/rstb.2022.0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 09/05/2024] Open
Abstract
Social and spatial structures of host populations play important roles in pathogen transmission. For environmentally transmitted pathogens, the host space use interacts with both the host social structure and the pathogen's environmental persistence (which determines the time-lag across which two hosts can transmit). Together, these factors shape the epidemiological dynamics of environmentally transmitted pathogens. While the importance of both social and spatial structures and environmental pathogen persistence has long been recognized in epidemiology, they are often considered separately. A better understanding of how these factors interact to determine disease dynamics is required for developing robust surveillance and management strategies. Here, we use a simple agent-based model where we vary host mobility (spatial), host gregariousness (social) and pathogen decay (environmental persistence), each from low to high levels to uncover how they affect epidemiological dynamics. By comparing epidemic peak, time to epidemic peak and final epidemic size, we show that longer infectious periods, higher group mobility, larger group size and longer pathogen persistence lead to larger, faster growing outbreaks, and explore how these processes interact to determine epidemiological outcomes such as the epidemic peak and the final epidemic size. We identify general principles that can be used for planning surveillance and control for wildlife host-pathogen systems with environmental transmission across a range of spatial behaviour, social structure and pathogen decay rates. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Aakash Pandey
- Department of Fisheries and Wildlife, Michigan State University , East Lansing, MI 48824, USA
| | - Chris Wojan
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul , MN 55108, USA
| | - Abigail Feuka
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
| | - Meggan E Craft
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul , MN 55108, USA
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, 5200 Old Main Hill , Logan, UT 84322, USA
| | - Kim M Pepin
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
| |
Collapse
|
4
|
Egan ME, Pepin KM, Fischer JW, Hygnstrom SE, VerCauteren KC, Bastille‐Rousseau G. Social network analysis of white‐tailed deer scraping behavior: Implications for disease transmission. Ecosphere 2023. [DOI: 10.1002/ecs2.4434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Affiliation(s)
- Michael E. Egan
- Cooperative Wildlife Research Laboratory Southern Illinois University Carbondale Illinois USA
- School of Biological Sciences Southern Illinois University Carbondale Illinois USA
| | - Kim M. Pepin
- National Wildlife Research Center United States Department of Agriculture, Animal and Plant Health Inspection Services, Wildlife Service Fort Collins Colorado USA
| | - Justin W. Fischer
- National Wildlife Research Center United States Department of Agriculture, Animal and Plant Health Inspection Services, Wildlife Service Fort Collins Colorado USA
| | - Scott E. Hygnstrom
- Wisconsin Center for Wildlife College of Natural Resources, University of Wisconsin‐Stevens Point Stevens Point Wisconsin USA
| | - Kurt C. VerCauteren
- National Wildlife Research Center United States Department of Agriculture, Animal and Plant Health Inspection Services, Wildlife Service Fort Collins Colorado USA
| | - Guillaume Bastille‐Rousseau
- Cooperative Wildlife Research Laboratory Southern Illinois University Carbondale Illinois USA
- School of Biological Sciences Southern Illinois University Carbondale Illinois USA
| |
Collapse
|
5
|
Walsh DP, Felts BL, Cassirer EF, Besser TE, Jenks JA. Host vs. pathogen evolutionary arms race: Effects of exposure history on individual response to a genetically diverse pathogen. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1039234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
IntroductionThroughout their range, bighorn sheep (Ovis canadensis) populations have seen significant disease-associated declines. Unfortunately, understanding of the underlying epidemiological processes driving the disease dynamics in this species has hindered conservation efforts aimed at improving the health and long-term viability of these populations. Individual response to pathogen exposure emerges from dynamic interactions between competing evolutionary processes within the host and pathogen. The host’s adaptive immune system recognizes pathogens and mounts a defensive response. Pathogens have evolved strategies to overcome adaptive immune defenses including maintaining high genetic diversity through rapid evolution. The outcomes of this evolutionary warfare determine the success of pathogen invasion of the host and ultimately the success of conservation efforts.MethodsDuring an epizootic dominated by a single strain, we explore these host-pathogen dynamics by examining the variation in effects of pathogen invasion on captive bighorn sheep with differing histories of exposure to genetically diverse strains of Mycoplasma ovipneumoniae (Movi). We monitored clinical signs of disease and sampled animals and their environment to detect spread of Movi among 37 bighorn sheep separated into nine pens based on known exposure histories.ResultsWe documented Movi transmission within and across pens and we detected Movi DNA in air, water, and invertebrate samples. Higher levels of antibody to Movi prior to the epizootic were associated with a lower likelihood of presenting clinical signs of pneumonia. Nonetheless, higher antibody levels in symptomatic individuals were associated with more severe progressive disease, increased probability and speed of pneumonia-induced mortality, and reduced likelihood of returning to a healthy state. Bighorn sheep with previous exposure to a strain other than the predominant epizootic strain were more likely to recover.DiscussionOur results indicate that Movi-strain variability was sufficient to overwhelm the adaptive host immunological defenses. This outcome indicates, in free-ranging herds, past exposure is likely insufficient to protect bighorn sheep from infection by new Movi strains, although it influences the progression of disease and recovery within the herd. Therefore, given Movi-strain variability and the lack of immunological protection from past exposure, focusing management efforts on minimizing the introduction of Movi into bighorn herds, through separation of domestic and bighorn sheep and avoidance of management activities that create commingling of bighorn sheep carrying differing Movi strains, will likely be the most effective approach for reducing the effects of disease and achieving bighorn sheep conservation goals.
Collapse
|
6
|
Xu Z, MacIntosh AJ, Castellano-Navarro A, Macanás-Martínez E, Suzumura T, Duboscq J. Linking parasitism to network centrality and the impact of sampling bias in its interpretation. PeerJ 2022; 10:e14305. [PMID: 36420133 PMCID: PMC9677876 DOI: 10.7717/peerj.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022] Open
Abstract
Group living is beneficial for individuals, but also comes with costs. One such cost is the increased possibility of pathogen transmission because increased numbers or frequencies of social contacts are often associated with increased parasite abundance or diversity. The social structure of a group or population is paramount to patterns of infection and transmission. Yet, for various reasons, studies investigating the links between sociality and parasitism in animals, especially in primates, have only accounted for parts of the group (e.g., only adults), which is likely to impact the interpretation of results. Here, we investigated the relationship between social network centrality and an estimate of gastrointestinal helminth infection intensity in a whole group of Japanese macaques (Macaca fuscata). We then tested the impact of omitting parts of the group on this relationship. We aimed to test: (1) whether social network centrality -in terms of the number of partners (degree), frequency of interactions (strength), and level of social integration (eigenvector) -was linked to parasite infection intensity (estimated by eggs per gram of faeces, EPG); and, (2) to what extent excluding portions of individuals within the group might influence the observed relationship. We conducted social network analysis on data collected from one group of Japanese macaques over three months on Koshima Island, Japan. We then ran a series of knock-out simulations. General linear mixed models showed that, at the whole-group level, network centrality was positively associated with geohelminth infection intensity. However, in partial networks with only adult females, only juveniles, or random subsets of the group, the strength of this relationship - albeit still generally positive - lost statistical significance. Furthermore, knock-out simulations where individuals were removed but network metrics were retained from the original whole-group network showed that these changes are partly a power issue and partly an effect of sampling the incomplete network. Our study indicates that sampling bias can thus hamper our ability to detect real network effects involving social interaction and parasitism. In addition to supporting earlier results linking geohelminth infection to Japanese macaque social networks, this work introduces important methodological considerations for research into the dynamics of social transmission, with implications for infectious disease epidemiology, population management, and health interventions.
Collapse
Affiliation(s)
- Zhihong Xu
- Wildlife Research Center, Kyoto University, Kyoto, Kyoto, Japan,Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Andrew J.J. MacIntosh
- Wildlife Research Center, Kyoto University, Kyoto, Kyoto, Japan,Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Alba Castellano-Navarro
- Ethology and Animal Welfare Section, Universidad CEU Cardenal Herrera, Valencia, Valencia, Spain,Institute of Biology, Universität Leipzig, Leipzig, Saxony, Germany
| | - Emilio Macanás-Martínez
- Ethology and Animal Welfare Section, Universidad CEU Cardenal Herrera, Valencia, Valencia, Spain,Institute of Biology, Universität Leipzig, Leipzig, Saxony, Germany
| | | | - Julie Duboscq
- UMR7206 Eco-Anthropologie, CNRS-MNHN-Université de Paris, Paris, Île-de-France, France,Department of Behavioural Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Lower Saxony, Germany
| |
Collapse
|
7
|
Torfs JRR, Eens M, Laméris DW, Staes N. Respiratory Disease Risk of Zoo-Housed Bonobos Is Associated with Sex and Betweenness Centrality in the Proximity Network. Animals (Basel) 2021; 11:3597. [PMID: 34944372 PMCID: PMC8698162 DOI: 10.3390/ani11123597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Infectious diseases can be considered a threat to animal welfare and are commonly spread through both direct and indirect social interactions with conspecifics. This is especially true for species with complex social lives, like primates. While several studies have investigated the impact of sociality on disease risk in primates, only a handful have focused on respiratory disease, despite it being a major cause of morbidity and mortality in both wild and captive populations and thus an important threat to primate welfare. Therefore, we examined the role of social-network position on the occurrence of respiratory disease symptoms during one winter season in a relatively large group of 20 zoo-housed bonobos with managed fission-fusion dynamics. We found that within the proximity network, symptoms were more likely to occur in individuals with higher betweenness centrality, which are individuals that form bridges between different parts of the network. Symptoms were also more likely to occur in males than in females, independent of their social-network position. Taken together, these results highlight a combined role of close proximity and sex in increased risk of attracting respiratory disease, two factors that can be taken into account for further welfare management of the species.
Collapse
Affiliation(s)
- Jonas R. R. Torfs
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (M.E.); (D.W.L.); (N.S.)
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, 2018 Antwerp, Belgium
| | - Marcel Eens
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (M.E.); (D.W.L.); (N.S.)
| | - Daan W. Laméris
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (M.E.); (D.W.L.); (N.S.)
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, 2018 Antwerp, Belgium
| | - Nicky Staes
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (M.E.); (D.W.L.); (N.S.)
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, 2018 Antwerp, Belgium
| |
Collapse
|
8
|
Morrison RE, Mushimiyimana Y, Stoinski TS, Eckardt W. Rapid transmission of respiratory infections within but not between mountain gorilla groups. Sci Rep 2021; 11:19622. [PMID: 34620899 PMCID: PMC8497490 DOI: 10.1038/s41598-021-98969-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
Minimizing disease transmission between humans and wild apes and controlling outbreaks in ape populations is vital to both ape conservation and human health, but information on the transmission of real infections in wild populations is rare. We analyzed respiratory outbreaks in a subpopulation of wild mountain gorillas (Gorilla beringei beringei) between 2004 and 2020. We investigated transmission within groups during 7 outbreaks using social networks based on contact and proximity, and transmission between groups during 15 outbreaks using inter-group encounters, transfers and home range overlap. Patterns of contact and proximity within groups were highly predictable based on gorillas' age and sex. Disease transmission within groups was rapid with a median estimated basic reproductive number (R0) of 4.18 (min = 1.74, max = 9.42), and transmission was not predicted by the social network. Between groups, encounters and transfers did not appear to have enabled disease transmission and the overlap of groups' ranges did not predict concurrent outbreaks. Our findings suggest that gorilla social structure, with many strong connections within groups and weak ties between groups, may enable rapid transmission within a group once an infection is present, but limit the transmission of infections between groups.
Collapse
Affiliation(s)
- Robin E Morrison
- Dian Fossey Gorilla Fund, Musanze, Rwanda.
- Centre for Research in Animal Behavior, University of Exeter, Exeter, UK.
| | | | | | | |
Collapse
|
9
|
One Health Perspectives on New Emerging Viral Diseases in African Wild Great Apes. Pathogens 2021; 10:pathogens10101283. [PMID: 34684232 PMCID: PMC8539261 DOI: 10.3390/pathogens10101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
The most recent emerging infectious diseases originated in animals, mainly in wildlife reservoirs. Mutations and recombination events mediate pathogen jumps between host species. The close phylogenetic relationship between humans and non-human primates allows the transmission of pathogens between these species. These pathogens cause severe impacts on public health and impair the conservation of habituated or non-habituated wild-living apes. Constant exposure of great apes to human actions such as hunting, deforestation, the opening of roads, and tourism, for example, contributes to increased interaction between humans and great apes. In spite of several studies emphasizing the risks of pathogen transmission between animals and humans, outbreaks of the reverse transmission of infectious agents threatening wildlife still occur on the African continent. In this context, measures to prevent the emergence of new diseases and conservation of primate species must be based on the One Health concept; that is, they must also ensure the monitoring of the environment and involve political and social aspects. In this article, we review and discuss the anthropological aspects of the transmission of diseases between people and wild primates and discuss new anthropozoonotic diseases in great apes in Africa from studies published between 2016 and 2020. We conclude that the health of great apes also depends on monitoring the health of human populations that interact with these individuals.
Collapse
|