1
|
Fallon ME, Mathews R, Hinds MT. In Vitro Flow Chamber Design for the Study of Endothelial Cell (Patho)Physiology. J Biomech Eng 2022; 144:020801. [PMID: 34254640 PMCID: PMC8628846 DOI: 10.1115/1.4051765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/06/2021] [Indexed: 02/03/2023]
Abstract
In the native vasculature, flowing blood produces a frictional force on vessel walls that affects endothelial cell function and phenotype. In the arterial system, the vasculature's local geometry directly influences variations in flow profiles and shear stress magnitudes. Straight arterial sections with pulsatile shear stress have been shown to promote an athero-protective endothelial phenotype. Conversely, areas with more complex geometry, such as arterial bifurcations and branch points with disturbed flow patterns and lower, oscillatory shear stress, typically lead to endothelial dysfunction and the pathogenesis of cardiovascular diseases. Many studies have investigated the regulation of endothelial responses to various shear stress environments. Importantly, the accurate in vitro simulation of in vivo hemodynamics is critical to the deeper understanding of mechanotransduction through the proper design and use of flow chamber devices. In this review, we describe several flow chamber apparatuses and their fluid mechanics design parameters, including parallel-plate flow chambers, cone-and-plate devices, and microfluidic devices. In addition, chamber-specific design criteria and relevant equations are defined in detail for the accurate simulation of shear stress environments to study endothelial cell responses.
Collapse
Affiliation(s)
- Meghan E. Fallon
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave CH13B, Portland, OR 97239
| | - Rick Mathews
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave CH13B, Portland, OR 97239
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave CH13B, Portland, OR 97239
| |
Collapse
|
2
|
Wang Z, Putra NK, Anzai H, Ohta M. Endothelial Cell Distribution After Flow Exposure With Two Stent Struts Placed in Different Angles. Front Physiol 2022; 12:733547. [PMID: 35095542 PMCID: PMC8793281 DOI: 10.3389/fphys.2021.733547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/14/2021] [Indexed: 12/30/2022] Open
Abstract
Stent implantation has been a primary treatment for stenosis and other intravascular diseases. However, the struts expansion procedure might cause endothelium lesion and the structure of the struts could disturb the blood flow environment near the wall of the blood vessel. These changes could damage the vascular innermost endothelial cell (EC) layer and pose risks of restenosis and post-deployment thrombosis. This research aims to investigate the effect of flow alterations on EC distribution in the presence of gap between two struts within the parallel flow chamber. To study how the gap presence impacts EC migration and the endothelialization effect on the surface of the struts, two struts were placed with specific orientations and positions on the EC layer in the flow chamber. After a 24-h exposure under wall shear stress (WSS), we observed the EC distribution conditons especially in the gap area. We also conducted computational fluid dynamics (CFD) simulations to calculate the WSS distribution. High EC-concentration areas on the bottom plate corresponded to the high WSS by the presence of gap between the two struts. To find the relation between the WSS and EC distributions on the fluorescence images, WSS condition by CFD simulation could be helpful for the EC distribution. The endothelialization rate, represented by EC density, on the downstream sides of both struts was higher than that on the upstream sides. These observations were made in the flow recirculation at the gap area between two struts. On two side surfaces between the gaps, meaning the downstream at the first and the upstream at the second struts, EC density differences on the downstream surfaces of the first strut were higher than on the upstream surfaces of the second strut. Finally, EC density varied along the struts when the struts were placed at tilted angles. These results indicate that, by the presence of gap between the struts, ECs distribution could be predicted in both perpendicular and tiled positions. And tiled placement affect ECs distribution on the strut side surfaces.
Collapse
Affiliation(s)
- Zi Wang
- Institute of Fluid Science, Tohoku University, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Narendra Kurnia Putra
- Instrumentation and Control Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Hitomi Anzai
- Institute of Fluid Science, Tohoku University, Sendai, Japan
| | - Makoto Ohta
- Institute of Fluid Science, Tohoku University, Sendai, Japan
- *Correspondence: Makoto Ohta,
| |
Collapse
|
3
|
Hosseini V, Mallone A, Nasrollahi F, Ostrovidov S, Nasiri R, Mahmoodi M, Haghniaz R, Baidya A, Salek MM, Darabi MA, Orive G, Shamloo A, Dokmeci MR, Ahadian S, Khademhosseini A. Healthy and diseased in vitro models of vascular systems. LAB ON A CHIP 2021; 21:641-659. [PMID: 33507199 DOI: 10.1039/d0lc00464b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Irregular hemodynamics affects the progression of various vascular diseases, such atherosclerosis or aneurysms. Despite the extensive hemodynamics studies on animal models, the inter-species differences between humans and animals hamper the translation of such findings. Recent advances in vascular tissue engineering and the suitability of in vitro models for interim analysis have increased the use of in vitro human vascular tissue models. Although the effect of flow on endothelial cell (EC) pathophysiology and EC-flow interactions have been vastly studied in two-dimensional systems, they cannot be used to understand the effect of other micro- and macro-environmental parameters associated with vessel wall diseases. To generate an ideal in vitro model of the vascular system, essential criteria should be included: 1) the presence of smooth muscle cells or perivascular cells underneath an EC monolayer, 2) an elastic mechanical response of tissue to pulsatile flow pressure, 3) flow conditions that accurately mimic the hemodynamics of diseases, and 4) geometrical features required for pathophysiological flow. In this paper, we review currently available in vitro models that include flow dynamics and discuss studies that have tried to address the criteria mentioned above. Finally, we critically review in vitro fluidic models of atherosclerosis, aneurysm, and thrombosis.
Collapse
Affiliation(s)
- Vahid Hosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Anna Mallone
- Institute of Regenerative Medicine, University of Zurich, Zurich CH-8952, Switzerland
| | - Fatemeh Nasrollahi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Serge Ostrovidov
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and Department of Radiological Sciences, University of California-Los Angeles, CA 90095, USA
| | - Rohollah Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Department of Mechanical Engineering, Sharif University of Technology, Tehran 1136511155, Iran
| | - Mahboobeh Mahmoodi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd 8915813135, Iran
| | - Reihaneh Haghniaz
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Avijit Baidya
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA
| | - M Mehdi Salek
- School of Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain and Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01007, Spain
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 1136511155, Iran
| | - Mehmet R Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| |
Collapse
|
4
|
Wang Y, Lu L, Zheng G, Zhang X. Microenvironment-Controlled Micropatterned Microfluidic Model (MMMM) for Biomimetic In Situ Studies. ACS NANO 2020; 14:9861-9872. [PMID: 32701267 DOI: 10.1021/acsnano.0c02701] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Attachment of trophozoites to the intestine is an indispensable step for Giardia's survival and pathogenicity in almost 280 million infections worldwide each year. However, the analysis of the attachment mechanism is difficult due to the lack of methods that can create a favorable microaerobic atmosphere. Herein, we developed an osmotic-pressure, pH, excretion, nutrition, gas, ionic-strength, flow-rate, and temperature microenvironment-controlled micropatterned microfluidic model to simulate the in vivo microenvironment to study in situ the stress applied to Giardia in the intestinal tract. We designed three nonbiological surfaces with stagger arrangement manners and integrated them with a resistance microfluidic network to split Giardia-attaching forces ingeniously and developed the term "attaching contribution rate" (ACR) to describe their corresponding contributions. Our study shows that the total attaching force measured is 49.58 Pa, with three components being 22.66 Pa (suction force), 12.52 Pa (clutching force), and 14.4 Pa (combined electrostatic and van der Waals force), respectively, with ACRs being 46%, 25%, and 29%, respectively. By decomposing the attaching force and analyzing each force component and their structure and composition basis, whole profiles of the attachment mechanisms were revealed. Our method enables the analysis of the surface attachment mechanisms and their ACRs for Giardia.
Collapse
Affiliation(s)
- Yunhua Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Environmental Micro Total Analysis Lab, Dalian University, 116622, Dalian, China
| | - Ling Lu
- Environmental Micro Total Analysis Lab, Dalian University, 116622, Dalian, China
| | - Guoxia Zheng
- Environmental Micro Total Analysis Lab, Dalian University, 116622, Dalian, China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Hoesli CA, Tremblay C, Juneau PM, Boulanger MD, Beland AV, Ling SD, Gaillet B, Duchesne C, Ruel J, Laroche G, Garnier A. Dynamics of Endothelial Cell Responses to Laminar Shear Stress on Surfaces Functionalized with Fibronectin-Derived Peptides. ACS Biomater Sci Eng 2018; 4:3779-3791. [DOI: 10.1021/acsbiomaterials.8b00774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Corinne A. Hoesli
- Department of Chemical Engineering, Faculty of Engineering, McGill University, Wong Building, 3610 University Street, Montréal, Québec H3A 0C5, Canada
- PROTEO Research Center, Québec, Canada
| | - Catherine Tremblay
- Département de Génie Mécanique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot, 1065 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Pierre-Marc Juneau
- Département de Génie Chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- PROTEO Research Center, Québec, Canada
| | - Mariève D. Boulanger
- Department of Chemical Engineering, Faculty of Engineering, McGill University, Wong Building, 3610 University Street, Montréal, Québec H3A 0C5, Canada
- Département de Génie Chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, De la Métallurgie et des Matériaux, Université Laval, Québec G1V 0A6,Canada
| | - Ariane V. Beland
- Department of Chemical Engineering, Faculty of Engineering, McGill University, Wong Building, 3610 University Street, Montréal, Québec H3A 0C5, Canada
| | - Si Da Ling
- Department of Chemical Engineering, Faculty of Engineering, McGill University, Wong Building, 3610 University Street, Montréal, Québec H3A 0C5, Canada
| | - Bruno Gaillet
- Département de Génie Chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- PROTEO Research Center, Québec, Canada
| | - Carl Duchesne
- Département de Génie Chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Jean Ruel
- Département de Génie Mécanique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot, 1065 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Gaétan Laroche
- Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, De la Métallurgie et des Matériaux, Université Laval, Québec G1V 0A6,Canada
- Centre de Recherche du CHU de Québec, Hôpital Saint-François d’Assise, 10 rue de l’Espinay, Bureau E0-165Québec, Québec G1L 3L5, Canada
| | - Alain Garnier
- Département de Génie Chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- PROTEO Research Center, Québec, Canada
| |
Collapse
|
6
|
Li Y, Pan C, Li Y, Kumacheva E, Ramachandran A. An exploration of the reflow technique for the fabrication of an in vitro microvascular system to study occlusive clots. Biomed Microdevices 2017; 19:82. [PMID: 28887730 DOI: 10.1007/s10544-017-0213-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Embolic ischemia and pulmonary embolism are health emergencies that arise when a particle such as a blood clot occludes a smaller blood vessel in the brain or the lungs, and restricts flow of blood downstream of the vessel. In this work, the reflow technique (Wang et al. Biomed. Microdevices 2007, 9, 657) was adapted to produce a microchannel network that mimics the occlusion process. The technique was first revisited and a simple geometrical model was developed to quantitatively explain the shapes of the resulting microchannels for different reflow parameters. A critical modification was introduced to the reflow protocol to fabricate nearly circular microchannels of different diameters from the same master, which is not possible with the traditional reflow technique. To simulate the phenomenon of occlusion by clots, a microchannel network with three generations of branches with different diameters and branching angles was fabricated, into which fibrin clots were introduced. At low constant pressure drop (ΔP), a clot blocked a branch entrance only partially, while at higher ΔP, the branch was completely blocked. Instances of simultaneous blocking of multiple channels by clots, and the consequent changes in the flow rates in the unblocked branches of the network, were also monitored. This work provides the framework for a systematic study of the distribution of clots in a network, and the rate of dissolution of embolic clots upon the introduction of a thrombolytic drug into the network.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Canada
| | - Chuer Pan
- Division of Engineering Science, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada
| | - Yunfeng Li
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - Eugenia Kumacheva
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Canada
- Department of Chemistry, University of Toronto, Toronto, Canada
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Arun Ramachandran
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Rathod ML, Ahn J, Jeon NL, Lee J. Hybrid polymer microfluidic platform to mimic varying vascular compliance and topology. LAB ON A CHIP 2017; 17:2508-2516. [PMID: 28653725 DOI: 10.1039/c7lc00340d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Several cardiovascular pathologies and aging have been associated with alterations in the mechanical and structural properties of the vascular wall, leading to a reduction in arterial compliance and the development of constriction. In the past, rare efforts have been directed to understand the endothelial cell response to combined mechanical stimuli from fluid flow and substrate rigidity. Recent approaches using microfluidic platforms have limitations in precisely mimicking healthy and diseased vasculature conditions from altered topological and substrate compliance perspectives. To address this, we demonstrated an effective fabrication process to realize a hybrid polymer platform to test these mechanistic features of blood vessels. The salient features of the platform include circular microchannels of varying diameters, variation in substrate rigidity along the channel length, and the coexistence of microchannels with different cross sections on a single platform. The platform demonstrates the combined effects of flow-induced shear forces and substrate rigidity on the endothelial cell layer inside the circular microchannels. The experimental results indicate a pronounced cell response to flow induced shear stress via its interplay with the underlying substrate mechanics.
Collapse
Affiliation(s)
- M L Rathod
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, South Korea.
| | | | | | | |
Collapse
|
8
|
Measurement of Giardia lamblia adhesion force using an integrated microfluidic assay. Anal Bioanal Chem 2016; 409:1451-1459. [DOI: 10.1007/s00216-016-0080-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/03/2016] [Indexed: 01/26/2023]
|
9
|
Xu S, Li X, Liu Y, He P. Development and Characterization of In Vitro Microvessel Network and Quantitative Measurements of Endothelial [Ca2+]i and Nitric Oxide Production. J Vis Exp 2016:54014. [PMID: 27286521 PMCID: PMC4927704 DOI: 10.3791/54014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Endothelial cells (ECs) lining the blood vessel walls in vivo are constantly exposed to flow, but cultured ECs are often grown under static conditions and exhibit a pro-inflammatory phenotype. Although the development of microfluidic devices has been embraced by engineers over two decades, their biological applications remain limited. A more physiologically relevant in vitro microvessel model validated by biological applications is important to advance the field and bridge the gaps between in vivo and in vitro studies. Here, we present detailed procedures for the development of cultured microvessel network using a microfluidic device with a long-term perfusion capability. We also demonstrate its applications for quantitative measurements of agonist-induced changes in EC [Ca(2+)]i and nitric oxide (NO) production in real time using confocal and conventional fluorescence microscopy. The formed microvessel network with continuous perfusion showed well-developed junctions between ECs. VE-cadherin distribution was closer to that observed in intact microvessels than statically cultured EC monolayers. ATP-induced transient increases in EC [Ca(2+)]i and NO production were quantitatively measured at individual cell levels, which validated the functionality of the cultured microvessels. This microfluidic device allows ECs to grow under a well-controlled, physiologically relevant flow, which makes the cell culture environment closer to in vivo than that in the conventional, static 2D cultures. The microchannel network design is highly versatile, and the fabrication process is simple and repeatable. The device can be easily integrated to the confocal or conventional microscopic system enabling high resolution imaging. Most importantly, because the cultured microvessel network can be formed by primary human ECs, this approach will serve as a useful tool to investigate how pathologically altered blood components from patient samples affect human ECs and provide insight into clinical issues. It also can be developed as a platform for drug screening.
Collapse
Affiliation(s)
- Sulei Xu
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University
| | - Xiang Li
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University
| | - Yuxin Liu
- Lane Department of Computer Science and Electrical Engineering, West Virginia University
| | - Pingnian He
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University;
| |
Collapse
|
10
|
A Parallel-Plate Flow Chamber for Mechanical Characterization of Endothelial Cells Exposed to Laminar Shear Stress. Cell Mol Bioeng 2015; 9:127-138. [PMID: 28989541 DOI: 10.1007/s12195-015-0424-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Shear stresses induced by laminar fluid flow are essential to properly recapitulate the physiological microenvironment experienced by endothelial cells (ECs). ECs respond to these stresses via mechanotransduction by modulating their phenotype and biomechanical characteristics, which can be characterized by Atomic Force Microscopy (AFM). Parallel Plate Flow Chambers (PPFCs) apply unidirectional laminar fluid flow to EC monolayers in vitro. Since ECs in sealed PPFCs are inaccessible to AFM probes, cone-and-plate viscometers (CPs) are commonly used to apply shear stress. This paper presents a comparison of the efficacies of both methods. Computational Fluid Dynamic simulation and validation testing using EC responses as a metric have indicated limitations in the use of CPs to apply laminar shear stress. Monolayers subjected to laminar fluid flow in a PPFC respond by increasing cortical stiffness, elongating, and aligning filamentous actin in the direction of fluid flow to a greater extent than CP devices. Limitations using CP devices to provide laminar flow across an EC monolayer suggest they are better suited when studying EC response for disturbed flow conditions. PPFC platforms allow for exposure of ECs to laminar fluid flow conditions, recapitulating cellular biomechanical behaviors, whereas CP platforms allow for mechanical characterization of ECs under secondary flow.
Collapse
|
11
|
Shin S, Shin JE, Yoo YJ. Attachment of alginate microcapsules onto plasma-treated PDMS sheet for retrieval after transplantation. Biotechnol Appl Biochem 2013; 60:617-22. [PMID: 23668815 DOI: 10.1002/bab.1124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/10/2013] [Indexed: 12/17/2022]
Abstract
Although transplantation of microencapsulated islets has been proposed as a therapy for the treatment of diabetes mellitus, limited retrievability of the cells has impeded its medical usage. To achieve retrieval of microencapsulated islets, capsules were attached to polydimethylsiloxane (PDMS) with a biocompatible adhesive. Because the hydrophobic nature of the PDMS surface prevents attachment, surface modification is essential. Alginate microcapsules were attached to modified PDMS sheets, and the mechanical stability of the resulting constructs was determined. Acrylic acid (AA) and acrylamide (AM) mixtures were grafted on the surfaces of PDMS sheets using a two-step oxygen plasma treatment (TSPT). TSPT-PDMS was characterized according to water contact angle and zeta-potential measurements. The contact angle was altered by changing the ratio of AM to AA to generate hydrophilic surface. Evaluation of the surface charge at pH 2, 7, and 12 confirmed the presence of polar groups on the modified surface. Microcapsules were attached to TSPT-PDMS using Histoacryl® and shown to be in a monolayered and half-exposed state. The shear stress resistance of alginate capsules attached to the PDMS sheet indicates the possibility of transplantation of encapsulated cells without scattering in vivo. This method is applicable to retrieve microencapsulated porcine islets when required.
Collapse
Affiliation(s)
- Soojeong Shin
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
12
|
Huang Z, Li X, Martins-Green M, Liu Y. Microfabrication of cylindrical microfluidic channel networks for microvascular research. Biomed Microdevices 2012; 14:873-83. [DOI: 10.1007/s10544-012-9667-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Kim DH, Heo SJ, Kim SH, Shin JW, Park SH, Shin JW. Shear stress magnitude is critical in regulating the differentiation of mesenchymal stem cells even with endothelial growth medium. Biotechnol Lett 2011; 33:2351-9. [DOI: 10.1007/s10529-011-0706-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/12/2011] [Indexed: 01/10/2023]
|
14
|
Viegas KD, Dol SS, Salek MM, Shepherd RD, Martinuzzi RM, Rinker KD. Methicillin resistant Staphylococcus aureus adhesion to human umbilical vein endothelial cells demonstrates wall shear stress dependent behaviour. Biomed Eng Online 2011; 10:20. [PMID: 21426581 PMCID: PMC3073947 DOI: 10.1186/1475-925x-10-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 03/22/2011] [Indexed: 11/10/2022] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) is an increasingly prevalent pathogen capable of causing severe vascular infections. The goal of this work was to investigate the role of shear stress in early adhesion events. Methods Human umbilical vein endothelial cells (HUVEC) were exposed to MRSA for 15-60 minutes and shear stresses of 0-1.2 Pa in a parallel plate flow chamber system. Confocal microscopy stacks were captured and analyzed to assess the number of MRSA. Flow chamber parameters were validated using micro-particle image velocimetry (PIV) and computational fluid dynamics modelling (CFD). Results Under static conditions, MRSA adhered to, and were internalized by, more than 80% of HUVEC at 15 minutes, and almost 100% of the cells at 1 hour. At 30 minutes, there was no change in the percent HUVEC infected between static and low flow (0.24 Pa), but a 15% decrease was seen at 1.2 Pa. The average number of MRSA per HUVEC decreased 22% between static and 0.24 Pa, and 37% between 0.24 Pa and 1.2 Pa. However, when corrected for changes in bacterial concentration near the surface due to flow, bacteria per area was shown to increase at 0.24 Pa compared to static, with a subsequent decline at 1.2 Pa. Conclusions This study demonstrates that MRSA adhesion to endothelial cells is strongly influenced by flow conditions and time, and that MSRA adhere in greater numbers to regions of low shear stress. These areas are common in arterial bifurcations, locations also susceptible to generation of atherosclerosis.
Collapse
Affiliation(s)
- Kayla D Viegas
- Department of Mechanical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Christ KV, Williamson KB, Masters KS, Turner KT. Measurement of single-cell adhesion strength using a microfluidic assay. Biomed Microdevices 2010; 12:443-55. [PMID: 20213215 DOI: 10.1007/s10544-010-9401-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Despite the importance of cell adhesion in numerous physiological, pathological, and biomaterial-related responses, our understanding of adhesion strength at the cell-substrate interface and its relationship to cell function remains incomplete. One reason for this deficit is a lack of accessible experimental approaches that quantify adhesion strength at the single-cell level and facilitate large numbers of tests. The current work describes the design, fabrication, and use of a microfluidic-based method for single-cell adhesion strength measurements. By applying a monotonically increasing flow rate in a microfluidic channel in combination with video microscopy, the adhesion strength of individual NIH3T3 fibroblasts cultured for 24 h on various surfaces was measured. The small height of the channel allows high shear stresses to be generated under laminar conditions, allowing strength measurements on well-spread, strongly adhered cells that cannot be characterized in most conventional assays. This assay was used to quantify the relationship between morphological characteristics and adhesion strength for individual well-spread cells. Cell adhesion strength was found to be positively correlated with both cell area and circularity. Computational fluid dynamics (CFD) analysis was performed to examine the role of cell geometry in determining the actual stress applied to the cell. Use of this method to examine adhesion at the single-cell level allows the detachment of strongly-adhered cells under a highly-controllable, uniform loading to be directly observed and will enable the characterization of biological events and relationships that cannot currently be achieved using existing methods.
Collapse
Affiliation(s)
- Kevin V Christ
- Materials Science Program, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
16
|
Lindken R, Rossi M, Grosse S, Westerweel J. Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines. LAB ON A CHIP 2009; 9:2551-67. [PMID: 19680579 DOI: 10.1039/b906558j] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this review we discuss the state of the art of the optical whole-field velocity measurement technique micro-scale Particle Image Velocimetry (microPIV). microPIV is a useful tool for fundamental research of microfluidics as well as for the detailed characterization and optimization of microfluidic applications in life science, lab-on-a-chip, biomedical research, micro chemical engineering, analytical chemistry and other related fields of research. An in depth description of the microPIV method is presented and compared to other flow visualization and measurement methods. An overview of the most relevant applications is given on the topics of near-wall flow, electrokinetic flow, biological flow, mixing, two-phase flow, turbulence transition and complex fluid dynamic problems. Current trends and applications are critically reviewed. Guidelines for the implementation and application are also discussed.
Collapse
Affiliation(s)
- Ralph Lindken
- Laboratory for Aero- and Hydrodynamics, Delft University of Technology, Delft, The Netherlands.
| | | | | | | |
Collapse
|
17
|
Flow in the well: computational fluid dynamics is essential in flow chamber construction. Cytotechnology 2007; 55:41-54. [PMID: 19002993 DOI: 10.1007/s10616-007-9101-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 09/20/2007] [Indexed: 10/22/2022] Open
Abstract
A perfusion system was developed to generate well defined flow conditions within a well of a standard multidish. Human vein endothelial cells were cultured under flow conditions and cell response was analyzed by microscopy. Endothelial cells became elongated and spindle shaped. As demonstrated by computational fluid dynamics (CFD), cells were cultured under well defined but time varying shear stress conditions. A damper system was introduced which reduced pulsatile flow when using volumetric pumps. The flow and the wall shear stress distribution were analyzed by CFD for the steady and unsteady flow field. Usage of the volumetric pump caused variations of the wall shear stresses despite the controlled fluid environment and introduction of a damper system. Therefore the use of CFD analysis and experimental validation is critical in developing flow chambers and studying cell response to shear stress. The system presented gives an effortless flow chamber setup within a 6-well standard multidish.
Collapse
|
18
|
Camp JP, Stokol T, Shuler ML. Fabrication of a multiple-diameter branched network of microvascular channels with semi-circular cross-sections using xenon difluoride etching. Biomed Microdevices 2007; 10:179-86. [PMID: 17891456 DOI: 10.1007/s10544-007-9123-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The majority of microfluidic devices employ networks of channels that have rectangular cross-sections. At the microvascular scale of 30 to 300 microm in diameter, however, the distribution of fluid mechanical stresses and the induced shape of cultured cells will be quite different in a rectangular channel from the near-circular cross-sections seen in vivo. While round-cross-section channels have been produced before by wet etching, fine control of feature size has not been demonstrated, and prior work has only produced channels of a single diameter on a given device. In this work, the xenon difluoride process for isotropic etching of silicon was optimized for production of channels with semicircular cross-sections. This process was then used to produce a network of microvessel-scale semicylindrical channels on a silicon chip, the diameter of which was decreased with each level of branching. Additionally, it was demonstrated that endothelial cells will adhere to both the bottom and sides of these channels, indicating that such chips may be useful in the future for culturing in vitro models of the microvasculature.
Collapse
Affiliation(s)
- James P Camp
- Department of Biomedical Engineering, Cornell University, 270 Olin Hall, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
19
|
McCann-Brown JA, Webster TJ, Haberstroh KM. VASCULAR CELLS RESPOND TO ENDOTHELIAL CELL FLOW- AND PRESSURE-RELEASED SOLUBLE PROTEINS. CHEM ENG COMMUN 2006. [DOI: 10.1080/00986440600829903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Thomas J. Webster
- a Weldon School of Biomedical Engineering, Purdue University , West Lafayette , Indiana
- b Division of Engineering , Brown University , Providence , Rhode Island
| | - Karen M. Haberstroh
- a Weldon School of Biomedical Engineering, Purdue University , West Lafayette , Indiana
- b Division of Engineering , Brown University , Providence , Rhode Island
| |
Collapse
|
20
|
Anderson EJ, Falls TD, Sorkin AM, Tate MLK. The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction. Biomed Eng Online 2006; 5:27. [PMID: 16672051 PMCID: PMC1526737 DOI: 10.1186/1475-925x-5-27] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 05/03/2006] [Indexed: 12/04/2022] Open
Abstract
Background In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level. Methods To evaluate how well actual flow chambers meet their target stresses (set for 1 and 10 dyn/cm2 for this study) at a cellular level, computational models were developed to calculate flow velocity components and imparted shear stresses for a given pressure gradient. Computational predictions were validated with micro-particle image velocimetry (μPIV) experiments. Results Based on these computational and experimental studies, as few as 66% of cells seeded along the midplane of commonly implemented flow/perfusion chambers are subjected to stresses within ±10% of the target stress. In addition, flow velocities and shear stresses imparted through fluid drag vary as a function of location within each chamber. Hence, not only a limited number of cells are exposed to target stress levels within each chamber, but also neighboring cells may experience different flow regimes. Finally, flow regimes are highly dependent on flow chamber geometry, resulting in significant variation in magnitudes and spatial distributions of stress between chambers. Conclusion The results of this study challenge the basic premise of in vitro mechanotransduction studies, i.e. that a controlled flow regime is applied to impart a defined mechanical stimulus to cells. These results also underscore the fact that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable.
Collapse
Affiliation(s)
- Eric J Anderson
- Dept. of Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas D Falls
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Adam M Sorkin
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Melissa L Knothe Tate
- Dept. of Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|