1
|
Choi TW, Kim J, Won JH. Do Balloon Catheters have a Different Radial Force Along Their Longitudinal Axis? Cardiovasc Intervent Radiol 2024; 47:1278-1285. [PMID: 38639779 PMCID: PMC11379730 DOI: 10.1007/s00270-024-03716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
PURPOSE This experimental study was designed to compare radial forces between the central portion and both ends of balloon catheters when dilating stenosis. MATERIALS AND METHODS Three balloon catheters of 6 and 8 mm in diameter and of variable length were tested: Mustang, Conquest, and Genoss PTA. Cylindrical modules to position balloon catheters and install the measuring tip during radial force measurements were made using a 3D printer. The measuring tip created 20% stenosis at the inner lumen. Both ends and center of the balloon catheter were located at the measuring tip. The radial force was measured after inflating the balloon catheter to the rated burst pressure. RESULTS For the different diameters and lengths of balloon catheters and cylinder sizes, the median inccenter, the radial rease in radial force at the distal end compared to the center was 16.5% (range: 9.8-35.2%) for Mustang, 12.4% (range: 10.3-25.5%) for Genoss, and 7.4% (range: -0.3-13.1%) for Conquest balloon catheters. Similarly, compared to that at the force at the proximal end was 10.8% greater (range: -2.9-18.3%) for Mustang, 9.9% greater (range: 3.9-22.3%) for Genoss, and 7.3% greater (range: -1.3-12.4%) for Conquest catheters. CONCLUSION The radial force is greater at both ends of the balloon than at the central portion, especially at the distal end. Dilation using the distal end of the balloon catheter is a practical method that can be applied in clinical practice without additional devices when encountering resistant stenosis, especially with semi-compliant balloons.
Collapse
Affiliation(s)
- Tae Won Choi
- Department of Radiology, Ajou University School of Medicine, Ajou University Hospital, Suwon, Republic of Korea
| | - Jinoo Kim
- Department of Radiology, Ajou University School of Medicine, Ajou University Hospital, Suwon, Republic of Korea
| | - Je Hwan Won
- Department of Radiology, Ajou University School of Medicine, Ajou University Hospital, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Bhave A, Sittkus B, Urban G, Mescheder U, Möller K. Finite element analysis of the interaction between high-compliant balloon catheters and non-cylindrical vessel structures: towards tactile sensing balloon catheters. Biomech Model Mechanobiol 2023; 22:2033-2061. [PMID: 37573552 PMCID: PMC10613175 DOI: 10.1007/s10237-023-01749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
Aiming for sensing balloon catheters which are able to provide intraoperative information of the vessel stiffness and shape, the present study uses finite element analysis (FEA) to evaluate the interaction between high-compliant elastomer balloon catheters with the inner wall of a non-cylindrical-shaped lumen structure. The contact simulations are based on 3D models with varying balloon thicknesses and varying tissue geometries to analyse the resulting balloon and tissue deformation as well as the inflation pressure dependent contact area. The wrinkled tissue structure is modelled by utilizing a two-layer fibre-based Holzapfel-Gasser-Ogden constitutive model and the model parameters are adapted based on available biomechanical data for human urethral vessel samples. The balloon catheter structure is implemented as a high-compliant hyper-elastic silicone material (based on polydimethylsiloxane (PDMS)) with a varying catheter wall thickness between 0.5 and 2.5 µm. Two control parameters are introduced to describe the balloon shape adaption in reaction to a wrinkled vessel wall during the inflation process. Basic semi-quantitative relations are revealed depending on the evolving balloon deformation and contact surface. Based on these relations some general design guidelines for balloon-based sensor catheters are presented. The results of the conducted in-silico study reveal some general interdependencies with respect to the compliance ratio between balloon and tissue and also in respect of the tissue aspect ratio. Further they support the proposed concept of high-compliant balloon catheters equipped for tactile sensing as diagnosis approach in urology and angioplasty.
Collapse
Affiliation(s)
- Ashish Bhave
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054, Villingen-Schwenningen, Germany
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany
| | - Benjamin Sittkus
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany.
- Institute for Microsystems Technology (iMST), Furtwangen University, 78120, Furtwangen, Germany.
| | - Gerald Urban
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany
| | - Ulrich Mescheder
- Institute for Microsystems Technology (iMST), Furtwangen University, 78120, Furtwangen, Germany
- Associated to the Faculty of Engineering, University of Freiburg, 79110, Freiburg, Germany
| | - Knut Möller
- Institute of Technical Medicine (ITeM), Furtwangen University, 78054, Villingen-Schwenningen, Germany
- Associated to the Faculty of Engineering, University of Freiburg, 79110, Freiburg, Germany
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
3
|
Stratakos E, Antonini L, Poletti G, Berti F, Tzafriri AR, Petrini L, Pennati G. Investigating Balloon-Vessel Contact Pressure Patterns in Angioplasty: In Silico Insights for Drug-Coated Balloons. Ann Biomed Eng 2023; 51:2908-2922. [PMID: 37751027 PMCID: PMC10632265 DOI: 10.1007/s10439-023-03359-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/02/2023] [Indexed: 09/27/2023]
Abstract
Drug-Coated Balloons have shown promising results as a minimally invasive approach to treat stenotic arteries, but recent animal studies have revealed limited, non-uniform coating transfer onto the arterial lumen. In vitro data suggested that local coating transfer tracks the local Contact Pressure (CP) between the balloon and the endothelium. Therefore, this work aimed to investigate in silico how different interventional and device parameters may affect the spatial distribution of CP during the inflation of an angioplasty balloon within idealized vessels that resemble healthy femoral arteries in size and compliance. An angioplasty balloon computational model was developed, considering longitudinal non-uniform wall thickness, due to its forming process, and the folding procedure of the balloon. To identify the conditions leading to non-uniform CP, sensitivity finite element analyses were performed comparing different values for balloon working length, longitudinally varying wall thickness, friction coefficient on the balloon-vessel interface, vessel wall stiffness and thickness, and balloon-to-vessel diameter ratio. Findings indicate a significant irregularity of contact between the balloon and the vessel, mainly affected by the balloon's unfolding and longitudinal thickness variation. Mirroring published data on coating transfer distribution in animal studies, the interfacial CP distribution was maximal at the middle of the balloon treatment site, while exhibiting a circumferential pattern of linear peaks as a consequence of the particular balloon-vessel interaction during unfolding. A high ratio of balloon-to-vessel diameter, higher vessel stiffness, and thickness was found to increase significantly the amplitude and spatial distribution of the CP, while a higher friction coefficient at the balloon-to-vessel interface further exacerbated the non-uniformity of CP. Evaluation of balloon design effects revealed that the thicker tapered part caused CP reduction in the areas that interacted with the extremities of the balloon, whereas total length only weakly impacted the CP. Taken together, this study offers a deeper understanding of the factors influencing the irregularity of balloon-tissue contact, a key step toward uniformity in drug-coating transfer and potential clinical effectiveness.
Collapse
Affiliation(s)
- Efstathios Stratakos
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Luca Antonini
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Gianluca Poletti
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Francesca Berti
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | | | - Lorenza Petrini
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy.
| | - Giancarlo Pennati
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
4
|
Morin C, Hellmich C, Nejim Z, Avril S. Fiber Rearrangement and Matrix Compression in Soft Tissues: Multiscale Hypoelasticity and Application to Tendon. Front Bioeng Biotechnol 2021; 9:725047. [PMID: 34712652 PMCID: PMC8546211 DOI: 10.3389/fbioe.2021.725047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
It is widely accepted that the nonlinear macroscopic mechanical behavior of soft tissue is governed by fiber straightening and re-orientation. Here, we provide a quantitative assessment of this phenomenon, by means of a continuum micromechanics approach. Given the negligibly small bending stiffness of crimped fibers, the latter are represented through a number of hypoelastic straight fiber phases with different orientations, being embedded into a hypoelastic matrix phase. The corresponding representative volume element (RVE) hosting these phases is subjected to “macroscopic” strain rates, which are downscaled to fiber and matrix strain rates on the one hand, and to fiber spins on the other hand. This gives quantitative access to the fiber decrimping (or straightening) phenomenon under non-affine conditions, i.e. in the case where the fiber orientations cannot be simply linked to the macroscopic strain state. In the case of tendinous tissue, such an RVE relates to the fascicle material with 50 μm characteristic length, made up of crimped collagen bundles and a gel-type matrix in-between. The fascicles themselves act as parallel fibers in a similar matrix at the scale of a tissue-related RVE with 500 μm characteristic length. As evidenced by a sensitivity analysis and confirmed by various mechanical tests, it is the initial crimping angle which drives both the degree of straightening and the shape of the macroscopic stress-strain curve, while the final linear portion of this curve depends almost exclusively on the collagen bundle elasticity. Our model also reveals the mechanical cooperation of the tissue’s key microstructural components: while the fibers carry tensile forces, the matrices undergo hydrostatic pressure.
Collapse
Affiliation(s)
- Claire Morin
- Mines Saint-Etienne, Univ. Lyon, Univ. Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Christian Hellmich
- Institute for Mechanics of Materials and Structures, TU Wien - Vienna University of Technology, Vienna, Austria
| | - Zeineb Nejim
- Mines Saint-Etienne, Univ. Lyon, Univ. Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Stéphane Avril
- Mines Saint-Etienne, Univ. Lyon, Univ. Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, Saint-Etienne, France.,Institute for Mechanics of Materials and Structures, TU Wien - Vienna University of Technology, Vienna, Austria
| |
Collapse
|
5
|
Rahinj GB, Chauhan HS, Sirivella ML, Satyanarayana MV, Ramanan L. Numerical Analysis for Non-Uniformity of Balloon-Expandable Stent Deployment Driven by Dogboning and Foreshortening. Cardiovasc Eng Technol 2021; 13:247-264. [PMID: 34431035 DOI: 10.1007/s13239-021-00573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Stenting is the most common intervention for arteriosclerosis treatment; however, the success of the treatment depends on the incidence of in-stent restenosis (ISR). Stent deployment characteristics are major influencers of ISR and can be measured in terms of dogboning, asymmetry, and foreshortening. This study aimed to analyse the implications of balloon and stent-catheter assembly parameters on the stent deployment characteristics. METHODS Experimental approach to analyse the impact of the balloon and stent-catheter assembly parameters on stent deployment characteristics is a time-consuming and complex task, whereas numerical methods prove to be quick, efficient, and reliable. In this study, eleven finite element models were employed to analyse non-uniform balloon stent expansion pattern, comprised of variation in, stent axial position on balloon, balloon length, balloon folding pattern, and balloon wall thickness. RESULTS Obtained results suggest that the axially noncentral position of the stent on balloon and variable balloon thickness lead to non-uniform stent deployment pattern. Also, it was proved that variation in balloon length and balloon folding pattern influence deployment process. CONCLUSION Improved positional accuracies, uniform balloon wall thickness, and selection of the appropriate length of a balloon for selected stent configuration will help to minimize dogboning, asymmetry, and foreshortening during non-uniform stent expansion, thereby reducing the risk of restenosis. The stated numerical approach will be helpful to optimize stent catheter assembly parameters thus minimizing in-vitro tests and product development time.
Collapse
Affiliation(s)
- Ganesh B Rahinj
- Research and Development Department, Sahajanand Medical Technologies (SMT) Ltd., Surat, India.
| | - Harshit S Chauhan
- Research and Development Department, Sahajanand Medical Technologies (SMT) Ltd., Surat, India
| | - Martin L Sirivella
- Research and Development Department, Sahajanand Medical Technologies (SMT) Ltd., Surat, India
| | - Menta V Satyanarayana
- Research and Development Department, Sahajanand Medical Technologies (SMT) Ltd., Surat, India
| | - Laxminarayanan Ramanan
- Research and Development Department, Sahajanand Medical Technologies (SMT) Ltd., Surat, India
| |
Collapse
|
6
|
Geith MA, Swidergal K, Hochholdinger B, Schratzenstaller TG, Wagner M, Holzapfel GA. On the importance of modeling balloon folding, pleating, and stent crimping: An FE study comparing experimental inflation tests. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3249. [PMID: 31400057 PMCID: PMC9285761 DOI: 10.1002/cnm.3249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/23/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Finite element (FE)-based studies of preoperative processes such as folding, pleating, and stent crimping with a comparison with experimental inflation tests are not yet available. Therefore, a novel workflow is presented in which residual stresses of balloon folding and pleating, as well as stent crimping, and the geometries of all contact partners were ultimately implemented in an FE code to simulate stent expansion by using an implicit solver. The numerical results demonstrate that the incorporation of residual stresses and strains experienced during the production step significantly increased the accuracy of the subsequent simulations, especially of the stent expansion model. During the preoperative processes, stresses inside the membrane and the stent material also reached a rather high level. Hence, there can be no presumption that balloon catheters or stents are undamaged before the actual surgery. The implementation of the realistic geometry, in particular the balloon tapers, and the blades of the process devices improved the simulation of the expansion mechanisms, such as dogboning, concave bending, or overexpansion of stent cells. This study shows that implicit solvers are able to precisely simulate the mentioned preoperative processes and the stent expansion procedure without a preceding manipulation of the simulation time or physical mass.
Collapse
Affiliation(s)
- Markus A. Geith
- Institute of BiomechanicsGraz University of TechnologyGrazAustria
- Biomedical Engineering DepartmentKing's College LondonUnited Kingdom
- Faculty of Mechanical EngineeringOstbayerische Technische Hochschule RegensburgGermany
| | - Krzysztof Swidergal
- Faculty of Mechanical EngineeringOstbayerische Technische Hochschule RegensburgGermany
| | | | | | - Marcus Wagner
- Faculty of Mechanical EngineeringOstbayerische Technische Hochschule RegensburgGermany
| | - Gerhard A. Holzapfel
- Institute of BiomechanicsGraz University of TechnologyGrazAustria
- Department of Structural EngineeringNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
7
|
Wiesent L, Schultheiß U, Schmid C, Schratzenstaller T, Nonn A. Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning. PLoS One 2019; 14:e0224026. [PMID: 31626662 PMCID: PMC6799901 DOI: 10.1371/journal.pone.0224026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/03/2019] [Indexed: 11/20/2022] Open
Abstract
In-stent restenosis remains a major problem of arteriosclerosis treatment by stenting. Expansion-optimized stents could reduce this problem. With numerical simulations, stent designs/ expansion behaviours can be effectively analyzed. For reasons of efficiency, simplified models of balloon-expandable stents are often used, but their accuracy must be challenged due to insufficient experimental validation. In this work, a realistic stent life-cycle simulation has been performed including balloon folding, stent crimping and free expansion of the balloon-stent-system. The successful simulation and validation of two stent designs with homogenous and heterogeneous stent stiffness and an asymmetrically positioned stent on the balloon catheter confirm the universal applicability of the simulation approach. Dogboning ratio, as well as the final dimensions of the folded balloon, the crimped and expanded stent, correspond well to the experimental dimensions with only slight deviations. In contrast to the detailed stent life-cycle simulation, a displacement-controlled simulation can not predict the transient stent expansion, but is suitable to reproduce the final expanded stent shape and the associated stress states. The detailed stent life-cycle simulation is thus essential for stent expansion analysis/optimization, whereas for reasons of computational efficiency, the displacement-controlled approach can be considered in the context of pure stress analysis.
Collapse
Affiliation(s)
- Lisa Wiesent
- Computational Mechanics and Materials Lab, Ostbayerische Technische Hochschule (OTH) Regensburg, Regensburg, Germany
- Regensburg Center of Biomedical Engineering (RCBE), Regensburg, Germany
- Medical Device Lab, OTH Regensburg, Regensburg, Germany
- * E-mail:
| | - Ulrich Schultheiß
- Material Science and Surface Analytics Lab, OTH Regensburg, Regensburg, Germany
| | - Christof Schmid
- University Hospital Regensburg, Cardiothoracic and Cardiovascular Surgery, Regensburg, Germany
| | - Thomas Schratzenstaller
- Regensburg Center of Biomedical Engineering (RCBE), Regensburg, Germany
- Medical Device Lab, OTH Regensburg, Regensburg, Germany
| | - Aida Nonn
- Computational Mechanics and Materials Lab, Ostbayerische Technische Hochschule (OTH) Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Emuna N, Durban D, Osovski S. Sensitivity of Arterial Hyperelastic Models to Uncertainties in Stress-Free Measurements. J Biomech Eng 2019; 140:2683233. [PMID: 30029245 DOI: 10.1115/1.4040400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Indexed: 12/14/2022]
Abstract
Despite major advances made in modeling vascular tissue biomechanics, the predictive power of constitutive models is still limited by uncertainty of the input data. Specifically, key measurements, like the geometry of the stress-free (SF) state, involve a definite, sometimes non-negligible, degree of uncertainty. Here, we introduce a new approach for sensitivity analysis of vascular hyperelastic constitutive models to uncertainty in SF measurements. We have considered two vascular hyperelastic models: the phenomenological Fung model and the structure-motivated Holzapfel-Gasser-Ogden (HGO) model. Our results indicate up to 160% errors in the identified constitutive parameters for a 5% measurement uncertainty in the SF data. Relative margins of errors of up to 30% in the luminal pressure, 36% in the axial force, and over 200% in the stress predictions were recorded for 10% uncertainties. These findings are relevant to the large body of studies involving experimentally based modeling and analysis of vascular tissues. The impact of uncertainties on calibrated constitutive parameters is significant in context of studies that use constitutive parameters to draw conclusions about the underlying microstructure of vascular tissues, their growth and remodeling processes, and aging and disease states. The propagation of uncertainties into the predictions of biophysical parameters, e.g., force, luminal pressure, and wall stresses, is of practical importance in the design and execution of clinical devices and interventions. Furthermore, insights provided by the present findings may lead to more robust parameters identification techniques, and serve as selection criteria in the trade-off between model complexity and sensitivity.
Collapse
Affiliation(s)
- Nir Emuna
- Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel e-mail:
| | - David Durban
- Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel e-mail:
| | - Shmuel Osovski
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel e-mail:
| |
Collapse
|
9
|
BOKOV PLAMEN, DANTAN PHILIPPE, FLAUD PATRICE. PALMAZ–SCHATZ STENT-OPENING MECHANICS USING A SIMPLE APPROACH INVOLVING THE BALLOON–STENT AND STENT–ARTERY CONTACT PROBLEM: APPLICATION TO BIOPOLYMER STENTS. J MECH MED BIOL 2019. [DOI: 10.1142/s021951941950009x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We used the finite element method-based toolbox COMSOL Multiphysics to address the important question of biopolymer coronary stent mechanics. We evaluated the diameter of the stent, the immediate elastic recoil, the dogboning and the foreshortening during deployment while using an idealized model that took into account the presence of the balloon and the coronary artery wall (equivalent pressure hypothesis). We validated our model using the well-known mechanics of the Palmaz–Schatz metal stent and acquired new data concerning a poly-L-lactic acid (PLLA) stent and some other biodegradable co-polymer-based stents. The elastic recoil was relatively high (26.1% to 31.1% depending on the biopolymer used) when taking into account the presence of both the balloon and artery. The dogboning varied from 31% to 46% for the polymer stents and was 62% for the metal stent, suggesting that less arterial damage could be expected with biopolymer stents. Various strut thicknesses were tested for the PLLA stent (114, 180 and 250[Formula: see text][Formula: see text]m) and no significant improvement in elastic recoil was observed. We concluded that the stent geometry has a greater impact on the scaffolding role of the structure than the strut thickness, or even the mechanical properties of the stent.
Collapse
Affiliation(s)
- PLAMEN BOKOV
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot, Paris, France
| | - PHILIPPE DANTAN
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot, Paris, France
| | - PATRICE FLAUD
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot, Paris, France
| |
Collapse
|
10
|
Azarnoush H, Pazos V, Vergnole S, Boulet B, Lamouche G. Intravascular optical coherence tomography to validate finite-element simulation of angioplasty balloon inflation. Phys Med Biol 2019; 64:095011. [PMID: 30840938 DOI: 10.1088/1361-6560/ab0d58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Concrete methods are lacking to examine angioplasty simulation results. For the first time, we explored the application of intravascular optical coherence tomography (IVOCT) to experimentally validate results obtained from finite-element simulation of angioplasty balloon deployment. In order to simulate each experimental scenario, IVOCT images were used to create initial geometrical models for the balloon and the phantoms. The study comprised three scenarios. The first scenario involved experimentally monitoring as well as simulating free expansion of the balloon. The second scenario involved experimentally monitoring as well as simulating balloon inflation inside three artery phantoms with different mechanical properties. The third scenario involved experimentally monitoring as well as simulating balloon unfolding and inflation inside a multilayer phantom. Using the first scenario, a constitutive model was developed for the balloon and was tuned to fit the IVOCT balloon inflation monitoring results. This model was used to simulate the balloon's response in simulations involving phantoms corresponding to the second and third scenarios. Diameter values were calculated both from images and simulation results. These values were then compared for each scenario. The obtained results highlight the potentials of IVOCT monitoring to validate simulation procedures.
Collapse
Affiliation(s)
- Hamed Azarnoush
- Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. McGill University, Centre for Intelligent Machines, Montreal, Canada. Author to whom any correspondence may be addressed
| | | | | | | | | |
Collapse
|
11
|
Bukala J, Kwiatkowski P, Malachowski J. Numerical analysis of crimping and inflation process of balloon-expandable coronary stent using implicit solution. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33. [PMID: 28425201 DOI: 10.1002/cnm.2890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/01/2017] [Accepted: 04/15/2017] [Indexed: 06/07/2023]
Abstract
The paper presents an applied methodology for numerical finite element analysis of coronary stent crimping and the free inflation process with the use of a folded noncompliant angioplasty balloon. The use of an implicit scheme is considered as the most original part of the work, as an explicit finite element procedure is very often preferred. Hitherto, when the implicit solution was used for the finite element solution, the simulated issue was largely simplified. Therefore, the authors focused on the modelling methodology with minimum possible simplification, ie, a full load path (compression and inflation in single analysis), solid element discretization, and sophisticated contact models (bodies with highly different stiffness). The obtained results are partially compared with experimental data (radial force during the crimping procedure) and present satisfactory compliance. The authors believe that presented methodology allow for significant improvement of the obtained results, as well as potential extension of the research scope, compared to previous efforts performed using the explicit integration scheme. Moreover, the presented methodology is believed to be suitable for sensitivity and optimization studies.
Collapse
Affiliation(s)
- Jakub Bukala
- Department of Mechanics and Applied Computer Science, Military University of Technology, Gen. Sylwestra Kaliskiego 2, Warsaw, 00-908, Poland
| | - Piotr Kwiatkowski
- Clinical Department of Interventional Cardiology, Central Clinical Hospital Ministry of Interior, Woloska 137, Warsaw, 02-507, Poland
| | - Jerzy Malachowski
- Department of Mechanics and Applied Computer Science, Military University of Technology, Gen. Sylwestra Kaliskiego 2, Warsaw, 00-908, Poland
| |
Collapse
|
12
|
XU CHUANGYE, LIU XIUJIAN, PAN LIANQIANG, WU GUANGHUI, SHU LIXIA, HE YUNA, MA LIPING, LIN CHANGYAN. NUMERICAL ANALYSIS OF BALLOON EXPANDABLE STENT DEPLOYMENT INSIDE A PATIENT-SPECIFIC STENOTIC CORONARY ARTERY TO INVESTIGATE THE INSTANT MECHANICAL BEHAVIORS. J MECH MED BIOL 2017. [DOI: 10.1142/s0219519417400371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The instant mechanical behaviors of stenotic coronary artery and deployed stents have significant impacts on percutaneous coronary intervention prognosis. However, they could not be obtained directly from the current examination techniques, which are commonly used in clinical practice. Thus, we intend to investigate the instantaneous mechanical behaviors of deployed stent and artery through virtually stenting technology based on a real clinical case in assessment of geometric and biomechanical characteristics. Method: Finite element analysis models, including rigid guide catheter, six-folded balloon with conical tip, crimped and bended stent, stenotic coronary artery with soft plaques, were simulated through virtual mechanical expansion and recoil procedure. The morphology changes of coronary lumen, strain and stress distribution of involved components at different stages and apposition of stent struts were analyzed. Results: Lumen in the stenotic region restored patency obviously at maximum expansion and had an elastic recoil about 13.5% later. The maximum principal stress distribution of artery walls and plaque was mainly concentrated in the stenotic segment with the peak value of 1.252[Formula: see text]MPa and 2.975[Formula: see text]MPa at max expansion, 0.713[Formula: see text]MPa and 1.25[Formula: see text]MPa after recoil, respectively. The higher von Mises stress and plastic equivalent strain of stent were present at the bended strut and inter-ring connectors with the peak value of 714.2[Formula: see text]MPa and 0.2385 at max expansion, 694[Formula: see text]MPa and 0.2276 after recoil. Slight malappositions were found in the proximal segment and struts distribution in the stenotic sites showed certain asymmetry. Conclusion: The instant mechanical behaviors of artery and stent could be evaluated through virtual stenting approach in assessment of geometric and biomechanical characteristics. This may contribute to choosing the best stenting schemes and predicting the clinical outcomes for a specific patient.
Collapse
Affiliation(s)
- CHUANGYE XU
- Department of Biomedical Engineering, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P. R. China
- Department of Biomedical Engineering, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, P. R. China
| | - XIUJIAN LIU
- Department of Biomedical Engineering, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P. R. China
- Department of Biomedical Engineering, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, P. R. China
| | - LIANQIANG PAN
- Department of Biomedical Engineering, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P. R. China
- Department of Biomedical Engineering, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, P. R. China
| | - GUANGHUI WU
- Department of Biomedical Engineering, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P. R. China
- Department of Biomedical Engineering, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, P. R. China
| | - LIXIA SHU
- Department of Biomedical Engineering, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P. R. China
- Department of Biomedical Engineering, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, P. R. China
| | - YUNA HE
- Department of Biomedical Engineering, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P. R. China
- Department of Biomedical Engineering, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, P. R. China
| | - LIPING MA
- General Practice, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P. R. China
| | - CHANGYAN LIN
- Department of Biomedical Engineering, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P. R. China
- Department of Biomedical Engineering, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, P. R. China
| |
Collapse
|
13
|
Iannaccone F, Chiastra C, Karanasos A, Migliavacca F, Gijsen F, Segers P, Mortier P, Verhegghe B, Dubini G, De Beule M, Regar E, Wentzel J. Impact of plaque type and side branch geometry on side branch compromise after provisional stent implantation: a simulation study. EUROINTERVENTION 2017; 13:e236-e245. [DOI: 10.4244/eij-d-16-00498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Li H, Gu J, Wang M, Zhao D, Li Z, Qiao A, Zhu B. Multi-objective optimization of coronary stent using Kriging surrogate model. Biomed Eng Online 2016; 15:148. [PMID: 28155700 PMCID: PMC5260142 DOI: 10.1186/s12938-016-0268-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background In stent design optimization, the functional relationship between design parameters and design goals is nonlinear, complex, and implicit and the multi-objective design of stents involves a number of potentially conflicting performance criteria. Therefore it is hard and time-consuming to find the optimal design of stent either by experiment or clinic test. Fortunately, computational methods have been developed to the point whereby optimization and simulation tools can be used to systematically design devices in a realistic time-scale. The aim of the present study is to propose an adaptive optimization method of stent design to improve its expansion performance. Methods Multi-objective optimization method based on Kriging surrogate model was proposed to decrease the dogboning effect and the radial elastic recoil of stents to improve stent expansion properties and thus reduce the risk of vascular in-stent restenosis injury. Integrating design of experiment methods and Kriging surrogate model were employed to construct the relationship between measures of stent dilation performance and geometric design parameters. Expected improvement, an infilling sampling criterion, was employed to balance local and global search with the aim of finding the global optimal design. A typical diamond-shaped coronary stent-balloon system was taken as an example to test the effectiveness of the optimization method. Finite element method was used to analyze the stent expansion of each design. Results 27 iterations were needed to obtain the optimal solution. The absolute values of the dogboning ratio at 32 and 42 ms were reduced by 94.21 and 89.43%, respectively. The dogboning effect was almost eliminated after optimization. The average of elastic recoil was reduced by 15.17%. Conclusion This article presents FEM based multi-objective optimization method combining with the Kriging surrogate model to decrease both the dogboning effect and radial elastic recoil of stents. The numerical results prove that the proposed optimization method effectively decreased both the dogboning effect and radial elastic recoil of stent. Further investigations containing more design goals and more effective multidisciplinary design optimization method are warranted.
Collapse
Affiliation(s)
- Hongxia Li
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116023, Liaoning, China
| | - Junfeng Gu
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116023, Liaoning, China
| | - Minjie Wang
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116023, Liaoning, China
| | - Danyang Zhao
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116023, Liaoning, China
| | - Zheng Li
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116023, Liaoning, China
| | - Aike Qiao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Bao Zhu
- School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116023, Liaoning, China.
| |
Collapse
|
15
|
Ragkousis GE, Curzen N, Bressloff NW. Multi-objective optimisation of stent dilation strategy in a patient-specific coronary artery via computational and surrogate modelling. J Biomech 2016; 49:205-15. [DOI: 10.1016/j.jbiomech.2015.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/02/2015] [Accepted: 12/03/2015] [Indexed: 11/28/2022]
|
16
|
Welch TR, Eberhart RC, Banerjee S, Chuong CJ. Mechanical Interaction of an Expanding Coiled Stent with a Plaque-Containing Arterial Wall: A Finite Element Analysis. Cardiovasc Eng Technol 2015; 7:58-68. [PMID: 26621671 DOI: 10.1007/s13239-015-0249-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/16/2015] [Indexed: 11/30/2022]
Abstract
Wall injury is observed during stent expansion within atherosclerotic arteries, related in part to stimulation of the inflammatory process. Wall stress and strain induced by stent expansion can be closely examined by finite element analysis (FEA), thus shedding light on procedure-induced sources of inflammation. The purpose of this work was to use FEA to examine the interaction of a coiled polymer stent with a plaque-containing arterial wall during stent expansion. An asymmetric fibrotic plaque-containing arterial wall model was created from intravascular ultrasound (IVUS) images of a diseased artery. A 3D model for a coil stent at unexpanded state was generated in SolidWorks. They were imported into ANSYS for FEA of combined stent expansion and fibrotic plaque-distortion. We simulated the stent expansion in the plaqued lumen by increasing balloon pressure from 0 to 12 atm in 1 atm step. At increasing pressure, we examined how the expanding stent exerts forces on the fibrotic plaque and vascular wall components, and how the latter collectively resist and balance the expansive forces from the stent. Results show the expanding coiled stent creates high stresses within the plaque and the surrounding fibrotic capsule. Lower stresses were observed in adjacent medial and adventitial layers. High principal strains were observed in plaque and fibrotic capsule. The results suggest fibrotic capsule rupture might occur at localized regions. The FEA/IVUS method can be adapted for routine examination of the effects of the expansion of selected furled stents against IVUS-reconstructed diseased vessels, to improve stent deployment practices.
Collapse
Affiliation(s)
- Tré R Welch
- Division of Pediatric Cardiothoracic Surgery, Department of Cardiovascular Thoracic Surgery, University of Texas at Southwestern Medical Center of Dallas, Dallas, TX, 75390-9130, USA.
| | - Robert C Eberhart
- Department of Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9130, USA.,Bioengineering Department, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Subhash Banerjee
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9130, USA
| | - Cheng-Jen Chuong
- Bioengineering Department, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
17
|
Debusschere N, Segers P, Dubruel P, Verhegghe B, De Beule M. A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent. J Biomech 2015; 48:2012-8. [DOI: 10.1016/j.jbiomech.2015.03.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/07/2015] [Accepted: 03/25/2015] [Indexed: 11/26/2022]
|
18
|
Spranger K, Ventikos Y. Which spring is the best? Comparison of methods for virtual stenting. IEEE Trans Biomed Eng 2015; 61:1998-2010. [PMID: 24956618 DOI: 10.1109/tbme.2014.2311856] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper presents a methodology for modeling the deployment of implantable devices used in minimally invasive vascular interventions. Motivated by the clinical need to perform preinterventional rehearsals of a stent deployment, we have developed methods enabling virtual device placement inside arteries, under the constraint of real-time application. This requirement of rapid execution narrowed down the search for a suitable method to the concept of a dynamic mesh. Inspired by the idea of a mesh of springs, we have found a novel way to apply it to stent modeling. The experiments conducted in this paper investigate properties of the stent models based on three different spring types: lineal, semitorsional, and torsional springs. Furthermore, this paper compares the results of various deployment scenarios for two different classes of devices: a stent graft and a flow diverter. The presented results can be of a high-potential clinical value, enabling the predictive evaluation of the outcome of a stent deployment treatment.
Collapse
|
19
|
Sequential Structural and Fluid Dynamics Analysis of Balloon-Expandable Coronary Stents: A Multivariable Statistical Analysis. Cardiovasc Eng Technol 2015; 6:314-28. [PMID: 26577363 DOI: 10.1007/s13239-015-0219-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/21/2015] [Indexed: 12/21/2022]
Abstract
Several clinical studies have identified a strong correlation between neointimal hyperplasia following coronary stent deployment and both stent-induced arterial injury and altered vessel hemodynamics. As such, the sequential structural and fluid dynamics analysis of balloon-expandable stent deployment should provide a comprehensive indication of stent performance. Despite this observation, very few numerical studies of balloon-expandable coronary stents have considered both the mechanical and hemodynamic impact of stent deployment. Furthermore, in the few studies that have considered both phenomena, only a small number of stents have been considered. In this study, a sequential structural and fluid dynamics analysis methodology was employed to compare both the mechanical and hemodynamic impact of six balloon-expandable coronary stents. To investigate the relationship between stent design and performance, several common stent design properties were then identified and the dependence between these properties and both the mechanical and hemodynamic variables of interest was evaluated using statistical measures of correlation. Following the completion of the numerical analyses, stent strut thickness was identified as the only common design property that demonstrated a strong dependence with either the mean equivalent stress predicted in the artery wall or the mean relative residence time predicted on the luminal surface of the artery. These results corroborate the findings of the large-scale ISAR-STEREO clinical studies and highlight the crucial role of strut thickness in coronary stent design. The sequential structural and fluid dynamics analysis methodology and the multivariable statistical treatment of the results described in this study should prove useful in the design of future balloon-expandable coronary stents.
Collapse
|
20
|
Nolan DR, Gower AL, Destrade M, Ogden RW, McGarry JP. A robust anisotropic hyperelastic formulation for the modelling of soft tissue. J Mech Behav Biomed Mater 2014; 39:48-60. [PMID: 25104546 DOI: 10.1016/j.jmbbm.2014.06.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
Abstract
The Holzapfel-Gasser-Ogden (HGO) model for anisotropic hyperelastic behaviour of collagen fibre reinforced materials was initially developed to describe the elastic properties of arterial tissue, but is now used extensively for modelling a variety of soft biological tissues. Such materials can be regarded as incompressible, and when the incompressibility condition is adopted the strain energy Ψ of the HGO model is a function of one isotropic and two anisotropic deformation invariants. A compressible form (HGO-C model) is widely used in finite element simulations whereby the isotropic part of Ψ is decoupled into volumetric and isochoric parts and the anisotropic part of Ψ is expressed in terms of isochoric invariants. Here, by using three simple deformations (pure dilatation, pure shear and uniaxial stretch), we demonstrate that the compressible HGO-C formulation does not correctly model compressible anisotropic material behaviour, because the anisotropic component of the model is insensitive to volumetric deformation due to the use of isochoric anisotropic invariants. In order to correctly model compressible anisotropic behaviour we present a modified anisotropic (MA) model, whereby the full anisotropic invariants are used, so that a volumetric anisotropic contribution is represented. The MA model correctly predicts an anisotropic response to hydrostatic tensile loading, whereby a sphere deforms into an ellipsoid. It also computes the correct anisotropic stress state for pure shear and uniaxial deformations. To look at more practical applications, we developed a finite element user-defined material subroutine for the simulation of stent deployment in a slightly compressible artery. Significantly higher stress triaxiality and arterial compliance are computed when the full anisotropic invariants are used (MA model) instead of the isochoric form (HGO-C model).
Collapse
Affiliation(s)
- D R Nolan
- Biomedical Engineering, National University of Ireland, Galway, Galway, Ireland
| | - A L Gower
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Galway, Ireland
| | - M Destrade
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Galway, Ireland
| | - R W Ogden
- School of Mathematics and Statistics, University of Glasgow, Glasgow, Scotland
| | - J P McGarry
- Biomedical Engineering, National University of Ireland, Galway, Galway, Ireland.
| |
Collapse
|
21
|
Analyses and design of expansion mechanisms of balloon expandable vascular stents. J Biomech 2014; 47:1438-46. [DOI: 10.1016/j.jbiomech.2014.01.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 11/24/2022]
|
22
|
Kolandaivelu K, Leiden BB, Edelman ER. Predicting response to endovascular therapies: Dissecting the roles of local lesion complexity, systemic comorbidity, and clinical uncertainty. J Biomech 2014; 47:908-21. [DOI: 10.1016/j.jbiomech.2014.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 11/25/2022]
|
23
|
Paryab N, Cronin DS, Lee-Sullivan P. Finite element methods to analyze helical stent expansion. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:339-352. [PMID: 24123985 DOI: 10.1002/cnm.2605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 08/23/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
Helical polymeric stents have been proposed as a suitable geometry for biodegradable drug-eluting polymer-based stents. However, helical stents often experience nonuniform local expansion (dog boning), which can prohibit full stent expansion using conventional methods. The development of stents and deployment methods is challenging and can be supported by numerical analysis; however, this complex problem is often approached with simplified boundary conditions that may not be appropriate for helical stents. The finite element method (explicit and implicit) was used to investigate three common stent expansion approaches with a focus on helical stent geometry, which differs from traditional wire mesh stent expansion. Although each of the three methods considered provided some insight into the expansion characteristics, common displacement controlled, and uniform expansion methods were not able to demonstrate the characteristic local deformations observed in expansion. A coupled stent-balloon model, although computationally expensive, was able to demonstrate the expected nonuniform deformation. To address nonuniform expansion, a progressive expansion approach has been investigated and verified numerically. This method may also provide a suitable solution for nonuniform expansion in other stent designs by minimizing loading and potential damage to the artery that can occur during stent deployment.
Collapse
Affiliation(s)
- Nasim Paryab
- University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
24
|
Xiong L, Chui CK, Teo CL, Lau DPC. Modeling and simulation of material degradation in biodegradable wound closure devices. J Biomed Mater Res B Appl Biomater 2014; 102:1181-9. [DOI: 10.1002/jbm.b.33100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/20/2013] [Accepted: 12/17/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Linfei Xiong
- Department of Mechanical Engineering; National University of Singapore; Singapore Singapore
| | - Chee-Kong Chui
- Department of Mechanical Engineering; National University of Singapore; Singapore Singapore
| | - Chee-Leong Teo
- Department of Mechanical Engineering; National University of Singapore; Singapore Singapore
| | - David P. C. Lau
- Department of Otolaryngology; Raffles Hospital; Singapore Singapore
| |
Collapse
|
25
|
Design optimization of coronary stent based on finite element models. ScientificWorldJournal 2013; 2013:630243. [PMID: 24222743 PMCID: PMC3814053 DOI: 10.1155/2013/630243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/02/2013] [Indexed: 11/28/2022] Open
Abstract
This paper presents an effective optimization method using the Kriging surrogate model combing with modified rectangular grid sampling to reduce the stent dogboning effect in the expansion process. An infilling sampling criterion named expected improvement (EI) is used to balance local and global searches in the optimization iteration. Four commonly used finite element models of stent dilation were used to investigate stent dogboning rate. Thrombosis models of three typical shapes are built to test the effectiveness of optimization results. Numerical results show that two finite element models dilated by pressure applied inside the balloon are available, one of which with the artery and plaque can give an optimal stent with better expansion behavior, while the artery and plaque unincluded model is more efficient and takes a smaller amount of computation.
Collapse
|
26
|
Martin D, Boyle F. Finite element analysis of balloon-expandable coronary stent deployment: influence of angioplasty balloon configuration. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2013; 29:1161-1175. [PMID: 23696255 DOI: 10.1002/cnm.2557] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/09/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
Today, the majority of coronary stents are balloon-expandable and are deployed using a balloon-tipped catheter. To improve deliverability, the membrane of the angioplasty balloon is typically folded about the catheter in a pleated configuration. As such, the deployment of the angioplasty balloon is governed by the material properties of the balloon membrane, its folded configuration and its attachment to the catheter. Despite this observation, however, an optimum strategy for modelling the configuration of the angioplasty balloon in finite element studies of coronary stent deployment has not been identified, and idealised models of the angioplasty balloon are commonly employed in the literature. These idealised models often neglect complex geometrical features, such as the folded configuration of the balloon membrane and its attachment to the catheter, which may have a significant influence on the deployment of a stent. In this study, three increasingly sophisticated models of a typical semi-compliant angioplasty balloon were employed to determine the influence of angioplasty balloon configuration on the deployment of a stent. The results of this study indicate that angioplasty balloon configuration has a significant influence on both the transient behaviour of the stent and its impact on the mechanical environment of the coronary artery.
Collapse
Affiliation(s)
- David Martin
- Department of Mechanical Engineering, Dublin Institute of Technology, Ireland
| | | |
Collapse
|
27
|
Lanzer P, Strupp G, Schmidt W, Topoleski LDT. The need for stent-lesion matching to optimize outcomes of intracoronary stent implantation. J Biomed Mater Res B Appl Biomater 2013; 101:1560-70. [PMID: 23687096 DOI: 10.1002/jbm.b.32956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 10/01/2012] [Accepted: 02/17/2013] [Indexed: 11/09/2022]
Abstract
Intracoronary stents have markedly improved the outcomes of catheter-based coronary interventions. Intracoronary stent implantation rates of over 90% during coronary angioplasty are common. Stent implantations are associated with a small but statistically significant number of adverse outcomes including restenosis, thrombosis, strut malapposition, incomplete strut endothelialization, and various types of stenting failure. Better matching of biomechanical properties of stents and lesions could further improve the clinical outcome of intracoronary stenting. Thus, in this article, we assess the need for advanced intracoronary stent-lesion matching. We reviewed the data on biomechanics of coronary stents and lesions to develop knowledge-based rationale for optimum intracoronary stent selection. The available technical information on marketed intracoronary stents and the current understanding of the biomechanical properties of coronary lesions at rest and under stress are limited, preventing the development of knowledge-based rationale for optimum intracoronary stent selection at present. Development of knowledge-based selection of intracoronary stents requires standardization of mechanical stent testing, communication of the nonproprietary technical data on stents by the industry and dedicated research into procedural stent-lesion interactions.
Collapse
Affiliation(s)
- Peter Lanzer
- Department of Cardiology and Angiology, Hospitals and Clinics Bitterfeld-Wolfen, Bitterfeld, Germany
| | | | | | | |
Collapse
|
28
|
Morlacchi S, Migliavacca F. Modeling stented coronary arteries: where we are, where to go. Ann Biomed Eng 2012; 41:1428-44. [PMID: 23090621 DOI: 10.1007/s10439-012-0681-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/16/2012] [Indexed: 01/09/2023]
Abstract
In the last two decades, numerical models have become well-recognized and widely adopted tools to investigate stenting procedures. Due to limited computational resources and modeling capabilities, early numerical studies only involved simplified cases and idealized stented arteries. Nowadays, increased computational power allows for numerical models to meet clinical needs and include more complex cases such as the implantation of multiple stents in bifurcations or curved vessels. Interesting progresses have been made in the numerical modeling of stenting procedures both from a structural and a fluid dynamics points of view. Moreover, in the drug eluting stents era, new insights on drug elution capabilities are becoming essential in the stent development. Lastly, image-based methods able to reconstruct realistic geometries from medical images have been proposed in the recent literature aiming to better describe the peculiar anatomical features of coronary vessels and increase the accuracy of the numerical models. In this light, this review provides a comprehensive analysis of the current state-of-the-art in this research area, discussing the main methodological advances and remarkable results drawn from a number of significant studies.
Collapse
Affiliation(s)
- Stefano Morlacchi
- Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy.
| | | |
Collapse
|
29
|
A Computational Test-Bed to Assess Coronary Stent Implantation Mechanics Using a Population-Specific Approach. Cardiovasc Eng Technol 2012. [DOI: 10.1007/s13239-012-0104-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Mechanical design of an intracranial stent for treating cerebral aneurysms. Med Eng Phys 2010; 32:1015-24. [DOI: 10.1016/j.medengphy.2010.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 06/15/2010] [Accepted: 07/08/2010] [Indexed: 11/16/2022]
|
31
|
Gagliardi M. Relevance of Mesh Dimension Optimization, Geometry Simplification and Discretization Accuracy in the Study of Mechanical Behaviour of Bare Metal Stents. ACTA ACUST UNITED AC 2010. [DOI: 10.4018/jcmam.2010100103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this paper, a set of analyses on the deployment of coronary stents by using a nonlinear finite element method is proposed. The author proposes a convergence test able to select the appropriate mesh dimension and a methodology to perform the simplification of structures composed of cyclically repeated units to reduce the number of degree of freedom and the analysis run time. A systematic study, based on the analysis of seven meshes for each model, is performed, gradually reducing the element dimension. In addition, geometric models are simplified considering symmetries; adequate boundary conditions are applied and verified based on the results obtained from analysis of the whole model.
Collapse
|
32
|
Simulation of a balloon expandable stent in a realistic coronary artery—Determination of the optimum modelling strategy. J Biomech 2010; 43:2126-32. [DOI: 10.1016/j.jbiomech.2010.03.050] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/26/2010] [Accepted: 03/31/2010] [Indexed: 11/23/2022]
|
33
|
Finite element shape optimization for biodegradable magnesium alloy stents. Ann Biomed Eng 2010; 38:2829-40. [PMID: 20446037 DOI: 10.1007/s10439-010-0057-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
Biodegradable magnesium alloy stents (MAS) are a promising solution for long-term adverse events caused by interactions between vessels and permanent stent platforms of drug eluting stents. However, the existing MAS showed severe lumen loss after a few months: too short degradation time may be the main reason for this drawback. In this study, a new design concept of MAS was proposed and a shape optimization method with finite element analysis was applied on two-dimensional (2D) stent models considering four different magnesium alloys: AZ80, AZ31, ZM21, and WE43. A morphing procedure was utilized to facilitate the optimization. Two experiments were carried out for a preliminary validation of the 2D models with good results. The optimized designs were compared to an existing MAS by means of three-dimensional finite element analysis. The results showed that the final optimized design with alloy WE43, compared to the existing MAS, has an increased strut width by approximately 48%, improved safety properties (decreased the maximum principal stress after recoil with tissue by 29%, and decreased the maximum principal strain during expansion by 14%) and improved scaffolding ability (increased by 24%). Accordingly, the degradation time can be expected to extend. The used methodology provides a convenient and practical way to develop novel MAS designs.
Collapse
|
34
|
A Novel Simulation Strategy for Stent Insertion and Deployment in Curved Coronary Bifurcations: Comparison of Three Drug-Eluting Stents. Ann Biomed Eng 2009; 38:88-99. [DOI: 10.1007/s10439-009-9836-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 10/27/2009] [Indexed: 11/26/2022]
|