1
|
Biofabrication of Sodium Alginate Hydrogel Scaffolds for Heart Valve Tissue Engineering. Int J Mol Sci 2022; 23:ijms23158567. [PMID: 35955704 PMCID: PMC9368972 DOI: 10.3390/ijms23158567] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Every year, thousands of aortic valve replacements must take place due to valve diseases. Tissue-engineered heart valves represent promising valve substitutes with remodeling, regeneration, and growth capabilities. However, the accurate reproduction of the complex three-dimensional (3D) anatomy of the aortic valve remains a challenge for current biofabrication methods. We present a novel technique for rapid fabrication of native-like tricuspid aortic valve scaffolds made of an alginate-based hydrogel. Using this technique, a sodium alginate hydrogel formulation is injected into a mold produced using a custom-made sugar glass 3D printer. The mold is then dissolved using a custom-made dissolving module, revealing the aortic valve scaffold. To assess the reproducibility of the technique, three scaffolds were thoroughly compared. CT (computed tomography) scans showed that the scaffolds respect the complex native geometry with minimal variations. The scaffolds were then tested in a cardiac bioreactor specially designed to reproduce physiological flow and pressure (aortic and ventricular) conditions. The flow and pressure profiles were similar to the physiological ones for the three valve scaffolds, with small variabilities. These early results establish the functional repeatability of this new biofabrication method and suggest its application for rapid fabrication of ready-to-use cell-seeded sodium alginate scaffolds for heart valve tissue engineering.
Collapse
|
2
|
Gosselin J, Bégin-Drolet A, Maciel Y, Ruel J. A New Approach Based on a Multiobjective Evolutionary Algorithm for Accurate Control of Flow Rate and Blood Pressure in Cardiac Bioreactors. Cardiovasc Eng Technol 2019; 11:84-95. [PMID: 31667784 DOI: 10.1007/s13239-019-00440-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/23/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE Accurately reproducing physiological and time-varying variables in cardiac bioreactors is a difficult task for conventional control methods. This paper presents a new controller based on a genetic algorithm for the control of a cardiac bioreactor dedicated to the study and conditioning of heart valve substitutes. METHODS A multi-objective genetic algorithm was designed to obtain an accurate simultaneous reproduction of physiological periodic time functions of the three most relevant variables characterizing the blood flow in the aortic valve. These three controlled variables are the flow rate and the pressures upstream and downstream of the aortic valve. RESULTS Experimental results obtained with this new algorithm showed an accurate dynamic reproduction of these three controlled variables. Moreover, the controller can react and adapt continuously to changes happening over time in the cardiac bioreactor, which is a major advantage when working with living biological valve substitutes. CONCLUSION The strong non-linear interaction that exists between the three controlled variables makes it difficult to obtain a precise control of any of these, let alone all three simultaneously. However, the results showed that this new control algorithm can efficiently overcome such difficulties. In the particular field of bioreactors reproducing the cardiovascular environment, such a flexible, versatile and accurate reproduction of these three interdependent controlled variables is unprecedented.
Collapse
Affiliation(s)
- Jérôme Gosselin
- Département de Génie Mécanique, Université Laval, Québec, QC, G1V 0A6, Canada
| | - André Bégin-Drolet
- Département de Génie Mécanique, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Yvan Maciel
- Département de Génie Mécanique, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jean Ruel
- Département de Génie Mécanique, Université Laval, Québec, QC, G1V 0A6, Canada. .,Pavillon Adrien-Pouliot, local 1314-C, Québec, 412245, Canada.
| |
Collapse
|
3
|
Tissue-Engineered Tubular Heart Valves Combining a Novel Precontraction Phase with the Self-Assembly Method. Ann Biomed Eng 2016; 45:427-438. [DOI: 10.1007/s10439-016-1708-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/04/2016] [Indexed: 11/25/2022]
|
4
|
Salinas M, Rath S, Villegas A, Unnikrishnan V, Ramaswamy S. Relative Effects of Fluid Oscillations and Nutrient Transport in the In Vitro Growth of Valvular Tissues. Cardiovasc Eng Technol 2016; 7:170-81. [PMID: 26857014 DOI: 10.1007/s13239-016-0258-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022]
Abstract
Engineered valvular tissues are cultured dynamically, and involve specimen movement. We previously demonstrated that oscillatory shear stresses (OSS) under combined steady flow and specimen cyclic flexure (flex-flow) promote tissue formation. However, localized efficiency of specimen mass transport is also important in the context of cell viability within the growing tissues. Here, we investigated the delivery of two essential species for cell survival, glucose and oxygen, to 3-dimensional (3D) engineered valvular tissues. We applied a convective-diffusive model to characterize glucose and oxygen mass transport with and without valve-like specimen flexural movement. We found the mass transport effects for glucose and oxygen to be negligible for scaffold porosities typically present during in vitro experiments and non-essential unless the porosity was unusually low (<40%). For more typical scaffold porosities (75%) however, we found negligible variation in the specimen mass fraction of glucose and oxygen in both non-moving and moving constructs (p > 0.05). Based on this result, we conducted an experiment using bone marrow stem cell (BMSC)-seeded scaffolds under Pulsatile flow-alone states to permit OSS without any specimen movement. BMSC-seeded specimen collagen from the pulsatile flow and flex-flow environments were subsequently found to be comparable (p > 0.05) and exhibited some gene expression similarities. We conclude that a critical magnitude of fluid-induced, OSS created by either pulsatile flow or flex-flow conditions, particularly when the oscillations are physiologically-relevant, is the direct, principal stimulus that promotes engineered valvular tissues and its phenotype, whereas mass transport benefits derived from specimen movement are minimal.
Collapse
Affiliation(s)
- Manuel Salinas
- Tissue Engineering, Mechanics, Imaging, and Materials Laboratory, Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, 10555 W. Flagler Street, EC 2612, Miami, FL, 33174, USA
| | - Sasmita Rath
- Tissue Engineering, Mechanics, Imaging, and Materials Laboratory, Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, 10555 W. Flagler Street, EC 2612, Miami, FL, 33174, USA
| | - Ana Villegas
- Tissue Engineering, Mechanics, Imaging, and Materials Laboratory, Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, 10555 W. Flagler Street, EC 2612, Miami, FL, 33174, USA
| | - Vinu Unnikrishnan
- Department of Aerospace Engineering and Mechanics, The University of Alabama, Tuscaloosa, AL, USA
| | - Sharan Ramaswamy
- Tissue Engineering, Mechanics, Imaging, and Materials Laboratory, Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, 10555 W. Flagler Street, EC 2612, Miami, FL, 33174, USA.
| |
Collapse
|
5
|
Dubé J, Bourget JM, Gauvin R, Lafrance H, Roberge CJ, Auger FA, Germain L. Progress in developing a living human tissue-engineered tri-leaflet heart valve assembled from tissue produced by the self-assembly approach. Acta Biomater 2014; 10:3563-70. [PMID: 24813743 DOI: 10.1016/j.actbio.2014.04.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/17/2014] [Accepted: 04/28/2014] [Indexed: 11/15/2022]
Abstract
The aortic heart valve is constantly subjected to pulsatile flow and pressure gradients which, associated with cardiovascular risk factors and abnormal hemodynamics (i.e. altered wall shear stress), can cause stenosis and calcification of the leaflets and result in valve malfunction and impaired circulation. Available options for valve replacement include homograft, allogenic or xenogenic graft as well as the implantation of a mechanical valve. A tissue-engineered heart valve containing living autologous cells would represent an alternative option, particularly for pediatric patients, but still needs to be developed. The present study was designed to demonstrate the feasibility of using a living tissue sheet produced by the self-assembly method, to replace the bovine pericardium currently used for the reconstruction of a stented human heart valve. In this study, human fibroblasts were cultured in the presence of sodium ascorbate to produce tissue sheets. These sheets were superimposed to create a thick construct. Tissue pieces were cut from these constructs and assembled together on a stent, based on techniques used for commercially available replacement valves. Histology and transmission electron microscopy analysis showed that the fibroblasts were embedded in a dense extracellular matrix produced in vitro. The mechanical properties measured were consistent with the fact that the engineered tissue was resistant and could be cut, sutured and assembled on a wire frame typically used in bioprosthetic valve assembly. After a culture period in vitro, the construct was cohesive and did not disrupt or disassemble. The tissue engineered heart valve was stimulated in a pulsatile flow bioreactor and was able to sustain multiple duty cycles. This prototype of a tissue-engineered heart valve containing cells embedded in their own extracellular matrix and sewn on a wire frame has the potential to be strong enough to support physiological stress. The next step will be to test this valve extensively in a bioreactor and at a later date, in a large animal model in order to assess in vivo patency of the graft.
Collapse
Affiliation(s)
- Jean Dubé
- Centre d'organogénèse expérimentale de l'Université Laval/LOEX, Centre de recherche FRQS du Centre hospitalier universitaire (CHU) de Québec, 1401, 18(eme) rue, G1J 1Z4 Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, 1050 Avenue de la Médecine, G1V 0A6 Québec, QC, Canada
| | - Jean-Michel Bourget
- Centre d'organogénèse expérimentale de l'Université Laval/LOEX, Centre de recherche FRQS du Centre hospitalier universitaire (CHU) de Québec, 1401, 18(eme) rue, G1J 1Z4 Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, 1050 Avenue de la Médecine, G1V 0A6 Québec, QC, Canada
| | - Robert Gauvin
- Centre d'organogénèse expérimentale de l'Université Laval/LOEX, Centre de recherche FRQS du Centre hospitalier universitaire (CHU) de Québec, 1401, 18(eme) rue, G1J 1Z4 Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, 1050 Avenue de la Médecine, G1V 0A6 Québec, QC, Canada
| | - Hugues Lafrance
- Edwards Lifesciences LLC, One Edwards Way, Irvine, CA 92614, USA
| | - Charles J Roberge
- Centre d'organogénèse expérimentale de l'Université Laval/LOEX, Centre de recherche FRQS du Centre hospitalier universitaire (CHU) de Québec, 1401, 18(eme) rue, G1J 1Z4 Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, 1050 Avenue de la Médecine, G1V 0A6 Québec, QC, Canada
| | - François A Auger
- Centre d'organogénèse expérimentale de l'Université Laval/LOEX, Centre de recherche FRQS du Centre hospitalier universitaire (CHU) de Québec, 1401, 18(eme) rue, G1J 1Z4 Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, 1050 Avenue de la Médecine, G1V 0A6 Québec, QC, Canada
| | - Lucie Germain
- Centre d'organogénèse expérimentale de l'Université Laval/LOEX, Centre de recherche FRQS du Centre hospitalier universitaire (CHU) de Québec, 1401, 18(eme) rue, G1J 1Z4 Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, 1050 Avenue de la Médecine, G1V 0A6 Québec, QC, Canada.
| |
Collapse
|
6
|
Tremblay C, Ruel J, Bourget JM, Laterreur V, Vallières K, Tondreau MY, Lacroix D, Germain L, Auger FA. A new construction technique for tissue-engineered heart valves using the self-assembly method. Tissue Eng Part C Methods 2014; 20:905-15. [PMID: 24576074 DOI: 10.1089/ten.tec.2013.0698] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tissue engineering appears as a promising option to create new heart valve substitutes able to overcome the serious drawbacks encountered with mechanical substitutes or tissue valves. The objective of this article is to present the construction method of a new entirely biological stentless aortic valve using the self-assembly method and also a first assessment of its behavior in a bioreactor when exposed to a pulsatile flow. A thick tissue was created by stacking several fibroblast sheets produced with the self-assembly technique. Different sets of custom-made templates were designed to confer to the thick tissue a three-dimensional (3D) shape similar to that of a native aortic valve. The construction of the valve was divided in two sequential steps. The first step was the installation of the thick tissue in a flat preshaping template followed by a 4-week maturation period. The second step was the actual cylindrical 3D forming of the valve. The microscopic tissue structure was assessed using histological cross sections stained with Masson's Trichrome and Picrosirius Red. The thick tissue remained uniformly populated with cells throughout the construction steps and the dense extracellular matrix presented corrugated fibers of collagen. This first prototype of tissue-engineered heart valve was installed in a bioreactor to assess its capacity to sustain a light pulsatile flow at a frequency of 0.5 Hz. Under the light pulsed flow, it was observed that the leaflets opened and closed according to the flow variations. This study demonstrates that the self-assembly method is a viable option for the construction of complex 3D shapes, such as heart valves, with an entirely biological material.
Collapse
Affiliation(s)
- Catherine Tremblay
- 1 Département de génie mécanique, Faculté des sciences et de génie, Université Laval , Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Converse GL, Buse EE, Hopkins RA. Bioreactors and operating room centric protocols for clinical heart valve tissue engineering. PROGRESS IN PEDIATRIC CARDIOLOGY 2013. [DOI: 10.1016/j.ppedcard.2013.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Mun CH, Jung Y, Kim SH, Kim HC, Kim SH. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold. Artif Organs 2013; 37:E168-78. [PMID: 23834728 DOI: 10.1111/aor.12108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Electrospun nanofibrous scaffolds have several advantages, such as an extremely high surface-to-volume ratio, tunable porosity, and malleability to conform over a wide variety of sizes and shapes. However, there are limitations to culturing the cells on the scaffold, including the inability of the cells to infiltrate because of the scaffold's nano-sized pores. To overcome the limitations, we developed a controlled pulsatile bioreactor that produces static and dynamic flow, which improves transfer of such nutrients and oxygen, and a tubular-shaped vascular graft using cell matrix engineering. Electrospun scaffolds were seeded with smooth muscle cells (SMCs), cultured under dynamic or static conditions for 14 days, and analyzed. Mechanical examination revealed higher burst strength in the vascular grafts cultured under dynamic conditions than under static conditions. Also, immunohistology stain for alpa smooth muscle actin showed the difference of SMC distribution and existence on the scaffold between the static and dynamic culture conditions. The higher proliferation rate of SMCs in dynamic culture rather than static culture could be explained by the design of the bioreactor which mimics the physical environment such as media flow and pressure through the lumen of the construct. This supports regulation of collagen and leads to a significant increase in tensile strength of the engineered tissues. These results showed that the SMCs/electrospinning poly (lactide-co-ε-caprolactone) scaffold constructs formed tubular-shaped vascular grafts and could be useful in vascular tissue engineering.
Collapse
Affiliation(s)
- Cho Hay Mun
- Biomaterials Research Center, Division of Life & Health Sciences, Korea Institute of Science and Technology, Seoul, Korea; Department of Biomedical Engineering, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
9
|
Spoon DB, Tefft BJ, Lerman A, Simari RD. Challenges of biological valve development. Interv Cardiol 2013. [DOI: 10.2217/ica.13.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
König F, Hollweck T, Pfeifer S, Reichart B, Wintermantel E, Hagl C, Akra B. A Pulsatile Bioreactor for Conditioning of Tissue-Engineered Cardiovascular Constructs under Endoscopic Visualization. J Funct Biomater 2012; 3:480-96. [PMID: 24955628 PMCID: PMC4031004 DOI: 10.3390/jfb3030480] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/27/2012] [Accepted: 07/09/2012] [Indexed: 12/28/2022] Open
Abstract
Heart valve disease (HVD) is a globally increasing problem and accounts for thousands of deaths yearly. Currently end-stage HVD can only be treated by total valve replacement, however with major drawbacks. To overcome the limitations of conventional substitutes, a new clinical approach based on cell colonization of artificially manufactured heart valves has been developed. Even though this attempt seems promising, a confluent and stable cell layer has not yet been achieved due to the high stresses present in this area of the human heart. This study describes a bioreactor with a new approach to cell conditioning of tissue engineered heart valves. The bioreactor provides a low pulsatile flow that grants the correct opening and closing of the valve without high shear stresses. The flow rate can be regulated allowing a steady and sensitive conditioning process. Furthermore, the correct functioning of the valve can be monitored by endoscope surveillance in real-time. The tubeless and modular design allows an accurate, simple and faultless assembly of the reactor in a laminar flow chamber. It can be concluded that the bioreactor provides a strong tool for dynamic pre-conditioning and monitoring of colonized heart valve prostheses physiologically exposed to shear stress.
Collapse
Affiliation(s)
- Fabian König
- Chair of Medical Engineering, Technical University Munich, Boltzmannstrasse 15, Garching 85748, Germany.
| | - Trixi Hollweck
- Department of Cardiac Surgery, Medical Center Munich University, Marchioninistr. 15, Munich 81377, Germany.
| | - Stefan Pfeifer
- Chair of Medical Engineering, Technical University Munich, Boltzmannstrasse 15, Garching 85748, Germany.
| | - Bruno Reichart
- Department of Cardiac Surgery, Medical Center Munich University, Marchioninistr. 15, Munich 81377, Germany.
| | - Erich Wintermantel
- Chair of Medical Engineering, Technical University Munich, Boltzmannstrasse 15, Garching 85748, Germany.
| | - Christian Hagl
- Department of Cardiac Surgery, Medical Center Munich University, Marchioninistr. 15, Munich 81377, Germany.
| | - Bassil Akra
- Department of Cardiac Surgery, Medical Center Munich University, Marchioninistr. 15, Munich 81377, Germany.
| |
Collapse
|
11
|
van Vlimmeren MAA, Driessen-Mol A, Oomens CWJ, Baaijens FPT. Passive and active contributions to generated force and retraction in heart valve tissue engineering. Biomech Model Mechanobiol 2012; 11:1015-27. [PMID: 22246054 DOI: 10.1007/s10237-011-0370-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 12/27/2011] [Indexed: 01/13/2023]
Abstract
In tissue engineered heart valves, cell-mediated stress development during culture results in leaflet retraction at time of implantation. This tissue retraction is partly active due to traction forces exerted by the cells and partly passive due to release of residual stress in the extracellular matrix and the cells. Within this study, we unraveled the passive and active contributions of cells and matrix to generated force and retraction in engineered heart valve tissues. Tissue engineered rectangular strips, fabricated from PGA/P4HB scaffolds and seeded with human myofibroblasts, were cultured for 4 weeks, after which the cellular contribution was changed at different levels. Elimination of the active cellular traction forces was achieved with Cytochalasin D and inhibition of the Rho-associated kinase pathway. Both active and passive cellular contributions were eliminated by lysation and/or decellularization of the tissue. Maximum cell activity was reached by increasing the fetal bovine serum concentration to 50%. The generated force decreased ~20% after elimination of the active cellular component, ~25% when the passive cellular component was removed as well and remained unaffected by increased serum concentrations. Passive retraction accounted for ~60% of total retraction, of which ~15% was residual stress in the matrix and ~45% was passive cell retraction. Cell traction forces accounted for the remainder ~40% of the retraction. Full activation of the cells increased retraction by ~45%. These results illustrate the importance of the cells in the process of tissue retraction, not only actively retracting the tissue, but also in a passive manner to a large extent.
Collapse
Affiliation(s)
- Marijke A A van Vlimmeren
- Department of Biomedical Engineering, WH4.12, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| | | | | | | |
Collapse
|
12
|
Ruel J, Lachance G. Mathematical modeling and experimental testing of three bioreactor configurations based on windkessel models. Heart Int 2011; 5:e1. [PMID: 21977286 PMCID: PMC3184706 DOI: 10.4081/hi.2010.e1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 12/30/2009] [Accepted: 01/04/2010] [Indexed: 11/25/2022] Open
Abstract
This paper presents an experimental study of three bioreactor configurations. The bioreactor is intended to be used for the development of tissue-engineered heart valve substitutes. Therefore it must be able to reproduce physiological flow and pressure waveforms accurately. A detailed analysis of three bioreactor arrangements is presented using mathematical models based on the windkessel (WK) approach. First, a review of the many applications of this approach in medical studies enhances its fundamental nature and its usefulness. Then the models are developed with reference to the actual components of the bioreactor. This study emphasizes different conflicting issues arising in the design process of a bioreactor for biomedical purposes, where an optimization process is essential to reach a compromise satisfying all conditions. Two important aspects are the need for a simple system providing ease of use and long-term sterility, opposed to the need for an advanced (thus more complex) architecture capable of a more accurate reproduction of the physiological environment. Three classic WK architectures are analyzed, and experimental results enhance the advantages and limitations of each one.
Collapse
Affiliation(s)
- Jean Ruel
- Department of Mechanical Engineering, Laval University, Québec, QC, Canada
| | | |
Collapse
|
13
|
Sewell-Loftin MK, Chun YW, Khademhosseini A, Merryman WD. EMT-inducing biomaterials for heart valve engineering: taking cues from developmental biology. J Cardiovasc Transl Res 2011; 4:658-71. [PMID: 21751069 DOI: 10.1007/s12265-011-9300-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/20/2011] [Indexed: 12/20/2022]
Abstract
Although artificial prostheses for diseased heart valves have been around for several decades, viable heart valve replacements have yet to be developed due to their complicated nature. The majority of research in heart valve replacement technology seeks to improve decellularization techniques for porcine valves or bovine pericardium as an effort to improve current clinically used valves. The drawback of clinically used valves is that they are nonviable and thus do not grow or remodel once implanted inside patients. This is particularly detrimental for pediatric patients, who will likely need several reoperations over the course of their lifetimes to implant larger valves as the patient grows. Due to this limitation, additional biomaterials, both synthetic and natural in origin, are also being investigated as novel scaffolds for tissue-engineered heart valves, specifically for the pediatric population. Here, we provide a brief overview of valves in clinical use as well as of the materials being investigated as novel tissue-engineered heart valve scaffolds. Additionally, we focus on natural-based biomaterials for promoting cell behavior that is indicative of the developmental biology process that occurs in the formation of heart valves in utero, such as epithelial-to-mesenchymal transition or transformation. By engineering materials that promote native developmental biology cues and signaling, while also providing mechanical integrity once implanted, a viable tissue-engineered heart valve may one day be realized. A viable tissue-engineered heart valve, capable of growing and remodeling actively inside a patient, could reduce risks and complications associated with current valve replacement options and improve overall quality of life in the thousands of patients who received such valves each year, particularly for children.
Collapse
Affiliation(s)
- M K Sewell-Loftin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232-0493, USA
| | | | | | | |
Collapse
|
14
|
Contemporary Application of Cardiovascular Hemodynamics: Transcatheter Aortic Valve Interventions. Cardiol Clin 2011; 29:211-22. [DOI: 10.1016/j.ccl.2011.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Heart valve tissue engineering: quo vadis? Curr Opin Biotechnol 2011; 22:698-705. [PMID: 21315575 DOI: 10.1016/j.copbio.2011.01.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 01/18/2011] [Indexed: 01/08/2023]
Abstract
Surgical replacement of diseased heart valves by mechanical and tissue valve substitutes is now commonplace and generally enhances survival and quality of life. However, a fundamental problem inherent to the use of existing mechanical and biological prostheses in the pediatric population is their failure to grow, repair, and remodel. A tissue engineered heart valve could, in principle, accommodate these requirements, especially somatic growth. This review provides a brief overview of the field of heart valve tissue engineering, with emphasis on recent studies and evolving concepts, especially those that establish design criteria and key hurdles that must be surmounted before clinical implementation.
Collapse
|
16
|
Design and Testing of a Pulsatile Conditioning System for Dynamic Endothelialization of Polyphenol-Stabilized Tissue Engineered Heart Valves. Cardiovasc Eng Technol 2010; 1:138-153. [PMID: 21340043 DOI: 10.1007/s13239-010-0014-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Heart valve tissue engineering requires biocompatible and hemocompatible scaffolds that undergo remodeling and repopulation, but that also withstand harsh mechanical forces immediately following implantation. We hypothesized that reversibly stabilized acellular porcine valves, seeded with endothelial cells and conditioned in pulsatile bioreactors would pave the way for next generations of tissue engineered heart valves (TEHVs). A novel valve conditioning system was first designed, manufactured and tested to adequately assess TEHVs. The bioreactor created proper closing and opening of valves and allowed for multiple mounting methods in sterile conditions. Porcine aortic heart valve roots were decellularized by chemical extractions and treated with penta-galloyl glucose (PGG) for stabilization. Properties of the novel scaffolds were evaluated by testing resistance to collagenase and elastase, biaxial mechanical analysis, and thermal denaturation profiles. Porcine aortic endothelial cells were seeded onto the leaflets and whole aortic roots were mounted within the dynamic pulsatile heart valve bioreactor system under physiologic pulmonary valve pressures and analyzed after 17 days for cell viability, morphology, and metabolic activity. Our tissue preparation methods effectively removed cells, including the potent α-Gal antigen, while leaving a well preserved extra-cellular matrix scaffold with adequate mechanical properties. PGG enhanced stabilization of extracellular matrix components but also showed the ability to be reversible. Engineered valve scaffolds encouraged attachment and survival of endothelial cells for extended periods and showed signs of widespread cell coverage after conditioning. Our novel approach shows promise toward development of sturdy and durable TEHVs capable of remodeling and cellular repopulation.
Collapse
|
17
|
Vismara R, Soncini M, Talò G, Dainese L, Guarino A, Redaelli A, Fiore GB. A Bioreactor with Compliance Monitoring for Heart Valve Grafts. Ann Biomed Eng 2009; 38:100-8. [DOI: 10.1007/s10439-009-9803-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 09/15/2009] [Indexed: 11/28/2022]
|