1
|
Nair PJ, Pfaller MR, Dual SA, McElhinney DB, Ennis DB, Marsden AL. Non-invasive Estimation of Pressure Drop Across Aortic Coarctations: Validation of 0D and 3D Computational Models with In Vivo Measurements. Ann Biomed Eng 2024; 52:1335-1346. [PMID: 38341399 DOI: 10.1007/s10439-024-03457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
Blood pressure gradient ( Δ P ) across an aortic coarctation (CoA) is an important measurement to diagnose CoA severity and gauge treatment efficacy. Invasive cardiac catheterization is currently the gold-standard method for measuring blood pressure. The objective of this study was to evaluate the accuracy of Δ P estimates derived non-invasively using patient-specific 0D and 3D deformable wall simulations. Medical imaging and routine clinical measurements were used to create patient-specific models of patients with CoA (N = 17). 0D simulations were performed first and used to tune boundary conditions and initialize 3D simulations. Δ P across the CoA estimated using both 0D and 3D simulations were compared to invasive catheter-based pressure measurements for validation. The 0D simulations were extremely efficient ( ∼ 15 s computation time) compared to 3D simulations ( ∼ 30 h computation time on a cluster). However, the 0D Δ P estimates, unsurprisingly, had larger mean errors when compared to catheterization than 3D estimates (12.1 ± 9.9 mmHg vs 5.3 ± 5.4 mmHg). In particular, the 0D model performance degraded in cases where the CoA was adjacent to a bifurcation. The 0D model classified patients with severe CoA requiring intervention (defined as Δ P ≥ 20 mmHg) with 76% accuracy and 3D simulations improved this to 88%. Overall, a combined approach, using 0D models to efficiently tune and launch 3D models, offers the best combination of speed and accuracy for non-invasive classification of CoA severity.
Collapse
Affiliation(s)
- Priya J Nair
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Martin R Pfaller
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Seraina A Dual
- Department of Biomedical Signaling and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Doff B McElhinney
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Daniel B Ennis
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
- Division of Radiology, VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Alison L Marsden
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Department of Pediatrics - Cardiology, Stanford University, Stanford, CA, USA.
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA.
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Kumar S, Kumar BVR, Rai SK, Shankar O. Effect of rheological models on pulsatile hemodynamics in a multiply afflicted descending human aortic network. Comput Methods Biomech Biomed Engin 2024; 27:116-143. [PMID: 36708321 DOI: 10.1080/10255842.2023.2170714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/15/2023] [Indexed: 01/29/2023]
Abstract
In the cardiovascular diseased (CVD) conditions, it is essential to choose a suitable rheological model for capturing the correct physics behind the hemodynamic in the multiply afflicted diseased arterial network. This study investigates the effect of blood rheology on hemodynamics in a blood vessel with abdominal aortic aneurysm (AAA) and right internal iliac stenosis (RIIAS). A model with AAA and RIIAS is reconstructed from a human subject's computed tomography (CT) data. Localized mesh generation and pulsatile inflow condition are considered. Non-Newtonian models such as the Power-law, Carreau, Cross, and Herschel Berkley models are used in simulations. The outcome from a validated computational model is compared with the Newtonian model to identify the suitable model for dealing with pathological complications under consideration. The capabilities and significance of various rheological models are also examined via Wall Pressure (WP), Wall Shear Stress (WSS), velocity, Global non-Newtonian importance factor (IG), Vorticity Streamlines, and Swirling Strength. It is noted that during the entire cardiac cycle, the IG factor of the cross model is found to be relatively more significant. Power Law depicts larger IG factor during peak systole and early diastole. Also, the cross model depicts larger WSS, WPS, swirling strength distribution and vorticity during the peak systolic and diastolic phases It is noted that IG ∼0.02 is an appropriate non-Newtonian blood activity cut-off value in the descending abdominal artery having AAA and RIIAS. The critical important WSS values are in the range of 0-9 Pa which is stated in WSS contour plot.
Collapse
Affiliation(s)
- Sumit Kumar
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, UP, India
| | - B V Rathish Kumar
- Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, UP, India
| | - S K Rai
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, UP, India
| | - Om Shankar
- Department of Cardiology, Institute of Medical Science, BHU, Varanasi, UP, India
| |
Collapse
|
3
|
Komosa ER, Lin WH, Mahadik B, Bazzi MS, Townsend D, Fisher JP, Ogle BM. A novel perfusion bioreactor promotes the expansion of pluripotent stem cells in a 3D-bioprinted tissue chamber. Biofabrication 2023; 16:014101. [PMID: 37906964 PMCID: PMC10636629 DOI: 10.1088/1758-5090/ad084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
While the field of tissue engineering has progressed rapidly with the advent of 3D bioprinting and human induced pluripotent stem cells (hiPSCs), impact is limited by a lack of functional, thick tissues. One way around this limitation is to 3D bioprint tissues laden with hiPSCs. In this way, the iPSCs can proliferate to populate the thick tissue mass prior to parenchymal cell specification. Here we design a perfusion bioreactor for an hiPSC-laden, 3D-bioprinted chamber with the goal of proliferating the hiPSCs throughout the structure prior to differentiation to generate a thick tissue model. The bioreactor, fabricated with digital light projection, was optimized to perfuse the interior of the hydrogel chamber without leaks and to provide fluid flow around the exterior as well, maximizing nutrient delivery throughout the chamber wall. After 7 days of culture, we found that intermittent perfusion (15 s every 15 min) at 3 ml min-1provides a 1.9-fold increase in the density of stem cell colonies in the engineered tissue relative to analogous chambers cultured under static conditions. We also observed a more uniform distribution of colonies within the tissue wall of perfused structures relative to static controls, reflecting a homogeneous distribution of nutrients from the culture media. hiPSCs remained pluripotent and proliferative with application of fluid flow, which generated wall shear stresses averaging ∼1.0 dyn cm-2. Overall, these promising outcomes following perfusion of a stem cell-laden hydrogel support the production of multiple tissue types with improved thickness, and therefore increased function and utility.
Collapse
Affiliation(s)
- Elizabeth R Komosa
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States of America
- NIBIB/NIH Center for Engineering Complex Tissues, College Park, MD, United States of America
| | - Wei-Han Lin
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Bhushan Mahadik
- NIBIB/NIH Center for Engineering Complex Tissues, College Park, MD, United States of America
- Fishell Department of Bioengineering, University of Maryland, College Park, MD, United States of America
| | - Marisa S Bazzi
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States of America
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - John P Fisher
- NIBIB/NIH Center for Engineering Complex Tissues, College Park, MD, United States of America
- Fishell Department of Bioengineering, University of Maryland, College Park, MD, United States of America
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States of America
- NIBIB/NIH Center for Engineering Complex Tissues, College Park, MD, United States of America
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
4
|
Yang W, Conover TA, Figliola RS, Giridharan GA, Marsden AL, Rodefeld MD. Passive performance evaluation and validation of a viscous impeller pump for subpulmonary fontan circulatory support. Sci Rep 2023; 13:12668. [PMID: 37542111 PMCID: PMC10403595 DOI: 10.1038/s41598-023-38559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023] Open
Abstract
Patients with single ventricle defects undergoing the Fontan procedure eventually face Fontan failure. Long-term cavopulmonary assist devices using rotary pump technologies are currently being developed as a subpulmonary power source to prevent and treat Fontan failure. Low hydraulic resistance is a critical safety requirement in the event of pump failure (0 RPM) as a modest 2 mmHg cavopulmonary pressure drop can compromise patient hemodynamics. The goal of this study is therefore to assess the passive performance of a viscous impeller pump (VIP) we are developing for Fontan patients, and validate flow simulations against in-vitro data. Two different blade heights (1.09 mm vs 1.62 mm) and a blank housing model were tested using a mock circulatory loop (MCL) with cardiac output ranging from 3 to 11 L/min. Three-dimensional flow simulations were performed and compared against MCL data. In-silico and MCL results demonstrated a pressure drop of < 2 mmHg at a cardiac output of 7 L/min for both blade heights. There was good agreement between simulation and MCL results for pressure loss (mean difference - 0.23 mmHg 95% CI [0.24-0.71]). Compared to the blank housing model, low wall shear stress area and oscillatory shear index on the pump surface were low, and mean washout times were within 2 s. This study demonstrated the low resistance characteristic of current VIP designs in the failed condition that results in clinically acceptable minimal pressure loss without increased washout time as compared to a blank housing model under normal cardiac output in Fontan patients.
Collapse
Affiliation(s)
- Weiguang Yang
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, USA.
| | - Timothy A Conover
- Departments of Mechanical Engineering, Clemson University, Clemson, SC, USA
| | - Richard S Figliola
- Departments of Mechanical Engineering, Clemson University, Clemson, SC, USA
| | | | - Alison L Marsden
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Mark D Rodefeld
- Section of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Zhang D, Lindsey SE. Recasting Current Knowledge of Human Fetal Circulation: The Importance of Computational Models. J Cardiovasc Dev Dis 2023; 10:240. [PMID: 37367405 PMCID: PMC10299027 DOI: 10.3390/jcdd10060240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Computational hemodynamic simulations are becoming increasingly important for cardiovascular research and clinical practice, yet incorporating numerical simulations of human fetal circulation is relatively underutilized and underdeveloped. The fetus possesses unique vascular shunts to appropriately distribute oxygen and nutrients acquired from the placenta, adding complexity and adaptability to blood flow patterns within the fetal vascular network. Perturbations to fetal circulation compromise fetal growth and trigger the abnormal cardiovascular remodeling that underlies congenital heart defects. Computational modeling can be used to elucidate complex blood flow patterns in the fetal circulatory system for normal versus abnormal development. We present an overview of fetal cardiovascular physiology and its evolution from being investigated with invasive experiments and primitive imaging techniques to advanced imaging (4D MRI and ultrasound) and computational modeling. We introduce the theoretical backgrounds of both lumped-parameter networks and three-dimensional computational fluid dynamic simulations of the cardiovascular system. We subsequently summarize existing modeling studies of human fetal circulation along with their limitations and challenges. Finally, we highlight opportunities for improved fetal circulation models.
Collapse
Affiliation(s)
| | - Stephanie E. Lindsey
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
6
|
Umo A, Kung EO. A Protocol for Coupling Volumetrically Dynamic In-Vitro Experiments to Numerical Physiology Simulation for a Hybrid Cardiovascular Model. IEEE Trans Biomed Eng 2023; 70:1351-1358. [PMID: 36269903 PMCID: PMC11232494 DOI: 10.1109/tbme.2022.3216542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The Physiology Simulation Coupled Experiment (PSCOPE) is a hybrid modeling framework that enables a physical fluid experiment to operate in the context of a closed-loop computational simulation of cardiovascular physiology. Previous PSCOPE methods coupled rigid experiments to a lumped parameter network (LPN) of physiology but are incompatible with volumetrically dynamic experiments where fluid volume varies periodically. We address this limitation by introducing a method capable of coupling multi-branch and volumetrically dynamic in-vitro experiments to an LPN. METHODS Our proposed method utilizes an iterative weighted-averaging algorithm to identify the unique solution waveforms for a given PSCOPE model. We confirm the accuracy of these PSCOPE solutions by integrating mathematical surrogates of in-vitro experiments directly into the LPN to derive reference solutions, which serve as the gold standard to validate the solutions obtained from using our proposed method to couple the same mathematical surrogates to the LPN. Finally, we illustrate a practical application of our PSCOPE method by coupling an in-vitro renal circulation experiment to the LPN. RESULTS Compared to the reference solution, the normalized root mean square error of the flow and pressure waveforms were 0.001%∼0.55%, demonstrating the accuracy of the coupling method. CONCLUSION We successfully coupled the in-vitro experiment to the LPN, demonstrating the real-world performance within the constraints of sensor and actuation limitations in the physical experiment. SIGNIFICANCE This study introduces a PSCOPE method that can be used to investigate medical devices and anatomies that exhibit periodic volume changes, expanding the utility of the hybrid framework.
Collapse
|
7
|
Yang W, Conover TA, Figliola RS, Giridharan GA, Marsden AL, Rodefeld MD. Passive Performance Evaluation and Validation of a Viscous Impeller Pump for Subpulmonary Fontan Circulatory Support. RESEARCH SQUARE 2023:rs.3.rs-2584661. [PMID: 36909557 PMCID: PMC10002834 DOI: 10.21203/rs.3.rs-2584661/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Patients with single ventricle defects undergoing the Fontan procedure eventually face Fontan failure. Long-term cavopulmonary assist devices using rotary pump technologies are currently being developed as a subpulmonary power source to prevent and treat Fontan failure. Low hydraulic resistance is a critical safety requirement in the event of pump failure (0 RPM) as a modest 2 mmHg cavopulmonary pressure drop can compromise patient hemodynamics. The goal of this study is therefore to assess the passive performance for a viscous impeller pump (VIP) we are developing for Fontan patients, and validate flow simulations against in-vitro data. Two different blade heights (1.09 mm vs 1.62 mm) and a blank housing model were tested using a mock circulatory loop (MCL) with cardiac output ranging from 3 to 11 L/min. Three-dimensional flow simulations were performed and compared against MCL data. In-silico and MCL results demonstrated a clinically insignificant pressure drop of $<$ 2 mmHg at a cardiac output of 7 L/min for both blade heights. There was good agreement between simulation and MCL results for pressure loss (mean difference -0.23 mmHg 95% CI [0.24 -0.71]). Compared to the blank housing model, low wall shear stress area and oscillatory shear index on the pump surface were low, and mean washout times were within 2 seconds. This study demonstrated the low resistance characteristic of current VIP designs in the failed condition that results in clinically acceptable minimal pressure loss with low risk of thrombosis.
Collapse
Affiliation(s)
- Weiguang Yang
- Departments of Pediatrics (Cardiology), Stanford University
| | | | | | | | - Alison L. Marsden
- Departments of Pediatrics (Cardiology), Stanford University
- Department of Bioengineering, Stanford University
| | - Mark D. Rodefeld
- Section of Cardiothoracic Surgery, Indiana University School of Medicine
| |
Collapse
|
8
|
Cao H, Xiong Z, Liu Z, Li Y, Pu H, Liu J, Peng L, Zheng T. Influence of morphology and hemodynamics on thrombosis in kawasaki disease patients. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
|
9
|
Schwarz EL, Pegolotti L, Pfaller MR, Marsden AL. Beyond CFD: Emerging methodologies for predictive simulation in cardiovascular health and disease. BIOPHYSICS REVIEWS 2023; 4:011301. [PMID: 36686891 PMCID: PMC9846834 DOI: 10.1063/5.0109400] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023]
Abstract
Physics-based computational models of the cardiovascular system are increasingly used to simulate hemodynamics, tissue mechanics, and physiology in evolving healthy and diseased states. While predictive models using computational fluid dynamics (CFD) originated primarily for use in surgical planning, their application now extends well beyond this purpose. In this review, we describe an increasingly wide range of modeling applications aimed at uncovering fundamental mechanisms of disease progression and development, performing model-guided design, and generating testable hypotheses to drive targeted experiments. Increasingly, models are incorporating multiple physical processes spanning a wide range of time and length scales in the heart and vasculature. With these expanded capabilities, clinical adoption of patient-specific modeling in congenital and acquired cardiovascular disease is also increasing, impacting clinical care and treatment decisions in complex congenital heart disease, coronary artery disease, vascular surgery, pulmonary artery disease, and medical device design. In support of these efforts, we discuss recent advances in modeling methodology, which are most impactful when driven by clinical needs. We describe pivotal recent developments in image processing, fluid-structure interaction, modeling under uncertainty, and reduced order modeling to enable simulations in clinically relevant timeframes. In all these areas, we argue that traditional CFD alone is insufficient to tackle increasingly complex clinical and biological problems across scales and systems. Rather, CFD should be coupled with appropriate multiscale biological, physical, and physiological models needed to produce comprehensive, impactful models of mechanobiological systems and complex clinical scenarios. With this perspective, we finally outline open problems and future challenges in the field.
Collapse
Affiliation(s)
- Erica L. Schwarz
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Luca Pegolotti
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Martin R. Pfaller
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Alison L. Marsden
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
10
|
Lan IS, Liu J, Yang W, Zimmermann J, Ennis DB, Marsden AL. Validation of the Reduced Unified Continuum Formulation Against In Vitro 4D-Flow MRI. Ann Biomed Eng 2023; 51:377-393. [PMID: 35963921 PMCID: PMC11402517 DOI: 10.1007/s10439-022-03038-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/25/2022] [Indexed: 01/25/2023]
Abstract
We previously introduced and verified the reduced unified continuum formulation for vascular fluid-structure interaction (FSI) against Womersley's deformable wall theory. Our present work seeks to investigate its performance in a patient-specific aortic setting in which assumptions of idealized geometries and velocity profiles are invalid. Specifically, we leveraged 2D magnetic resonance imaging (MRI) and 4D-flow MRI to extract high-resolution anatomical and hemodynamic information from an in vitro flow circuit embedding a compliant 3D-printed aortic phantom. To accurately reflect experimental conditions, we numerically implemented viscoelastic external tissue support, vascular tissue prestressing, and skew boundary conditions enabling in-plane vascular motion at each inlet and outlet. Validation of our formulation is achieved through close quantitative agreement in pressures, lumen area changes, pulse wave velocity, and early systolic velocities, as well as qualitative agreement in late systolic flow structures. Our validated suite of FSI techniques offers a computationally efficient approach for numerical simulation of vascular hemodynamics. This study is among the first to validate a cardiovascular FSI formulation against an in vitro flow circuit involving a compliant vascular phantom of complex patient-specific anatomy.
Collapse
Affiliation(s)
- Ingrid S Lan
- Department of Bioengineering, Stanford University, Clark Center E1.3 318 Campus Drive, Stanford, CA, 94305-5428, USA
| | - Ju Liu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Weiguang Yang
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
| | - Judith Zimmermann
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Informatics, Technical University of Munich, 85748, Garching, Germany
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Division of Radiology, Veterans Affairs Health Care System, Palo Alto, CA, 94304, USA
| | - Alison L Marsden
- Department of Bioengineering, Stanford University, Clark Center E1.3 318 Campus Drive, Stanford, CA, 94305-5428, USA.
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA.
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
11
|
岳 键, 赵 一, 王 家, 樊 瑜, 郑 庭. [Comparison of stent displacement and displacement force after endovascular aneurysm repair with cross-limb or parallel-limb stent]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2022; 39:645-650. [PMID: 36008327 PMCID: PMC10957364 DOI: 10.7507/1001-5515.202107038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 05/27/2022] [Indexed: 06/15/2023]
Abstract
This study aims to investigate whether displacement force on stents can accurately represents the displacement of the stent after endovascular aneurysm repair (EVAR) by comparing the measured stent displacement with the displacement forces calculated by computational fluid dynamics (CFD). And the effect of cross-limb and parallel-limb EVAR on stent displacements is further studied. Based on our objective, in this study, ten cross-limb EVAR patients and ten parallel-limb EVAR patients in West China Hospital of Sichuan University were enrolled. Patient-specific models were first reconstructed based on the computed tomography angiography images, then the stent displacements were measured, and the displacement forces acting on the stents were calculated by CFD. Finally, the c o s α value of the angle between the displacement force and the displacement vector was used to analyze the matching degree between the displacement and the displacement force. The results showed that the displacement forces on cross-limb stents and parallel-limb stents were (2.67 ± 2.14) N and (1.36 ± 0.48) N, respectively. Displacements of stent gravity center, stent displacements relative to vessel, and vessel displacements of cross-limb and parallel-limb stents were (4.43 ± 2.81) mm and (6.39 ± 2.62) mm, (0.88 ± 0.67) mm and (1.11 ± 0.71) mm, (3.55 ± 2.88) mm and (5.28 ± 2.52) mm, respectively. The mean c o s α for cross-limb and parallel-limb stents were 0.02 ± 0.66 and - 0.10 ± 0.73, respectively. This study indicates that the displacement force on the stent can't accurately represent the displacement of the stent after EVAR. In addition, the cross-limb EVAR is probably safer and more stable than the parallel-limb EVAR.
Collapse
Affiliation(s)
- 键金 岳
- 四川大学 建筑与环境学院(成都 610065)School of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
| | - 一鸣 赵
- 四川大学 建筑与环境学院(成都 610065)School of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
| | - 家嵘 王
- 四川大学 建筑与环境学院(成都 610065)School of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
| | - 瑜波 樊
- 四川大学 建筑与环境学院(成都 610065)School of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
| | - 庭辉 郑
- 四川大学 建筑与环境学院(成都 610065)School of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
12
|
Marino M, Vairo G, Wriggers P. Mechano-chemo-biological Computational Models for Arteries in Health, Disease and Healing: From Tissue Remodelling to Drug-eluting Devices. Curr Pharm Des 2021; 27:1904-1917. [PMID: 32723253 DOI: 10.2174/1381612826666200728145752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/14/2020] [Indexed: 11/22/2022]
Abstract
This review aims to highlight urgent priorities for the computational biomechanics community in the framework of mechano-chemo-biological models. Recent approaches, promising directions and open challenges on the computational modelling of arterial tissues in health and disease are introduced and investigated, together with in silico approaches for the analysis of drug-eluting stents that promote pharmacological-induced healing. The paper addresses a number of chemo-biological phenomena that are generally neglected in biomechanical engineering models but are most likely instrumental for the onset and the progression of arterial diseases. An interdisciplinary effort is thus encouraged for providing the tools for an effective in silico insight into medical problems. An integrated mechano-chemo-biological perspective is believed to be a fundamental missing piece for crossing the bridge between computational engineering and life sciences, and for bringing computational biomechanics into medical research and clinical practice.
Collapse
Affiliation(s)
- Michele Marino
- Institute of Continuum Mechanics, Leibniz Universität Hannover, An der Universität 1, 30823 Garbsen, Germany
| | - Giuseppe Vairo
- Department of Civil Engineering and Computer Science, University of Rome "Tor Vergata" via del Politecnico 1, 00133 Rome, Italy
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, An der Universität 1, 30823 Garbsen, Germany
| |
Collapse
|
13
|
Paz C, Suárez E, Cabarcos A, Pinto SIS. FSI modeling on the effect of artery-aneurysm thickness and coil embolization in patient cases. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 206:106148. [PMID: 33992899 DOI: 10.1016/j.cmpb.2021.106148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE The attainment of a methodology to simulate the hemodynamic in patient-specific cerebral vessels with aneurysms is still a challenge. The novelty of this work is focused on the effect of coil embolization in a realistic cerebral aneurysm, according to the vessel wall thickness and aneurysm thickness, through transient FSI simulations. METHODS The quality of the mesh for simulations was checked with a specific mesh convergence study; and the numerical methodology was validated using numerical research data of the literature. The model was implemented in ANSYS® software. The total deformation and equivalent stress evolution in the studied cases, before and after coil embolization, were compared. More than 20 different models were employed due to different arterial wall thickness and aneurysm wall thickness combinations. RESULTS The obtained results have showed that deformation and stress values are highly influenced with the sac thickness. The thinner sac aneurysm thickness is, the greater deformation and stress are. The results after coil embolization process have highlighted that considering typical values of arterial wall thickness and aneurysm thickness 0.3 mm and 0.15 mm respectively, a deformation reduction around 50% and a stress reduction around 70% can be achieved. CONCLUSIONS The proposed methodology is a step forward in the personalized medicine, quantifying the aneurysm rupture risk reduction, and helping the medical team in the preoperative planning, or to deciding the optimal treatment.
Collapse
Affiliation(s)
- C Paz
- CINTECX, University of Vigo, Campus Universitario Lagoas-Marcosende, Vigo 36310, España.
| | - E Suárez
- CINTECX, University of Vigo, Campus Universitario Lagoas-Marcosende, Vigo 36310, España.
| | - A Cabarcos
- CINTECX, University of Vigo, Campus Universitario Lagoas-Marcosende, Vigo 36310, España.
| | - S I S Pinto
- Engineering Faculty of University of Porto, Institute of Science and Innovation in Mechanical and Industrial Engineering (LAETA-INEGI), Rua Dr. Roberto Frias, Porto 4200-465, Portugal.
| |
Collapse
|
14
|
A distributed lumped parameter model of blood flow with fluid-structure interaction. Biomech Model Mechanobiol 2021; 20:1659-1674. [PMID: 34076757 DOI: 10.1007/s10237-021-01468-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/17/2021] [Indexed: 12/22/2022]
Abstract
A distributed lumped parameter (DLP) model of blood flow was recently developed that can be simulated in minutes while still incorporating complex sources of energy dissipation in blood vessels. The aim of this work was to extend the previous DLP modeling framework to include fluid-structure interactions (DLP-FSI). This was done by using a simple compliance term to calculate pressure that does not increase the simulation complexity of the original DLP models. Verification and validation studies found DLP-FSI simulations had good agreement compared to analytical solutions of the wave equations, experimental measurements of pulsatile flow in elastic tubes, and in vivo MRI measurements of thoracic aortic flow. This new development of DLP-FSI allows for significantly improved computational efficiency of FSI simulations compared to FSI approaches that solve the full 3D conservation of mass and momentum equations while also including the complex sources of energy dissipation occurring in cardiovascular flows that other simplified models neglect.
Collapse
|
15
|
Naber A, Reiß M, Nahm W. Transit Time Measurement in Indicator Dilution Curves: Overcoming the Missing Ground Truth and Quantifying the Error. Front Physiol 2021; 12:588120. [PMID: 34122123 PMCID: PMC8194354 DOI: 10.3389/fphys.2021.588120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The vascular function of a vessel can be qualitatively and intraoperatively checked by recording the blood dynamics inside the vessel via fluorescence angiography (FA). Although FA is the state of the art in proving the existence of blood flow during interventions such as bypass surgery, it still lacks a quantitative blood flow measurement that could decrease the recurrence rate and postsurgical mortality. Previous approaches show that the measured flow has a significant deviation compared to the gold standard reference (ultrasonic flow meter). In order to systematically address the possible sources of error, we investigated the error in transit time measurement of an indicator. Obtaining in vivo indicator dilution curves with a known ground truth is complex and often not possible. Further, the error in transit time measurement should be quantified and reduced. To tackle both issues, we first computed many diverse indicator dilution curves using an in silico simulation of the indicator's flow. Second, we post-processed these curves to mimic measured signals. Finally, we fitted mathematical models (parabola, gamma variate, local density random walk, and mono-exponential model) to re-continualize the obtained discrete indicator dilution curves and calculate the time delay of two analytical functions. This re-continualization showed an increase in the temporal accuracy up to a sub-sample accuracy. Thereby, the Local Density Random Walk (LDRW) model performed best using the cross-correlation of the first derivative of both indicator curves with a cutting of the data at 40% of the peak intensity. The error in frames depends on the noise level and is for a signal-to-noise ratio (SNR) of 20 dB and a sampling rate of fs = 60 Hz at fs-1·0.25(±0.18), so this error is smaller than the distance between two consecutive samples. The accurate determination of the transit time and the quantification of the error allow the calculation of the error propagation onto the flow measurement. Both can assist surgeons as an intraoperative quality check and thereby reduce the recurrence rate and post-surgical mortality.
Collapse
Affiliation(s)
- Ady Naber
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Reiß
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Werner Nahm
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
16
|
Thirugnanasambandam M, Canchi T, Piskin S, Karmonik C, Kung E, Menon PG, Avril S, Finol EA. Design, Development, and Temporal Evaluation of a Magnetic Resonance Imaging-Compatible In Vitro Circulation Model Using a Compliant Abdominal Aortic Aneurysm Phantom. J Biomech Eng 2021; 143:051004. [PMID: 33493273 PMCID: PMC8086180 DOI: 10.1115/1.4049894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/05/2021] [Indexed: 11/08/2022]
Abstract
Biomechanical characterization of abdominal aortic aneurysms (AAAs) has become commonplace in rupture risk assessment studies. However, its translation to the clinic has been greatly limited due to the complexity associated with its tools and their implementation. The unattainability of patient-specific tissue properties leads to the use of generalized population-averaged material models in finite element analyses, which adds a degree of uncertainty to the wall mechanics quantification. In addition, computational fluid dynamics modeling of AAA typically lacks the patient-specific inflow and outflow boundary conditions that should be obtained by nonstandard of care clinical imaging. An alternative approach for analyzing AAA flow and sac volume changes is to conduct in vitro experiments in a controlled laboratory environment. In this study, we designed, built, and characterized quantitatively a benchtop flow loop using a deformable AAA silicone phantom representative of a patient-specific geometry. The impedance modules, which are essential components of the flow loop, were fine-tuned to ensure typical intraluminal pressure conditions within the AAA sac. The phantom was imaged with a magnetic resonance imaging (MRI) scanner to acquire time-resolved images of the moving wall and the velocity field inside the sac. Temporal AAA sac volume changes lead to a corresponding variation in compliance throughout the cardiac cycle. The primary outcome of this work was the design optimization of the impedance elements, the quantitative characterization of the resistive and capacitive attributes of a compliant AAA phantom, and the exemplary use of MRI for flow visualization and quantification of the deformed AAA geometry.
Collapse
Affiliation(s)
- Mirunalini Thirugnanasambandam
- University of Texas at San Antonio, UTSA/UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, TX 78249
| | - Tejas Canchi
- Department of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
| | - Senol Piskin
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249; Department of Mechanical Engineering, Istinye University, Istanbul 34010, Turkey
| | | | - Ethan Kung
- Department of Mechanical Engineering, Clemson UniversityClemson, SC 29634
| | - Prahlad G. Menon
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260
| | - Stephane Avril
- Ecole Nationale Supérieure des Mines, Center for Biomedical and Healthcare Engineering, St-Etienne 75006, France
| | - Ender A. Finol
- University of Texas at San Antonio, UTSA/UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, TX 78249; Department of Mechanical Engineering, University of Texas at San Antonio, Room EB 3.04.08 One UTSA Circle, San Antonio, TX 78249
| |
Collapse
|
17
|
Taebi A, Vu CT, Roncali E. Multiscale Computational Fluid Dynamics Modeling for Personalized Liver Cancer Radioembolization Dosimetry. J Biomech Eng 2021; 143:011002. [PMID: 32601676 PMCID: PMC7580665 DOI: 10.1115/1.4047656] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 06/17/2020] [Indexed: 12/13/2022]
Abstract
Yttrium-90 (90Y) radioembolization is a minimally invasive procedure increasingly used for advanced liver cancer treatment. In this method, radioactive microspheres are injected into the hepatic arterial bloodstream to target, irradiate, and kill cancer cells. Accurate and precise treatment planning can lead to more efficient and safer treatment by delivering a higher radiation dose to the tumor while minimizing the exposure of the surrounding liver parenchyma. Treatment planning primarily relies on the estimated radiation dose delivered to tissue. However, current methods used to estimate the dose are based on simplified assumptions that make the dosimetry results unreliable. In this work, we present a computational model to predict the radiation dose from the 90Y activity in different liver segments to provide a more realistic and personalized dosimetry. Computational fluid dynamics (CFD) simulations were performed in a 3D hepatic arterial tree model segmented from cone-beam CT angiographic data obtained from a patient with hepatocellular carcinoma (HCC). The microsphere trajectories were predicted from the velocity field. 90Y dose distribution was then calculated from the volumetric distribution of the microspheres. Two injection locations were considered for the microsphere administration, a lobar and a selective injection. Results showed that 22% and 82% of the microspheres were delivered to the tumor, after each injection, respectively, and the combination of both injections ultimately delivered 49% of the total administered 90Y microspheres to the tumor. Results also illustrated the nonhomogeneous distribution of microspheres between liver segments, indicating the importance of developing patient-specific dosimetry methods for effective radioembolization treatment.
Collapse
Affiliation(s)
- Amirtahà Taebi
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616
| | - Catherine T. Vu
- Department of Radiology, University of California Davis, 4860 Y Street, Suite 3100, Sacramento, CA 95817
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616
| |
Collapse
|
18
|
Taebi A, Pillai RM, S. Roudsari B, Vu CT, Roncali E. Computational Modeling of the Liver Arterial Blood Flow for Microsphere Therapy: Effect of Boundary Conditions. Bioengineering (Basel) 2020; 7:E64. [PMID: 32610459 PMCID: PMC7552664 DOI: 10.3390/bioengineering7030064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Transarterial embolization is a minimally invasive treatment for advanced liver cancer using microspheres loaded with a chemotherapeutic drug or radioactive yttrium-90 (90Y) that are injected into the hepatic arterial tree through a catheter. For personalized treatment, the microsphere distribution in the liver should be optimized through the injection volume and location. Computational fluid dynamics (CFD) simulations of the blood flow in the hepatic artery can help estimate this distribution if carefully parameterized. An important aspect is the choice of the boundary conditions imposed at the inlet and outlets of the computational domain. In this study, the effect of boundary conditions on the hepatic arterial tree hemodynamics was investigated. The outlet boundary conditions were modeled with three-element Windkessel circuits, representative of the downstream vasculature resistance. Results demonstrated that the downstream vasculature resistance affected the hepatic artery hemodynamics such as the velocity field, the pressure field and the blood flow streamline trajectories. Moreover, the number of microspheres received by the tumor significantly changed (more than 10% of the total injected microspheres) with downstream resistance variations. These findings suggest that patient-specific boundary conditions should be used in order to achieve a more accurate drug distribution estimation with CFD in transarterial embolization treatment planning.
Collapse
Affiliation(s)
- Amirtahà Taebi
- Department of Biomedical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA
| | - Rex M. Pillai
- Department of Radiology, University of California Davis, 4860 Y Street, Suite 3100, Sacramento, CA 95817, USA; (R.M.P.); (C.T.V.)
| | | | - Catherine T. Vu
- Department of Radiology, University of California Davis, 4860 Y Street, Suite 3100, Sacramento, CA 95817, USA; (R.M.P.); (C.T.V.)
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA
| |
Collapse
|
19
|
Mirzaei E, Farahmand M, Kung E. An algorithm for coupling multibranch in vitro experiment to numerical physiology simulation for a hybrid cardiovascular model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3289. [PMID: 31816194 DOI: 10.1002/cnm.3289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The hybrid cardiovascular modeling approach integrates an in vitro experiment with a computational lumped-parameter simulation, enabling direct physical testing of medical devices in the context of closed-loop physiology. The interface between the in vitro and computational domains is essential for properly capturing the dynamic interactions of the two. To this end, we developed an iterative algorithm capable of coupling an in vitro experiment containing multiple branches to a lumped-parameter physiology simulation. This algorithm identifies the unique flow waveform solution for each branch of the experiment using an iterative Broyden's approach. For the purpose of algorithm testing, we first used mathematical surrogates to represent the in vitro experiments and demonstrated five scenarios where the in vitro surrogates are coupled to the computational physiology of a Fontan patient. This testing approach allows validation of the coupling result accuracy as the mathematical surrogates can be directly integrated into the computational simulation to obtain the "true solution" of the coupled system. Our algorithm successfully identified the solution flow waveforms in all test scenarios with results matching the true solutions with high accuracy. In all test cases, the number of iterations to achieve the desired convergence criteria was less than 130. To emulate realistic in vitro experiments in which noise contaminates the measurements, we perturbed the surrogate models by adding random noise. The convergence tolerance achievable with the coupling algorithm remained below the magnitudes of the added noise in all cases. Finally, we used this algorithm to couple a physical experiment to the computational physiology model to demonstrate its real-world applicability.
Collapse
Affiliation(s)
- Ehsan Mirzaei
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA
| | - Masoud Farahmand
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA
| | - Ethan Kung
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
20
|
Abstract
Knowledge of physiologic hemodynamics is a fundamental requirement to establish pathological findings. However, little is known about the normal flow fields in the pulmonary arteries, especially for children. The purpose of this study is to characterize flow patterns in the pulmonary artery bifurcation of healthy pediatric subjects using direct numerical simulations. A realistic geometry is obtained via statistical shape modeling, by averaging five subject-specific digital models extracted from cardiovascular magnetic resonance datasets of healthy volunteers. Boundary conditions are assigned to mimic physiological conditions at rest, corresponding to a peak Reynolds number equal to 3400 and a Womersley number equal to 15. Results show that the normal bifurcation is highly hemodynamically efficient, as measured by an energy dissipation index. The curvature of the pulmonary arteries is sufficiently small to prevent flow separation along the inner walls, and no signs of a turbulent-like state are found. In line with previous imaging studies, a helical structure protruding into the right pulmonary artery is detected, and its formation mechanism is elucidated in the paper. These findings might help to identify abnormal flow features in patients with altered anatomic and physiologic states, particularly those with repaired congenital heart disease.
Collapse
|
21
|
Pewowaruk R, Roldán-Alzate A. 4D Flow MRI Estimation of Boundary Conditions for Patient Specific Cardiovascular Simulation. Ann Biomed Eng 2019; 47:1786-1798. [PMID: 31069584 DOI: 10.1007/s10439-019-02285-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
Accurate image based cardiovascular simulations require patient specific boundary conditions (BCs) for inlets, outlets and vessel wall mechanical properties. While inlet BCs are typically determined non-invasively, invasive pressure catheterization is often used to determine patient specific outlet BCs and vessel wall mechanical properties. A method using 4D Flow MRI to non-invasively determine both patient specific outlet BCs and vessel wall mechanical properties is presented and results for both in vitro validation with a latex tube and an in vivo pulmonary artery stenosis (PAS) stent intervention are presented. For in vitro validation, acceptable agreement is found between simulation using BCs from 4D Flow MRI and benchtop measurements. For the PAS virtual intervention, simulation correctly predicts flow distribution with 9% error compared to MRI. Using 4D Flow MRI to noninvasively determine patient specific BCs increases the ability to use image based simulations as pressure catheterization is not always performed.
Collapse
Affiliation(s)
- Ryan Pewowaruk
- Biomedical Engineering, University of Wisconsin - Madison, 1111 Highland Ave, Room 2476 WIMR 2, Madison, WI, 53705, USA
| | - Alejandro Roldán-Alzate
- Biomedical Engineering, University of Wisconsin - Madison, 1111 Highland Ave, Room 2476 WIMR 2, Madison, WI, 53705, USA. .,Mechanical Engineering, University of Wisconsin - Madison, 1111 Highland Ave, Room 2476 WIMR 2, Madison, WI, 53705, USA. .,Department of Radiology, University of Wisconsin - Madison, 1111 Highland Ave, Room 2476 WIMR 2, Madison, WI, 53705, USA.
| |
Collapse
|
22
|
Kung E, Farahmand M, Gupta A. A Hybrid Experimental-Computational Modeling Framework for Cardiovascular Device Testing. J Biomech Eng 2019; 141:051012. [PMID: 30698632 DOI: 10.1115/1.4042665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 11/08/2022]
Abstract
Significant advances in biomedical science often leverage powerful computational and experimental modeling platforms. We present a framework named physiology simulation coupled experiment ("PSCOPE") that can capitalize on the strengths of both types of platforms in a single hybrid model. PSCOPE uses an iterative method to couple an in vitro mock circuit to a lumped-parameter numerical simulation of physiology, obtaining closed-loop feedback between the two. We first compared the results of Fontan graft obstruction scenarios modeled using both PSCOPE and an established multiscale computational fluid dynamics method; the normalized root-mean-square error values of important physiologic parameters were between 0.1% and 2.1%, confirming the fidelity of the PSCOPE framework. Next, we demonstrate an example application of PSCOPE to model a scenario beyond the current capabilities of multiscale computational methods-the implantation of a Jarvik 2000 blood pump for cavopulmonary support in the single-ventricle circulation; we found that the commercial Jarvik 2000 controller can be modified to produce a suitable rotor speed for augmenting cardiac output by approximately 20% while maintaining blood pressures within safe ranges. The unified modeling framework enables a testing environment which simultaneously operates a medical device and performs computational simulations of the resulting physiology, providing a tool for physically testing medical devices with simulated physiologic feedback.
Collapse
Affiliation(s)
- Ethan Kung
- Department of Mechanical Engineering,Clemson University,Clemson, SC 29634
- Department of Bioengineering,Clemson University,Clemson, SC 29634e-mail:
| | - Masoud Farahmand
- Department of Mechanical Engineering,Clemson University,Clemson, SC 29634e-mail:
| | - Akash Gupta
- Department of Mechanical Engineering,Clemson University,Clemson, SC 29634e-mail:
| |
Collapse
|
23
|
Capuano F, Loke YH, Cronin I, Olivieri LJ, Balaras E. Computational Study of Pulmonary Flow Patterns After Repair of Transposition of Great Arteries. J Biomech Eng 2019; 141:2727821. [DOI: 10.1115/1.4043034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 11/08/2022]
Abstract
Patients that undergo the arterial switch operation (ASO) to repair transposition of great arteries (TGA) can develop abnormal pulmonary trunk morphology with significant long-term complications. In this study, cardiovascular magnetic resonance was combined with computational fluid dynamics to investigate the impact of the postoperative layout on the pulmonary flow patterns. Three ASO patients were analyzed and compared to a volunteer control. Results showed the presence of anomalous shear layer instabilities, vortical and helical structures, and turbulent-like states in all patients, particularly as a consequence of the unnatural curvature of the pulmonary bifurcation. Streamlined, mostly laminar flow was instead found in the healthy subject. These findings shed light on the correlation between the post-ASO anatomy and the presence of altered flow features, and may be useful to improve surgical planning as well as the long-term care of TGA patients.
Collapse
Affiliation(s)
- Francesco Capuano
- Department of Industrial Engineering, Università di Napoli Federico II, Napoli 80125, Italy e-mail:
| | - Yue-Hin Loke
- Division of Cardiology, Children's National Health System, Washington, DC 20010 e-mail:
| | - Ileen Cronin
- Division of Cardiology, Children's National Health System, Washington, DC 20010 e-mail:
| | - Laura J. Olivieri
- Division of Cardiology, The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC 20010 e-mail:
| | - Elias Balaras
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052 e-mail:
| |
Collapse
|
24
|
Reliability and Accuracy of Peri-Interventional Stenosis Grading in Peripheral Artery Disease Using Color-Coded Quantitative Fluoroscopy: A Phantom Study Comparing a Clinical and Scientific Postprocessing Software. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6180138. [PMID: 30140698 PMCID: PMC6081527 DOI: 10.1155/2018/6180138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 11/17/2022]
Abstract
Purpose To assess quantitative stenosis grading by color-coded fluoroscopy using an in vitro pulsatile flow phantom. Methods Three different stenotic tubes (80%, 60%, and 40% diameter restriction) and a nonstenotic reference tube were compared regarding their different flow behavior by using contrast-enhanced fluoroscopy with a flat-detector system for visualisation purposes. Time-density curves (TDC), area under the curve (AUC), time-to-peak (TTP), and different ROI sizes were analyzed in three independent measurements using two different postprocessing software solutions. In addition, exemplary TDCs of a patient with a high-grade stenosis before and after stent angioplasty were acquired. Results Color-coded fluoroscopy enabled depiction of differences in AUC and TDC between high-grade (80%), middle (60%), low-grade (40%), and nonstenotic tubes. The best correlation between high-, middle-, and low-grade stenosis was appreciated in ROIs behind the stenosis. This effect was enhanced by using longer integration times (5s, 7s) and a maximum frame rate of image acquisition for analysis (correlation coefficient rho=0.9284 at 5s). TTP showed no significant differences between high- and low-grade stenosis. Conclusions Various clinical studies in the literature already demonstrated reproducible and reliable stenosis grading by analyzing TDCs acquired with color-coded fluoroscopy. In contrast to TTP, AUC values derived in ROIs behind the stenosis proved to be reliable parameters for stenosis grading. However, our results also demonstrate that several factors are able to significantly impact the evaluation of AUC values. More precisely, accuracy of acquired AUC values can be improved by choosing longer integration times, a large ROI size adapted to the vessel diameter, and a higher frame rate of image acquisition.
Collapse
|
25
|
Anwar S, Singh GK, Miller J, Sharma M, Manning P, Billadello JJ, Eghtesady P, Woodard PK. 3D Printing is a Transformative Technology in Congenital Heart Disease. JACC Basic Transl Sci 2018; 3:294-312. [PMID: 30062215 PMCID: PMC6059001 DOI: 10.1016/j.jacbts.2017.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 12/26/2022]
Abstract
Survival in congenital heart disease has steadily improved since 1938, when Dr. Robert Gross successfully ligated for the first time a patent ductus arteriosus in a 7-year-old child. To continue the gains made over the past 80 years, transformative changes with broad impact are needed in management of congenital heart disease. Three-dimensional printing is an emerging technology that is fundamentally affecting patient care, research, trainee education, and interactions among medical teams, patients, and caregivers. This paper first reviews key clinical cases where the technology has affected patient care. It then discusses 3-dimensional printing in trainee education. Thereafter, the role of this technology in communication with multidisciplinary teams, patients, and caregivers is described. Finally, the paper reviews translational technologies on the horizon that promise to take this nascent field even further.
Collapse
Key Words
- 3D printing
- 3D, three-dimensional
- ACHD, adults with congenital heart disease
- APC, aortopulmonary collaterals
- ASD, atrial septal defect
- CHD, congenital heart disease
- CT, computed tomography
- DORV, double outlet right ventricle
- MAPCAs, multiple aortopulmonary collaterals
- MRI, magnetic resonance imaging
- OR, operating room
- VSD, ventricular septal defect
- cardiac imaging
- cardiothoracic surgery
- congenital heart disease
- simulation
Collapse
Affiliation(s)
- Shafkat Anwar
- Division of Cardiology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Gautam K. Singh
- Division of Cardiology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Jacob Miller
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Monica Sharma
- Division of Cardiology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Peter Manning
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph J. Billadello
- Division of Cardiovascular Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Pirooz Eghtesady
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Pamela K. Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
26
|
Image-based computational assessment of vascular wall mechanics and hemodynamics in pulmonary arterial hypertension patients. J Biomech 2017; 68:84-92. [PMID: 29310945 DOI: 10.1016/j.jbiomech.2017.12.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/30/2017] [Accepted: 12/17/2017] [Indexed: 11/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by an elevated pulmonary arterial (PA) pressure. While several computational hemodynamic models of the pulmonary vasculature have been developed to understand PAH, they are lacking in some aspects, such as the vessel wall deformation and its lack of calibration against measurements in humans. Here, we describe a computational modeling framework that addresses these limitations. Specifically, computational models describing the coupling of hemodynamics and vessel wall mechanics in the pulmonary vasculature of a PAH patient and a normal subject were developed. Model parameters, consisting of linearized stiffness E of the large vessels and Windkessel parameters for each outflow branch, were calibrated against in vivo measurements of pressure, flow and vessel wall deformation obtained, respectively, from right-heart catheterization, phase-contrast and cine magnetic resonance images. Calibrated stiffness E of the proximal PA was 2.0 and 0.5 MPa for the PAH and normal models, respectively. Calibrated total compliance CT and resistance RT of the distal vessels were, respectively, 0.32 ml/mmHg and 11.3 mmHg∗min/l for the PAH model, and 2.93 ml/mmHg and 2.6 mmHg∗min/l for the normal model. These results were consistent with previous findings that the pulmonary vasculature is stiffer with more constricted distal vessels in PAH patients. Individual effects on PA pressure due to remodeling of the distal and proximal compartments of the pulmonary vasculature were also investigated in a sensitivity analysis. The analysis suggests that the remodeling of distal vasculature contributes more to the increase in PA pressure than the remodeling of proximal vasculature.
Collapse
|
27
|
Alastruey J, Xiao N, Fok H, Schaeffter T, Figueroa CA. On the impact of modelling assumptions in multi-scale, subject-specific models of aortic haemodynamics. J R Soc Interface 2017; 13:rsif.2016.0073. [PMID: 27307511 PMCID: PMC4938079 DOI: 10.1098/rsif.2016.0073] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/23/2016] [Indexed: 11/22/2022] Open
Abstract
Simulation of haemodynamics has become increasingly popular within the research community. Irrespective of the modelling approach (zero-dimensional (0D), one-dimensional (1D) or three-dimensional (3D)), in vivo measurements are required to personalize the arterial geometry, material properties and boundary conditions of the computational model. Limitations in in vivo data acquisition often result in insufficient information to determine all model parameters and, hence, arbitrary modelling assumptions. Our goal was to minimize and understand the impact of modelling assumptions on the simulated blood pressure, flow and luminal area waveforms by studying a small region of the systemic vasculature—the upper aorta—and acquiring a rich array of non-invasive magnetic resonance imaging and tonometry data from a young healthy volunteer. We first investigated the effect of different modelling assumptions for boundary conditions and material parameters in a 1D/0D simulation framework. Strategies were implemented to mitigate the impact of inconsistencies in the in vivo data. Average relative errors smaller than 7% were achieved between simulated and in vivo waveforms. Similar results were obtained in a 3D/0D simulation framework using the same inflow and outflow boundary conditions and consistent geometrical and mechanical properties. We demonstrated that accurate subject-specific 1D/0D and 3D/0D models of aortic haemodynamics can be obtained using non-invasive clinical data while minimizing the number of arbitrary modelling decisions.
Collapse
Affiliation(s)
- Jordi Alastruey
- Department of Biomedical Engineering, King's College London, St Thomas' Hospital, London, UK
| | - Nan Xiao
- Department of Biomedical Engineering, King's College London, St Thomas' Hospital, London, UK
| | - Henry Fok
- Department of Clinical Pharmacology, King's College London, St Thomas' Hospital, London, UK
| | - Tobias Schaeffter
- Department of Biomedical Engineering, King's College London, St Thomas' Hospital, London, UK
| | - C Alberto Figueroa
- Department of Biomedical Engineering, King's College London, St Thomas' Hospital, London, UK Department of Bioengineering and Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Hariharan P, D’Souza GA, Horner M, Morrison TM, Malinauskas RA, Myers MR. Use of the FDA nozzle model to illustrate validation techniques in computational fluid dynamics (CFD) simulations. PLoS One 2017; 12:e0178749. [PMID: 28594889 PMCID: PMC5464577 DOI: 10.1371/journal.pone.0178749] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/18/2017] [Indexed: 12/14/2022] Open
Abstract
A "credible" computational fluid dynamics (CFD) model has the potential to provide a meaningful evaluation of safety in medical devices. One major challenge in establishing "model credibility" is to determine the required degree of similarity between the model and experimental results for the model to be considered sufficiently validated. This study proposes a "threshold-based" validation approach that provides a well-defined acceptance criteria, which is a function of how close the simulation and experimental results are to the safety threshold, for establishing the model validity. The validation criteria developed following the threshold approach is not only a function of Comparison Error, E (which is the difference between experiments and simulations) but also takes in to account the risk to patient safety because of E. The method is applicable for scenarios in which a safety threshold can be clearly defined (e.g., the viscous shear-stress threshold for hemolysis in blood contacting devices). The applicability of the new validation approach was tested on the FDA nozzle geometry. The context of use (COU) was to evaluate if the instantaneous viscous shear stress in the nozzle geometry at Reynolds numbers (Re) of 3500 and 6500 was below the commonly accepted threshold for hemolysis. The CFD results ("S") of velocity and viscous shear stress were compared with inter-laboratory experimental measurements ("D"). The uncertainties in the CFD and experimental results due to input parameter uncertainties were quantified following the ASME V&V 20 standard. The CFD models for both Re = 3500 and 6500 could not be sufficiently validated by performing a direct comparison between CFD and experimental results using the Student's t-test. However, following the threshold-based approach, a Student's t-test comparing |S-D| and |Threshold-S| showed that relative to the threshold, the CFD and experimental datasets for Re = 3500 were statistically similar and the model could be considered sufficiently validated for the COU. However, for Re = 6500, at certain locations where the shear stress is close the hemolysis threshold, the CFD model could not be considered sufficiently validated for the COU. Our analysis showed that the model could be sufficiently validated either by reducing the uncertainties in experiments, simulations, and the threshold or by increasing the sample size for the experiments and simulations. The threshold approach can be applied to all types of computational models and provides an objective way of determining model credibility and for evaluating medical devices.
Collapse
Affiliation(s)
- Prasanna Hariharan
- US Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Gavin A. D’Souza
- US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Marc Horner
- ANSYS, Inc., Evanston, Illinois, United States of America
| | - Tina M. Morrison
- US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | | | - Matthew R. Myers
- US Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
29
|
Raptis A, Xenos M, Georgakarakos E, Kouvelos G, Giannoukas A, Matsagkas M. Hemodynamic Profile of Two Aortic Endografts Accounting for Their Postimplantation Position. J Med Device 2017. [DOI: 10.1115/1.4035687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Endovascular aneurysm repair (EVAR) is a clinically effective technique for treating anatomically eligible abdominal aortic aneurysms (AAAs), involving the deployment of an endograft (EG) that is designed to prevent blood leakage in the aneurysmal sac. While most EGs have equivalent operating principles, the hemodynamic environment established by different EGs is not necessarily the same. So, to unveil the post-EVAR hemodynamic properties, we need an EG-specific computational approach that currently lacks from the literature. Endurant and Excluder are two EGs with similar pre-installation designs. We assumed that the flow conditions in the particular EGs do not vary significantly. The hypothesis was tested combining image reconstructions, computational fluid dynamics (CFD), and statistics, taking into account the postimplantation position of the EGs. Ten patients with Endurant EGs and ten patients with Excluder EGs were included in this study. The two groups were matched with respect to the preoperative morphological characteristics of the AAAs. The EG models are derived from image reconstructions of postoperative computed tomography scans. Wall shear stress (WSS), displacement force, velocity, and helicity were calculated in regions of interest within the EG structures, i.e., the main body, the upper and lower part of the limbs. Excluder generated higher WSS compared to Endurant, especially on the lower part of the limbs (p = 0.001). Spatial fluctuations of WSS were observed on the upper part of the Excluder limbs. Higher blood velocity was induced by Excluder in all the regions of interest (p = 0.04, p = 0.01, and p = 0.004). Focal points of secondary flow were detected in the main body of Endurant and the limbs of Excluder. The displacement force acting on the lower part of the Excluder limbs was stronger compared to the Endurant one (p = 0.03). The results showed that two similar EGs implanted in similar AAAs can induce significantly different flow properties. The delineation of the hemodynamic features associated with the various commercially available EGs could further promote the personalization of treatment offered to aneurysmal patients and inspire ideas for the improvement of EG designs in the future.
Collapse
Affiliation(s)
- Anastasios Raptis
- Cardiovascular Surgery Department, Sector of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45500, Greece
- Laboratory for Vascular Simulations, Institute of Vascular Diseases, Ioannina 45500, Greece e-mails:
| | - Michalis Xenos
- Department of Mathematics, University of Ioannina, Ioannina 45500, Greece
- Laboratory for Vascular Simulations, Institute of Vascular Diseases, Ioannina 45500, Greece e-mail:
| | - Efstratios Georgakarakos
- Department of Vascular Surgery, “Democritus” Medical School, University Hospital of Alexandroupolis, Alexandroupolis 68100, Greece e-mail:
| | - George Kouvelos
- Department of Vascular Surgery, Faculty of Medicine, University of Thessaly, Larissa 41334, Greece e-mail:
| | - Athanasios Giannoukas
- Department of Vascular Surgery, Faculty of Medicine, University of Thessaly, Larissa 41334, Greece
- Laboratory for Vascular Simulations, Institute of Vascular Diseases, Ioannina 45500, Greece e-mail:
| | - Miltiadis Matsagkas
- Department of Vascular Surgery, Faculty of Medicine, University of Thessaly, Larissa 41334, Greece
- Laboratory for Vascular Simulations, Institute of Vascular Diseases, Ioannina 45500, Greece e-mails:
| |
Collapse
|
30
|
Sotelo J, Urbina J, Valverde I, Mura J, Tejos C, Irarrazaval P, Andia ME, Hurtado DE, Uribe S. Three-dimensional quantification of vorticity and helicity from 3D cine PC-MRI using finite-element interpolations. Magn Reson Med 2017; 79:541-553. [DOI: 10.1002/mrm.26687] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Julio Sotelo
- Biomedical Imaging Center; Pontificia Universidad Católica de Chile; Santiago Chile
- Department of Electrical Engineering; Pontificia Universidad Católica de Chile; Santiago Chile
- Department of Structural and Geotechnical Engineering; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Jesús Urbina
- Biomedical Imaging Center; Pontificia Universidad Católica de Chile; Santiago Chile
- Department of Radiology; School of Medicine, Pontificia Universidad Católica de Chile; Santiago Chile
| | - Israel Valverde
- Pediatric Cardiology Unit; Hospital Virgen del Rocio; Sevilla Spain
- Cardiovascular Pathology Unit; Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio; Sevilla Spain
| | - Joaquín Mura
- Biomedical Imaging Center; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Cristián Tejos
- Biomedical Imaging Center; Pontificia Universidad Católica de Chile; Santiago Chile
- Department of Electrical Engineering; Pontificia Universidad Católica de Chile; Santiago Chile
- Institute for Biological and Medical Engineering; Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile; Santaigo Chile
| | - Pablo Irarrazaval
- Biomedical Imaging Center; Pontificia Universidad Católica de Chile; Santiago Chile
- Department of Electrical Engineering; Pontificia Universidad Católica de Chile; Santiago Chile
- Institute for Biological and Medical Engineering; Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile; Santaigo Chile
| | - Marcelo E. Andia
- Biomedical Imaging Center; Pontificia Universidad Católica de Chile; Santiago Chile
- Department of Radiology; School of Medicine, Pontificia Universidad Católica de Chile; Santiago Chile
- Institute for Biological and Medical Engineering; Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile; Santaigo Chile
| | - Daniel E. Hurtado
- Department of Structural and Geotechnical Engineering; Pontificia Universidad Católica de Chile; Santiago Chile
- Institute for Biological and Medical Engineering; Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile; Santaigo Chile
| | - Sergio Uribe
- Biomedical Imaging Center; Pontificia Universidad Católica de Chile; Santiago Chile
- Department of Radiology; School of Medicine, Pontificia Universidad Católica de Chile; Santiago Chile
- Institute for Biological and Medical Engineering; Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile; Santaigo Chile
| |
Collapse
|
31
|
Docherty P, Geoghegan P, Huetter L, Jermy M, Sellier M. Regressive cross-correlation of pressure signals in the region of stenosis: Insights from particle image velocimetry experimentation. Biomed Signal Process Control 2017. [DOI: 10.1016/j.bspc.2016.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden SC. SimVascular: An Open Source Pipeline for Cardiovascular Simulation. Ann Biomed Eng 2016; 45:525-541. [PMID: 27933407 DOI: 10.1007/s10439-016-1762-8] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/10/2016] [Indexed: 12/19/2022]
Abstract
Patient-specific cardiovascular simulation has become a paradigm in cardiovascular research and is emerging as a powerful tool in basic, translational and clinical research. In this paper we discuss the recent development of a fully open-source SimVascular software package, which provides a complete pipeline from medical image data segmentation to patient-specific blood flow simulation and analysis. This package serves as a research tool for cardiovascular modeling and simulation, and has contributed to numerous advances in personalized medicine, surgical planning and medical device design. The SimVascular software has recently been refactored and expanded to enhance functionality, usability, efficiency and accuracy of image-based patient-specific modeling tools. Moreover, SimVascular previously required several licensed components that hindered new user adoption and code management and our recent developments have replaced these commercial components to create a fully open source pipeline. These developments foster advances in cardiovascular modeling research, increased collaboration, standardization of methods, and a growing developer community.
Collapse
Affiliation(s)
- Adam Updegrove
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Nathan M Wilson
- Open Source Medical Software Corporation, Santa Monica, CA, USA
| | - Jameson Merkow
- Department of Electrical and Computer Engineering, University of California, San Diego, CA, USA
| | - Hongzhi Lan
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
| | - Alison L Marsden
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA.,Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Shawn C Shadden
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA. .,University of California, Berkeley, CA, 94720-1740, USA.
| |
Collapse
|
33
|
Ramachandra AB, Kahn AM, Marsden AL. Patient-Specific Simulations Reveal Significant Differences in Mechanical Stimuli in Venous and Arterial Coronary Grafts. J Cardiovasc Transl Res 2016; 9:279-90. [PMID: 27447176 DOI: 10.1007/s12265-016-9706-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/04/2016] [Indexed: 01/17/2023]
Abstract
Mechanical stimuli are key to understanding disease progression and clinically observed differences in failure rates between arterial and venous grafts following coronary artery bypass graft surgery. We quantify biologically relevant mechanical stimuli, not available from standard imaging, in patient-specific simulations incorporating non-invasive clinical data. We couple CFD with closed-loop circulatory physiology models to quantify biologically relevant indices, including wall shear, oscillatory shear, and wall strain. We account for vessel-specific material properties in simulating vessel wall deformation. Wall shear was significantly lower (p = 0.014*) and atheroprone area significantly higher (p = 0.040*) in venous compared to arterial grafts. Wall strain in venous grafts was significantly lower (p = 0.003*) than in arterial grafts while no significant difference was observed in oscillatory shear index. Simulations demonstrate significant differences in mechanical stimuli acting on venous vs. arterial grafts, in line with clinically observed graft failure rates, offering a promising avenue for stratifying patients at risk for graft failure.
Collapse
Affiliation(s)
- Abhay B Ramachandra
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Departments of Pediatrics and Bioengineering, Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Andrew M Kahn
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alison L Marsden
- Departments of Pediatrics and Bioengineering, Institute for Computational and Mathematical Engineering, Stanford University, Clark Center E100B 318 Campus Drive, Stanford,, CA, 94305-5428, USA.
| |
Collapse
|
34
|
GEOGHEGAN PATRICKH, JERMY MARKC, NOBES DAVIDS. A PIV COMPARISON OF THE FLOW FIELD AND WALL SHEAR STRESS IN RIGID AND COMPLIANT MODELS OF HEALTHY CAROTID ARTERIES. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519417500415] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Certain systems relevant to circulatory disease have walls which are neither rigid nor static, for example, the coronary arteries, the carotid artery and the heart chambers. In vitro modeling allows the fluid mechanics of the circulatory system to be studied without the ethical and safety issues associated with animal and human experiments. Computational methods in which the equations are coupled governing the flow and the elastic walls are maturing. Currently there is a lack of experimental data in compliant arterial systems to validate the numerical predictions. Previous experimental work has commonly used rigid wall boundaries, ignoring the effect of wall compliance. Particle Image Velocimetry is used to provide a direct comparison of both the flow field and wall shear stress (WSS) observed in experimental phantoms of rigid and compliant geometries representing an idealized common carotid artery. The input flow waveform and the mechanical response of the phantom are physiologically realistic. The results show that compliance affects the velocity profile within the artery. A rigid boundary causes severe overestimation of the peak WSS with a maximum relative difference of 61% occurring; showing compliance protects the artery from exposure to high magnitude WSS. This is important when trying to understand the development of diseases like atherosclerosis. The maximum, minimum and time averaged WSS in the rigid geometry was 2.3, 0.51 and 1.03[Formula: see text]Pa and in the compliant geometry 1.4, 0.58 and 0.84[Formula: see text]Pa, respectively.
Collapse
Affiliation(s)
- PATRICK H. GEOGHEGAN
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - MARK C. JERMY
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - DAVID S. NOBES
- Department of Mechanical Engineering, University of Alberta, 4-31B Mechanical Engineering Building, Edmonton, AB, T6G 2G8, Canada
| |
Collapse
|
35
|
Plourde BD, Vallez LJ, Sun B, Nelson-Cheeseman BB, Abraham JP, Staniloae CS. Alterations of Blood Flow Through Arteries Following Atherectomy and the Impact on Pressure Variation and Velocity. Cardiovasc Eng Technol 2016; 7:280-9. [DOI: 10.1007/s13239-016-0269-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
|
36
|
A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models. Cardiovasc Eng Technol 2016; 7:148-58. [PMID: 26983961 DOI: 10.1007/s13239-016-0260-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
Abstract
Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost.
Collapse
|
37
|
BATTISTA CHRISTINA, BIA DANIEL, GERMÁN YANINAZÓCALO, ARMENTANO RICARDOL, HAIDER MANSOORA, OLUFSEN METTES. WAVE PROPAGATION IN A 1D FLUID DYNAMICS MODEL USING PRESSURE-AREA MEASUREMENTS FROM OVINE ARTERIES. J MECH MED BIOL 2016. [DOI: 10.1142/s021951941650007x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study considers a 1D fluid dynamics arterial network model with 14 vessels developed to assimilate ex vivo 0D temporal data for pressure-area dynamics in individual vessel segments from 11 male Merino sheep. A 0D model was used to estimate vessel wall parameters in a two-parameter elastic model and a four-parameter Kelvin viscoelastic model. This was done using nonlinear optimization minimizing the least squares error between model predictions and measured cross-sectional areas. Subsequently, estimated values for elastic stiffness and unstressed area were related to construct a nonlinear relationship. This relation was used in the network model. A 1D single vessel model of the aorta was then developed and used to estimate the inflow profile and parameters for total resistance and compliance for the downstream network and to demonstrate effects of incorporating viscoelasticity in the arterial wall. Lastly, the extent to which vessel wall parameters estimated from ex vivo data can be used to realistically simulate pressure and area in a vessel network was evaluated. Elastic wall parameters in the network simulations were found to yield pressure-area relationships across all vessel locations and sheep that were in ranges comparable to those in the ex vivo data.
Collapse
Affiliation(s)
- CHRISTINA BATTISTA
- Department of Mathematics, North Carolina State University, 2311 Stinson Drive Raleigh, North Carolina 27695, USA
| | - DANIEL BIA
- Department of Physiology, Universidad de la Republica, Montevideo, Uruguay
| | | | | | - MANSOOR A. HAIDER
- Department of Mathematics, North Carolina State University, 2311 Stinson Drive Raleigh, North Carolina 27695, USA
| | - METTE S. OLUFSEN
- Department of Mathematics, North Carolina State University, 2311 Stinson Drive Raleigh, North Carolina 27695, USA
| |
Collapse
|
38
|
Nauta FJH, Conti M, Kamman AV, van Bogerijen GHW, Tolenaar JL, Auricchio F, Figueroa CA, van Herwaarden JA, Moll FL, Trimarchi S. Biomechanical Changes After Thoracic Endovascular Aortic Repair in Type B Dissection. J Endovasc Ther 2015; 22:918-33. [DOI: 10.1177/1526602815608848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thoracic endovascular aortic repair (TEVAR) has evolved into an established treatment option for type B aortic dissection (TBAD) since it was first introduced 2 decades ago. Morbidity and mortality have decreased due to the minimally invasive character of TEVAR, with adequate stabilization of the dissection, restoration of true lumen perfusion, and subsequent positive aortic remodeling. However, several studies have reported severe setbacks of this technique. Indeed, little is known about the biomechanical behavior of implanted thoracic stent-grafts and the impact on the vascular system. This study sought to systematically review the performance and behavior of implanted thoracic stent-grafts and related biomechanical aortic changes in TBAD patients in order to update current knowledge and future perspectives.
Collapse
Affiliation(s)
- Foeke J. H. Nauta
- Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Italy
- Departments of Surgery and Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Vascular Surgery, University Medical Center Utrecht, the Netherlands
| | - Michele Conti
- Department of Civil Engineering and Architecture, University of Pavia, Italy
| | - Arnoud V. Kamman
- Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Italy
- Departments of Surgery and Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Vascular Surgery, University Medical Center Utrecht, the Netherlands
| | | | - Jip L. Tolenaar
- Department of General Surgery, St. Antonius Hospital, Nieuwegein, the Netherlands
| | | | - C. Alberto Figueroa
- Departments of Surgery and Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Frans L. Moll
- Department of Vascular Surgery, University Medical Center Utrecht, the Netherlands
| | - Santi Trimarchi
- Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Italy
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Recent methodological advances in computational simulations are enabling increasingly realistic simulations of hemodynamics and physiology, driving increased clinical utility. We review recent developments in the use of computational simulations in pediatric and congenital heart disease, describe the clinical impact in modeling in single-ventricle patients, and provide an overview of emerging areas. RECENT FINDINGS Multiscale modeling combining patient-specific hemodynamics with reduced order (i.e., mathematically and computationally simplified) circulatory models has become the de-facto standard for modeling local hemodynamics and 'global' circulatory physiology. We review recent advances that have enabled faster solutions, discuss new methods (e.g., fluid structure interaction and uncertainty quantification), which lend realism both computationally and clinically to results, highlight novel computationally derived surgical methods for single-ventricle patients, and discuss areas in which modeling has begun to exert its influence including Kawasaki disease, fetal circulation, tetralogy of Fallot (and pulmonary tree), and circulatory support. SUMMARY Computational modeling is emerging as a crucial tool for clinical decision-making and evaluation of novel surgical methods and interventions in pediatric cardiology and beyond. Continued development of modeling methods, with an eye towards clinical needs, will enable clinical adoption in a wide range of pediatric and congenital heart diseases.
Collapse
|
40
|
Siogkas PK, Papafaklis MI, Sakellarios AI, Stefanou KA, Bourantas CV, Athanasiou LM, Bellos CV, Exarchos TP, Naka KK, Michalis LK, Parodi O, Fotiadis DI. Computational assessment of the fractional flow reserve from intravascular ultrasound and coronary angiography data: a pilot study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:3885-8. [PMID: 24110580 DOI: 10.1109/embc.2013.6610393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cardiovascular disease is one of the primary causes of morbidity and mortality around the globe. Thus, the diagnosis of critical lesions in coronary arteries is of utmost importance in clinical practice. One useful and efficient method to assess the functional severity of one or multiple lesions in a coronary artery is the calculation of the fractional flow reserve (FFR). In the current work, we present a method which allows the calculation of the FFR value computationally, without the use of a pressure wire and the induction of hyperemia, using intravascular ultrasound (IVUS) and biplane angiography images for three-dimensional (3D) coronary artery reconstruction and measurements of the volumetric flow rate derived from angiographic sequences. The simulated FFR values were compared to the invasively measured FFR values in 7 cases, presenting high correlation (r=0.85) and good agreement (mean difference=0.002). FFR assessment without employing a pressure wire and the induction of hyperemia is feasible using 3D reconstructed coronary artery models from angiographic and IVUS data coupled with computational fluid dynamics.
Collapse
|
41
|
Okafor IU, Santhanakrishnan A, Chaffins BD, Mirabella L, Oshinski JN, Yoganathan AP. Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics. J Cardiovasc Magn Reson 2015; 17:51. [PMID: 26112155 PMCID: PMC4482204 DOI: 10.1186/s12968-015-0154-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 06/10/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The development of clinically applicable fluid-structure interaction (FSI) models of the left heart is inherently challenging when using in vivo cardiovascular magnetic resonance (CMR) data for validation, due to the lack of a well-controlled system where detailed measurements of the ventricular wall motion and flow field are available a priori. The purpose of this study was to (a) develop a clinically relevant, CMR-compatible left heart physical model; and (b) compare the left ventricular (LV) volume reconstructions and hemodynamic data obtained using CMR to laboratory-based experimental modalities. METHODS The LV was constructed from optically clear flexible silicone rubber. The geometry was based off a healthy patient's LV geometry during peak systole. The LV phantom was attached to a left heart simulator consisting of an aorta, atrium, and systemic resistance and compliance elements. Experiments were conducted for heart rate of 70 bpm. Wall motion measurements were obtained using high speed stereo-photogrammetry (SP) and cine-CMR, while flow field measurements were obtained using digital particle image velocimetry (DPIV) and phase-contrast magnetic resonance (PC-CMR). RESULTS The model reproduced physiologically accurate hemodynamics (aortic pressure = 120/80 mmHg; cardiac output = 3.5 L/min). DPIV and PC-CMR results of the center plane flow within the ventricle matched, both qualitatively and quantitatively, with flow from the atrium into the LV having a velocity of about 1.15 m/s for both modalities. The normalized LV volume through the cardiac cycle computed from CMR data matched closely to that from SP. The mean difference between CMR and SP was 5.5 ± 3.7%. CONCLUSIONS The model presented here can thus be used for the purposes of: (a) acquiring CMR data for validation of FSI simulations, (b) determining accuracy of cine-CMR reconstruction methods, and
Collapse
Affiliation(s)
- Ikechukwu U Okafor
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Arvind Santhanakrishnan
- School of Mechanical & Aerospace Engineering, Oklahoma State University, Stillwater, OK, USA.
| | - Brandon D Chaffins
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Lucia Mirabella
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - John N Oshinski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Ajit P Yoganathan
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
42
|
Patient-specific simulation of coronary artery pressure measurements: an in vivo three-dimensional validation study in humans. BIOMED RESEARCH INTERNATIONAL 2015; 2015:628416. [PMID: 25815328 PMCID: PMC4359837 DOI: 10.1155/2015/628416] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/10/2014] [Indexed: 02/04/2023]
Abstract
Pressure measurements using finite element computations without the need of a wire could be valuable in clinical practice. Our aim was to compare the computed distal coronary pressure values with the measured values using a pressure wire, while testing the effect of different boundary conditions for the simulation. Eight coronary arteries (lumen and outer vessel wall) from six patients were reconstructed in three-dimensional (3D) space using intravascular ultrasound and biplane angiographic images. Pressure values at the distal and proximal end of the vessel and flow velocity values at the distal end were acquired with the use of a combo pressure-flow wire. The 3D lumen and wall models were discretized into finite elements; fluid structure interaction (FSI) and rigid wall simulations were performed for one cardiac cycle both with pulsatile and steady flow in separate simulations. The results showed a high correlation between the measured and the computed coronary pressure values (coefficient of determination [r2] ranging between 0.8902 and 0.9961), while the less demanding simulations using steady flow and rigid walls resulted in very small relative error. Our study demonstrates that computational assessment of coronary pressure is feasible and seems to be accurate compared to the wire-based measurements.
Collapse
|
43
|
Siogkas PK, Sakellarios AI, Papafaklis MI, Stefanou KA, Athanasiou LM, Exarchos TP, Naka KK, Michalis LK, Fotiadis DI. Assessing the hemodynamic influence between multiple lesions in a realistic right coronary artery segment: A computational study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:5643-6. [PMID: 25571275 DOI: 10.1109/embc.2014.6944907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coronary artery disease is the primary cause of morbidity and mortality worldwide. Therefore, detailed assessment of lesions in the coronary vasculature is critical in current clinical practice. Fractional flow reserve (FFR) has been proven as an efficient method for assessing the hemodynamic severity of a coronary stenosis. However, functional assessment of a coronary segment with multiple stenoses (≥ 2) remains complex for guiding the strategy of percutaneous coronary intervention due to the hemodynamic interplay between adjacent stenoses. In this work, we created four 3-dimensional (3D) arterial models that derive from a healthy patient-specific right coronary artery segment. The initial healthy model was reconstructed using fusion of intravascular ultrasound (IVUS) and biplane angiographic patient data. The healthy 3D model presented a measured FFR value of 0.96 (pressure-wire) and a simulated FFR value of 0.98. We then created diseased models with two artificial sequential stenoses of 90% lumen area reduction or with the proximal and distal stenosis separately. We calculated the FFR value for each case: 0.65 for the case with the two stenoses, 0.73 for the case with the distal stenosis and 0.90 for the case with the proximal stenosis. This leads to the conclusion that although both stenoses had the same degree of lumen area stenosis, there was a large difference in hemodynamic severity, thereby indicating that angiographic lumen assessment by itself is often not adequate for accurate assessment of coronary lesions.
Collapse
|
44
|
Kung E, Kahn AM, Burns JC, Marsden A. In Vitro Validation of Patient-Specific Hemodynamic Simulations in Coronary Aneurysms Caused by Kawasaki Disease. Cardiovasc Eng Technol 2014; 5:189-201. [PMID: 25050140 DOI: 10.1007/s13239-014-0184-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To perform experimental validation of computational fluid dynamics (CFD) applied to patient specific coronary aneurysm anatomy of Kawasaki disease. We quantified hemodynamics in a patient-specific coronary artery aneurysm physical phantom under physiologic rest and exercise flow conditions. Using phase contrast MRI (PCMRI), we acquired 3-component flow velocity at two slice locations in the aneurysms. We then performed numerical simulations with the same geometry and inflow conditions, and performed qualitative and quantitative comparisons of velocities between experimental measurements and simulation results. We observed excellent qualitative agreement in flow pattern features. The quantitative spatially and temporally varying differences in velocity between PCMRI and CFD were proportional to the flow velocity. As a result, the percent discrepancy between simulation and experiment was relatively constant regardless of flow velocity variations. Through 1D and 2D quantitative comparisons, we found a 5-17% difference between measured and simulated velocities. Additional analysis assessed wall shear stress differences between deformable and rigid wall simulations. This study demonstrated that CFD produced good qualitative and quantitative predictions of velocities in a realistic coronary aneurysm anatomy under physiological flow conditions. The results provide insights on factors that may influence the level of agreement, and a set of in vitro experimental data that can be used by others to compare against CFD simulation results. The findings of this study increase confidence in the use of CFD for investigating hemodynamics in the specialized anatomy of coronary aneurysms. This provides a basis for future hemodynamics studies in patient-specific models of Kawasaki disease.
Collapse
Affiliation(s)
- Ethan Kung
- Mechanical and Aerospace Engineering Department, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA
| | - Andrew M Kahn
- Departments of Medicine and Pediatrics, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Jane C Burns
- Departments of Medicine and Pediatrics, University of California San Diego School of Medicine, San Diego, CA, USA ; Kawasaki Disease Research Center, Rady Children's Hospital, San Diego, CA, USA
| | - Alison Marsden
- Mechanical and Aerospace Engineering Department, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA
| |
Collapse
|
45
|
Thrombotic risk stratification using computational modeling in patients with coronary artery aneurysms following Kawasaki disease. Biomech Model Mechanobiol 2014; 13:1261-76. [PMID: 24722951 DOI: 10.1007/s10237-014-0570-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 03/05/2014] [Indexed: 12/17/2022]
Abstract
Kawasaki disease (KD) is the leading cause of acquired heart disease in children and can result in life-threatening coronary artery aneurysms in up to 25 % of patients. These aneurysms put patients at risk of thrombus formation, myocardial infarction, and sudden death. Clinicians must therefore decide which patients should be treated with anticoagulant medication, and/or surgical or percutaneous intervention. Current recommendations regarding initiation of anticoagulant therapy are based on anatomy alone with historical data suggesting that patients with aneurysms [Formula: see text]8 mm are at greatest risk of thrombosis. Given the multitude of variables that influence thrombus formation, we postulated that hemodynamic data derived from patient-specific simulations would more accurately predict risk of thrombosis than maximum diameter alone. Patient-specific blood flow simulations were performed on five KD patients with aneurysms and one KD patient with normal coronary arteries. Key hemodynamic and geometric parameters, including wall shear stress, particle residence time, and shape indices, were extracted from the models and simulations and compared with clinical outcomes. Preliminary fluid structure interaction simulations with radial expansion were performed, revealing modest differences in wall shear stress compared to the rigid wall case. Simulations provide compelling evidence that hemodynamic parameters may be a more accurate predictor of thrombotic risk than aneurysm diameter alone and motivate the need for follow-up studies with a larger cohort. These results suggest that a clinical index incorporating hemodynamic information be used in the future to select patients for anticoagulant therapy.
Collapse
|
46
|
Guibert R, McLeod K, Caiazzo A, Mansi T, Fernández MA, Sermesant M, Pennec X, Vignon-Clementel IE, Boudjemline Y, Gerbeau JF. Group-wise construction of reduced models for understanding and characterization of pulmonary blood flows from medical images. Med Image Anal 2014; 18:63-82. [DOI: 10.1016/j.media.2013.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/15/2013] [Accepted: 09/19/2013] [Indexed: 11/27/2022]
|
47
|
Marsden AL. Simulation based planning of surgical interventions in pediatric cardiology. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2013; 25:101303. [PMID: 24255590 PMCID: PMC3820639 DOI: 10.1063/1.4825031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/22/2013] [Indexed: 05/17/2023]
Abstract
Hemodynamics plays an essential role in the progression and treatment of cardiovascular disease. However, while medical imaging provides increasingly detailed anatomical information, clinicians often have limited access to hemodynamic data that may be crucial to patient risk assessment and treatment planning. Computational simulations can now provide detailed hemodynamic data to augment clinical knowledge in both adult and pediatric applications. There is a particular need for simulation tools in pediatric cardiology, due to the wide variation in anatomy and physiology in congenital heart disease patients, necessitating individualized treatment plans. Despite great strides in medical imaging, enabling extraction of flow information from magnetic resonance and ultrasound imaging, simulations offer predictive capabilities that imaging alone cannot provide. Patient specific simulations can be used for in silico testing of new surgical designs, treatment planning, device testing, and patient risk stratification. Furthermore, simulations can be performed at no direct risk to the patient. In this paper, we outline the current state of the art in methods for cardiovascular blood flow simulation and virtual surgery. We then step through pressing challenges in the field, including multiscale modeling, boundary condition selection, optimization, and uncertainty quantification. Finally, we summarize simulation results of two representative examples from pediatric cardiology: single ventricle physiology, and coronary aneurysms caused by Kawasaki disease. These examples illustrate the potential impact of computational modeling tools in the clinical setting.
Collapse
Affiliation(s)
- Alison L Marsden
- Mechanical and Aerospace Engineering Department, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
48
|
Impact of fluid-structure interaction on direct tumor-targeting in a representative hepatic artery system. Ann Biomed Eng 2013; 42:461-74. [PMID: 24048712 DOI: 10.1007/s10439-013-0910-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/05/2013] [Indexed: 01/01/2023]
Abstract
Direct targeting of solid tumors with chemotherapeutic drugs and/or radioactive microspheres can be a treatment option which minimizes side-effects and reduces cost. Briefly, computational analysis generates particle release maps (PRMs) which visually link upstream particle injection regions in the main artery with associated exit branches, some connected to tumors. The overall goal is to compute patient-specific PRMs realistically, accurately, and cost-effectively, which determines the suitable radial placement of a micro-catheter for optimal particle injection. Focusing in this paper on new steps towards realism and accuracy, the impact of fluid-structure interaction on direct drug-targeting is evaluated, using a representative hepatic artery system with liver tumor as a test bed. Specifically, the effect of arterial wall motion was demonstrated by modeling a two-way fluid-structure interaction analysis with Lagrangian particle tracking in the bifurcating arterial system. Clearly, rapid computational evaluation of optimal catheter location for tumor-targeting in a clinical application is very important. Hence, rigid-wall cases were also compared to the flexible scenario to establish whether PRMs generated when based on simplifying assumptions could provide adequate guidance towards ideal catheter placement. It was found that the best rigid (i.e., time-averaged) geometry is the physiological one that occurs during the diastolic targeting interval.
Collapse
|
49
|
Carr IA, Nemoto N, Schwartz RS, Shadden SC. Size-dependent predilections of cardiogenic embolic transport. Am J Physiol Heart Circ Physiol 2013; 305:H732-9. [PMID: 23792681 DOI: 10.1152/ajpheart.00320.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While it is intuitively clear that aortic anatomy and embolus size could be important determinants for cardiogenic embolic stroke risk and stroke location, few data exist confirming or characterizing this hypothesis. The objective of this study is to use medical imaging and computational modeling to better understand if aortic anatomy and embolus size influence predilections for cardiogenic embolic transport and right vs. left hemisphere propensity. Anatomically accurate models of the human aorta and branch arteries to the head were reconstructed from computed tomography (CT) angiography of 10 patients. Blood flow was modeled by the Navier-Stokes equations using a well-validated flow solver with physiologic inflow and boundary conditions. Embolic particulate was released from the aortic root and tracked through the common carotid and vertebral arteries for a range of particle sizes. Cardiogenic emboli reaching the carotid and vertebral arteries appeared to have a strong size-destination relationship that varied markedly from expectations based on blood distribution. Observed trends were robust to modeling parameters. A patient's aortic anatomy appeared to significantly influence the probability a cardiogenic particle becomes embolic to the head. Right hemisphere propensity appeared dominant for cardiogenic emboli, which has been confirmed clinically. The predilections discovered through this modeling could represent an important mechanism underlying cardiogenic embolic stroke etiology.
Collapse
Affiliation(s)
- Ian A Carr
- Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, Illionis
| | | | | | | |
Collapse
|
50
|
Rajani R, Wang Y, Uss A, Perera D, Redwood S, Thomas M, Chambers JB, Preston R, Carr-White GS, Liatsis P. Virtual fractional flow reserve by coronary computed tomography - hope or hype? EUROINTERVENTION 2013; 9:277-84. [DOI: 10.4244/eijv9i2a44] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|