1
|
Souza A, Kevin M, Rodriguez BJ, Reynaud EG. The use of fluid-phase 3D printing to pattern alginate-gelatin hydrogel properties to guide cell growth and behaviour in vitro. Biomed Mater 2024; 19:045024. [PMID: 38810635 DOI: 10.1088/1748-605x/ad51bf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/29/2024] [Indexed: 05/31/2024]
Abstract
Three-dimensional (3D) (bio)printing technology has boosted the advancement of the biomedical field. However, tissue engineering is an evolving field and (bio)printing biomimetic constructions for tissue formation is still a challenge. As a new methodology to facilitate the construction of more complex structures, we suggest the use of the fluid-phase 3D printing to pattern the scaffold's properties. The methodology consists of an exchangeable fluid-phase printing medium in which the constructions are fabricated and patterned during the printing process. Using the fluid-phase methodology, the biological and mechanical properties can be tailored promoting cell behaviour guidance and compartmentalization. In this study, we first assessed different formulations of alginate/gelatin to create a stable substrate capable to promote massive cell colonizationin vitroover time. Overall, formulations with lower gelatin content and 2-(N-morpholino)ethanesulfonic acid (MES) buffer as a solvent showed better stability under cell culture conditions and enhanced U2OS cell growth. Next, the fluid-phase showed better printing fidelity and resolution in comparison to air printing as it diminished the collapsing and the spread of the hydrogel strand. In sequence, the fluid-phase methodology was used to create functionalized alginate-gelatin-arginylglycylaspartic acid peptide (RGD) hydrogels via carbodiimides chemistry. The alginate-gelatin-RGD hydrogels showed an increase of 2.97-fold in cell growth and more spread substrate colonization in comparison to alginate-gelatin hydrogel. Moreover, the fluid-phase methodology was used to add RGD molecules to pre-determined parts of the alginate-gelatin substrate during the printing process promoting U2OS cell compartmentalization. In addition, different substrate stiffnesses were also created via fluid-phase by crosslinking the hydrogel with different concentrations of CaCl2during the printing process. As a result, the U2OS cells were also compartmentalized on the stiffer parts of the printings. Finally, our results showed that by combining stiffer hydrogel with RGD increasing concentrations we can create a synergetic effect and boost cell metabolism by up to 3.17-fold. This work presents an idea of a new printing process for tailoring multiple parameters in hydrogel substrates by using fluid-phase to generate more faithful replication of thein vivoenvironment.
Collapse
Affiliation(s)
- Andrea Souza
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield Dublin 4, Ireland
| | - McCarthy Kevin
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield Dublin 4, Ireland
| | - Brian J Rodriguez
- School of Physics, University College Dublin, Belfield Dublin 4, Ireland
| | - Emmanuel G Reynaud
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield Dublin 4, Ireland
| |
Collapse
|
2
|
Souza A, Parnell M, Rodriguez BJ, Reynaud EG. Role of pH and Crosslinking Ions on Cell Viability and Metabolic Activity in Alginate-Gelatin 3D Prints. Gels 2023; 9:853. [PMID: 37998943 PMCID: PMC10670374 DOI: 10.3390/gels9110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
Alginate-gelatin hydrogels are extensively used in bioengineering. However, despite different formulations being used to grow different cell types in vitro, their pH and its effect, together with the crosslinking ions of these formulations, are still infrequently assessed. In this work, we study how these elements can affect hydrogel stability and printability and influence cell viability and metabolism on the resulting 3D prints. Our results show that both the buffer pH and crosslinking ion (Ca2+ or Ba2+) influence the swelling and degradation rates of prints. Moreover, buffer pH influenced the printability of hydrogel in the air but did not when printed directly in a fluid-phase CaCl2 or BaCl2 crosslinking bath. In addition, both U2OS and NIH/3T3 cells showed greater cell metabolic activity on one-layer prints crosslinked with Ca2+. In addition, Ba2+ increased the cell death of NIH/3T3 cells while having no effect on U2OS cell viability. The pH of the buffer also had an important impact on the cell behavior. U2OS cells showed a 2.25-fold cell metabolism increase on one-layer prints prepared at pH 8.0 in comparison to those prepared at pH 5.5, whereas NIH/3T3 cells showed greater metabolism on one-layer prints with pH 7.0. Finally, we observed a difference in the cell arrangement of U2OS cells growing on prints prepared from hydrogels with an acidic buffer in comparison to cells growing on those prepared using a neutral or basic buffer. These results show that both pH and the crosslinking ion influence hydrogel strength and cell behavior.
Collapse
Affiliation(s)
- Andrea Souza
- School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland; (A.S.); (M.P.)
| | - Matthew Parnell
- School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland; (A.S.); (M.P.)
| | | | - Emmanuel G. Reynaud
- School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland; (A.S.); (M.P.)
| |
Collapse
|
3
|
Hong Y, Zhao Y, Li H, Yang Y, Chen M, Wang X, Luo M, Wang K. Engineering the maturation of stem cell-derived cardiomyocytes. Front Bioeng Biotechnol 2023; 11:1155052. [PMID: 37034258 PMCID: PMC10073467 DOI: 10.3389/fbioe.2023.1155052] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The maturation of human stem cell-derived cardiomyocytes (hSC-CMs) has been a major challenge to further expand the scope of their application. Over the past years, several strategies have been proven to facilitate the structural and functional maturation of hSC-CMs, which include but are not limited to engineering the geometry or stiffness of substrates, providing favorable extracellular matrices, applying mechanical stretch, fluidic or electrical stimulation, co-culturing with niche cells, regulating biochemical cues such as hormones and transcription factors, engineering and redirecting metabolic patterns, developing 3D cardiac constructs such as cardiac organoid or engineered heart tissue, or culturing under in vivo implantation. In this review, we summarize these maturation strategies, especially the recent advancements, and discussed their advantages as well as the pressing problems that need to be addressed in future studies.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Yun Zhao
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Hao Li
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Yunshu Yang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Meining Chen
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Xi Wang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| | - Mingyao Luo
- Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| | - Kai Wang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| |
Collapse
|
4
|
RANDHAWA AAYUSHI, DEB DUTTA SAYAN, GANGULY KEYA, V. PATIL TEJAL, LUTHFIKASARI RACHMI, LIM KITAEK. Understanding cell-extracellular matrix interactions for topology-guided tissue regeneration. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
5
|
Moriel A, Livne A, Bouchbinder E. Cellular orientational fluctuations, rotational diffusion and nematic order under periodic driving. SOFT MATTER 2022; 18:7091-7102. [PMID: 36043855 DOI: 10.1039/d2sm00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability of living cells to sense the physical properties of their microenvironment and to respond to dynamic forces acting on them plays a central role in regulating their structure, function and fate. Of particular importance is the cellular sensitivity and response to periodic driving forces in noisy environments, encountered in vital physiological conditions such as heart beating, blood vessel pulsation and breathing. Here, we first test and validate two predictions of a mean-field theory of cellular reorientation under periodic driving, which combines the minimization of cellular anisotropic elastic energy with active remodeling forces. We then extend the mean-field theory to include uncorrelated, additive nonequilibrium fluctuations, and show that the theory quantitatively agrees with the experimentally observed stationary probability distributions of the cell body orientation, under a range of biaxial periodic driving forces. The fluctuations theory allows the extraction of the dimensionless active noise amplitude of various cell types, and consequently their rotational diffusion coefficient. We then focus on intra-cellular nematic order, i.e. on orientational fluctuations of actin stress fibers around the cell body orientation, and show experimentally that intra-cellular nematic order increases with both the magnitude of the driving forces and the biaxiality strain ratio. These results are semi-quantitatively explained by applying the same cell body fluctuations theory to orientationally correlated actin stress fiber domains. Finally, an estimate of the energy scale of cellular orientational fluctuations for one cell type is shown to be about six order of magnitude larger than the thermal energy at room temperature. The implications of our findings, which make the quantitative analysis of cell mechanosensitivity more accessible, are discussed.
Collapse
Affiliation(s)
- Avraham Moriel
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Ariel Livne
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Diptera.ai, PO Box 39047, Jerusalem 9139002, Israel
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
6
|
Hao D, Lopez JM, Chen J, Iavorovschi AM, Lelivelt NM, Wang A. Engineering Extracellular Microenvironment for Tissue Regeneration. Bioengineering (Basel) 2022; 9:bioengineering9050202. [PMID: 35621480 PMCID: PMC9137730 DOI: 10.3390/bioengineering9050202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular microenvironment is a highly dynamic network of biophysical and biochemical elements, which surrounds cells and transmits molecular signals. Extracellular microenvironment controls are of crucial importance for the ability to direct cell behavior and tissue regeneration. In this review, we focus on the different components of the extracellular microenvironment, such as extracellular matrix (ECM), extracellular vesicles (EVs) and growth factors (GFs), and introduce engineering approaches for these components, which can be used to achieve a higher degree of control over cellular activities and behaviors for tissue regeneration. Furthermore, we review the technologies established to engineer native-mimicking artificial components of the extracellular microenvironment for improved regenerative applications. This review presents a thorough analysis of the current research in extracellular microenvironment engineering and monitoring, which will facilitate the development of innovative tissue engineering strategies by utilizing different components of the extracellular microenvironment for regenerative medicine in the future.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Juan-Maria Lopez
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Jianing Chen
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Alexandra Maria Iavorovschi
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Nora Marlene Lelivelt
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
7
|
Arora S, Srinivasan A, Leung CM, Toh YC. Bio-mimicking Shear Stress Environments for Enhancing Mesenchymal Stem Cell Differentiation. Curr Stem Cell Res Ther 2021; 15:414-427. [PMID: 32268869 DOI: 10.2174/1574888x15666200408113630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/03/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells, with the ability to differentiate into mesodermal (e.g., adipocyte, chondrocyte, hematopoietic, myocyte, osteoblast), ectodermal (e.g., epithelial, neural) and endodermal (e.g., hepatocyte, islet cell) lineages based on the type of induction cues provided. As compared to embryonic stem cells, MSCs hold a multitude of advantages from a clinical translation perspective, including ease of isolation, low immunogenicity and limited ethical concerns. Therefore, MSCs are a promising stem cell source for different regenerative medicine applications. The in vitro differentiation of MSCs into different lineages relies on effective mimicking of the in vivo milieu, including both biochemical and mechanical stimuli. As compared to other biophysical cues, such as substrate stiffness and topography, the role of fluid shear stress (SS) in regulating MSC differentiation has been investigated to a lesser extent although the role of interstitial fluid and vascular flow in regulating the normal physiology of bone, muscle and cardiovascular tissues is well-known. This review aims to summarise the current state-of-the-art regarding the role of SS in the differentiation of MSCs into osteogenic, cardiovascular, chondrogenic, adipogenic and neurogenic lineages. We will also highlight and discuss the potential of employing SS to augment the differentiation of MSCs to other lineages, where SS is known to play a role physiologically but has not yet been successfully harnessed for in vitro differentiation, including liver, kidney and corneal tissue lineage cells. The incorporation of SS, in combination with biochemical and biophysical cues during MSC differentiation, may provide a promising avenue to improve the functionality of the differentiated cells by more closely mimicking the in vivo milieu.
Collapse
Affiliation(s)
- Seep Arora
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, 117583, Singapore
| | - Akshaya Srinivasan
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, 117583, Singapore
| | - Chak Ming Leung
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, 117583, Singapore
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, 117583, Singapore
| |
Collapse
|
8
|
Barrett P, Quick TJ, Mudera V, Player DJ. Generating intrafusal skeletal muscle fibres in vitro: Current state of the art and future challenges. J Tissue Eng 2020; 11:2041731420985205. [PMID: 34956586 PMCID: PMC8693220 DOI: 10.1177/2041731420985205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023] Open
Abstract
Intrafusal fibres are a specialised cell population in skeletal muscle, found within the muscle spindle. These fibres have a mechano-sensory capacity, forming part of the monosynaptic stretch-reflex arc, a key component responsible for proprioceptive function. Impairment of proprioception and associated dysfunction of the muscle spindle is linked with many neuromuscular diseases. Research to-date has largely been undertaken in vivo or using ex vivo preparations. These studies have provided a foundation for our understanding of muscle spindle physiology, however, the cellular and molecular mechanisms which underpin physiological changes are yet to be fully elucidated. Therefrom, the use of in vitro models has been proposed, whereby intrafusal fibres can be generated de novo. Although there has been progress, it is predominantly a developing and evolving area of research. This narrative review presents the current state of art in this area and proposes the direction of future work, with the aim of providing novel pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Philip Barrett
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Tom J Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Vivek Mudera
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| |
Collapse
|
9
|
Li X, Xu R, Tu X, Janairo RRR, Kwong G, Wang D, Zhu Y, Li S. Differentiation of Neural Crest Stem Cells in Response to Matrix Stiffness and TGF-β1 in Vascular Regeneration. Stem Cells Dev 2020; 29:249-256. [DOI: 10.1089/scd.2019.0161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Xian Li
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
- Department of Bioengineering, University of California, Berkeley, California
| | - Rong Xu
- Department of Neurosurgery, Fudan University Huashan Hospital, Shanghai, China
| | - Xiaolin Tu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | | | - George Kwong
- Department of Bioengineering, University of California, Berkeley, California
| | - Dong Wang
- Department of Bioengineering, University of California, Los Angeles, California
| | - Yiqian Zhu
- Department of Bioengineering, University of California, Berkeley, California
- Department of Neurosurgery, Fudan University Huashan Hospital, Shanghai, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, California
| |
Collapse
|
10
|
Chen Z, Luo X, Zhao X, Yang M, Wen C. Label-free cell sorting strategies via biophysical and biochemical gradients. J Orthop Translat 2019; 17:55-63. [PMID: 31194093 PMCID: PMC6551360 DOI: 10.1016/j.jot.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/08/2023] Open
Abstract
Isolating active mesenchymal stem cells from a heterogeneous population is an essential step that determines the efficacy of stem cell therapy such as for osteoarthritis. Nowadays, the gold standard of cell sorting, fluorescence-activated cell sorting, relies on labelling surface markers via antibody-antigen reaction. However, sorting stem cells with high stemness usually requires the labelling of multiple biomarkers. Moreover, the labelling process is costly, and the high operating pressure is harmful to cell functionality and viability. Although label-free cell sorting, based on physical characteristics, has gained increasing interest in the past decades, it has not shown the ability to eliminate stem cells with low stemness. Cell motility, as a novel sorting marker, is hence proposed for label-free sorting active stem cells. Accumulating evidence has demonstrated the feasibility in manipulating directional cell migration through patterning the biophysical, biochemical or both gradients of the extracellular matrix. However, applying those findings to label-free cell sorting has not been well discussed and studied. This review thus first provides a brief overview about the effect of biophysical and biochemical gradients of the extracellular matrix on cell migration. State-of-the-art fabrication techniques for generating such gradients of hydrogels are then introduced. Among current research, the authors suggest that hydrogels with dual-gradients of biochemistry and biophysics are potential tools for accurate label-free cell sorting with satisfactory selectivity and efficiency. TRANSLATIONAL POTENTIAL OF THIS ARTICLE The reviewed label-free cell sorting approaches enable us to isolate active cell for cytotherapy. The proposed system can be further modified for single-cell analysis and drug screening.
Collapse
Affiliation(s)
| | | | | | | | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
11
|
Massé DD, Shar JA, Brown KN, Keswani SG, Grande-Allen KJ, Sucosky P. Discrete Subaortic Stenosis: Perspective Roadmap to a Complex Disease. Front Cardiovasc Med 2018; 5:122. [PMID: 30320123 PMCID: PMC6166095 DOI: 10.3389/fcvm.2018.00122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Discrete subaortic stenosis (DSS) is a congenital heart disease that results in the formation of a fibro-membranous tissue, causing an increased pressure gradient in the left ventricular outflow tract (LVOT). While surgical resection of the membrane has shown some success in eliminating the obstruction, it poses significant risks associated with anesthesia, sternotomy, and heart bypass, and it remains associated with a high rate of recurrence. Although a genetic etiology had been initially proposed, the association between DSS and left ventricle (LV) geometrical abnormalities has provided more support to a hemodynamic etiology by which congenital or post-surgical LVOT geometric derangements could generate abnormal shear forces on the septal wall, triggering in turn a fibrotic response. Validating this hypothetical etiology and understanding the mechanobiological processes by which altered shear forces induce fibrosis in the LVOT are major knowledge gaps. This perspective paper describes the current state of knowledge of DSS, articulates the research needs to yield mechanistic insights into a significant pathologic process that is poorly understood, and proposes several strategies aimed at elucidating the potential mechanobiological synergies responsible for DSS pathogenesis. The proposed roadmap has the potential to improve DSS management by identifying early targets for prevention of the fibrotic lesion, and may also prove beneficial in other fibrotic cardiovascular diseases associated with altered flow.
Collapse
Affiliation(s)
- Danielle D Massé
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Jason A Shar
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Kathleen N Brown
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Sundeep G Keswani
- Division of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States.,Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | | | - Philippe Sucosky
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| |
Collapse
|
12
|
Mendes BB, Gómez-Florit M, Babo PS, Domingues RM, Reis RL, Gomes ME. Blood derivatives awaken in regenerative medicine strategies to modulate wound healing. Adv Drug Deliv Rev 2018; 129:376-393. [PMID: 29288732 DOI: 10.1016/j.addr.2017.12.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023]
Abstract
Blood components play key roles in the modulation of the wound healing process and, together with the provisional fibrin matrix ability to selectively bind bioactive molecules and control its spatial-temporal presentation, define the complex microenvironment that characterize this biological process. As a biomimetic approach, the use of blood derivatives in regenerative strategies has awakened as a source of multiple therapeutic biomolecules. Nevertheless, and despite their clinical relevance, blood derivatives have been showing inconsistent therapeutic results due to several factors, including proper control over their delivery mechanisms. Herein, we highlight recent trends on the use biomaterials to protect, sequester and deliver these pools of biomolecules in tissue engineering and regenerative medicine approaches. Particular emphasis is given to strategies that enable to control their spatiotemporal delivery and improve the selectivity of presentation profiles of the biomolecules derived from blood derivatives rich in platelets. Finally, we discussed possible directions for biomaterials design to potentiate the aimed regenerative effects of blood derivatives and achieve efficient therapies.
Collapse
|
13
|
Madl CM, Heilshorn SC. Bioorthogonal Strategies for Engineering Extracellular Matrices. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1706046. [PMID: 31558890 PMCID: PMC6761700 DOI: 10.1002/adfm.201706046] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hydrogels are commonly used as engineered extracellular matrix (ECM) mimics in applications ranging from tissue engineering to in vitro disease models. Ideal mechanisms used to crosslink ECM-mimicking hydrogels do not interfere with the biology of the system. However, most common hydrogel crosslinking chemistries exhibit some form of cross-reactivity. The field of bio-orthogonal chemistry has arisen to address the need for highly specific and robust reactions in biological contexts. Accordingly, bio-orthogonal crosslinking strategies have been incorporated into hydrogel design, allowing for gentle and efficient encapsulation of cells in various hydrogel materials. Furthermore, the selective nature of bio-orthogonal chemistries can permit dynamic modification of hydrogel materials in the presence of live cells and other biomolecules to alter matrix mechanical properties and biochemistry on demand. In this review, we provide an overview of bio-orthogonal strategies used to prepare cell-encapsulating hydrogels and highlight the potential applications of bio-orthogonal chemistries in the design of dynamic engineered ECMs.
Collapse
Affiliation(s)
- Christopher M Madl
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA,
| |
Collapse
|
14
|
Hwang Y, Seo T, Hariri S, Choi C, Varghese S. Matrix Topographical Cue-Mediated Myogenic Differentiation of Human Embryonic Stem Cell Derivatives. Polymers (Basel) 2017; 9:polym9110580. [PMID: 30965882 PMCID: PMC6418725 DOI: 10.3390/polym9110580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022] Open
Abstract
Biomaterials varying in physical properties, chemical composition and biofunctionalities can be used as powerful tools to regulate skeletal muscle-specific cellular behaviors, including myogenic differentiation of progenitor cells. Biomaterials with defined topographical cues (e.g., patterned substrates) can mediate cellular alignment of progenitor cells and improve myogenic differentiation. In this study, we employed soft lithography techniques to create substrates with microtopographical cues and used these substrates to study the effect of matrix topographical cues on myogenic differentiation of human embryonic stem cell (hESC)-derived mesodermal progenitor cells expressing platelet-derived growth factor receptor alpha (PDGFRA). Our results show that the majority (>80%) of PDGFRA+ cells on micropatterned polydimethylsiloxane (PDMS) substrates were aligned along the direction of the microgrooves and underwent robust myogenic differentiation compared to those on non-patterned surfaces. Matrix topography-mediated alignment of the mononucleated cells promoted their fusion resulting in mainly (~86%⁻93%) multinucleated myotube formation. Furthermore, when implanted, the cells on the micropatterned substrates showed enhanced in vivo survival (>5⁻7 times) and engraftment (>4⁻6 times) in cardiotoxin-injured tibialis anterior (TA) muscles of NOD/SCID mice compared to cells cultured on corresponding non-patterned substrates.
Collapse
Affiliation(s)
- Yongsung Hwang
- Department of Bioengineering, University of California, San Diego, CA 92521, USA.
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
| | - Timothy Seo
- Department of Bioengineering, University of California, San Diego, CA 92521, USA.
| | - Sara Hariri
- Department of Bioengineering, University of California, San Diego, CA 92521, USA.
| | - Chulmin Choi
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92521, USA.
| | - Shyni Varghese
- Department of Bioengineering, University of California, San Diego, CA 92521, USA.
- Department of Biomedical Engineering, Mechanical Engineering and Materials Science and Orthopaedic Surgery, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
15
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
16
|
Adamowicz J, Pokrywczynska M, Van Breda SV, Kloskowski T, Drewa T. Concise Review: Tissue Engineering of Urinary Bladder; We Still Have a Long Way to Go? Stem Cells Transl Med 2017; 6:2033-2043. [PMID: 29024555 PMCID: PMC6430044 DOI: 10.1002/sctm.17-0101] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/18/2017] [Indexed: 12/18/2022] Open
Abstract
Regenerative medicine is a new branch of medicine based on tissue engineering technology. This rapidly developing field of science offers revolutionary treatment strategy aimed at urinary bladder regeneration. Despite many promising announcements of experimental urinary bladder reconstruction, there has been a lack in commercialization of therapies based on current investigations. This is due to numerous obstacles that are slowly being identified and precisely overcome. The goal of this review is to present the current status of research on urinary bladder regeneration and highlight further challenges that need to be gradually addressed. We put an emphasis on expectations of urologists that are awaiting tissue engineering based solutions in clinical practice. This review also presents a detailed characteristic of obstacles on the road to successful urinary bladder regeneration from urological clinician perspective. A defined interdisciplinary approach might help to accelerate planning transitional research tissue engineering focused on urinary tracts. Stem Cells Translational Medicine 2017;6:2033-2043.
Collapse
Affiliation(s)
- Jan Adamowicz
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczynska
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Tomasz Kloskowski
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
17
|
Cochrane A, Kelaini S, Tsifaki M, Bojdo J, Vilà-González M, Drehmer D, Caines R, Magee C, Eleftheriadou M, Hu Y, Grieve D, Stitt AW, Zeng L, Xu Q, Margariti A. Quaking Is a Key Regulator of Endothelial Cell Differentiation, Neovascularization, and Angiogenesis. Stem Cells 2017; 35:952-966. [PMID: 28207177 PMCID: PMC5396345 DOI: 10.1002/stem.2594] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/10/2017] [Accepted: 01/24/2017] [Indexed: 12/28/2022]
Abstract
The capability to derive endothelial cell (ECs) from induced pluripotent stem cells (iPSCs) holds huge therapeutic potential for cardiovascular disease. This study elucidates the precise role of the RNA‐binding protein Quaking isoform 5 (QKI‐5) during EC differentiation from both mouse and human iPSCs (hiPSCs) and dissects how RNA‐binding proteins can improve differentiation efficiency toward cell therapy for important vascular diseases. iPSCs represent an attractive cellular approach for regenerative medicine today as they can be used to generate patient‐specific therapeutic cells toward autologous cell therapy. In this study, using the model of iPSCs differentiation toward ECs, the QKI‐5 was found to be an important regulator of STAT3 stabilization and vascular endothelial growth factor receptor 2 (VEGFR2) activation during the EC differentiation process. QKI‐5 was induced during EC differentiation, resulting in stabilization of STAT3 expression and modulation of VEGFR2 transcriptional activation as well as VEGF secretion through direct binding to the 3′ UTR of STAT3. Importantly, mouse iPS‐ECs overexpressing QKI‐5 significantly improved angiogenesis and neovascularization and blood flow recovery in experimental hind limb ischemia. Notably, hiPSCs overexpressing QKI‐5, induced angiogenesis on Matrigel plug assays in vivo only 7 days after subcutaneous injection in SCID mice. These results highlight a clear functional benefit of QKI‐5 in neovascularization, blood flow recovery, and angiogenesis. Thus, they provide support to the growing consensus that elucidation of the molecular mechanisms underlying EC differentiation will ultimately advance stem cell regenerative therapy and eventually make the treatment of cardiovascular disease a reality. The RNA binding protein QKI‐5 is induced during EC differentiation from iPSCs. RNA binding protein QKI‐5 was induced during EC differentiation in parallel with the EC marker CD144. Immunofluorescence staining showing that QKI‐5 is localized in the nucleus and stained in parallel with CD144 in differentiated ECs (scale bar = 50 µm). stemcells2017 Stem Cells2017;35:952–966
Collapse
Affiliation(s)
- Amy Cochrane
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Sophia Kelaini
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Marianna Tsifaki
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - James Bojdo
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Marta Vilà-González
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Daiana Drehmer
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Rachel Caines
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Corey Magee
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Magdalini Eleftheriadou
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Yanhua Hu
- Cardiovascular Division, King's College London, London, United Kingdom
| | - David Grieve
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Alan W Stitt
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Lingfang Zeng
- Cardiovascular Division, King's College London, London, United Kingdom
| | - Qingbo Xu
- Cardiovascular Division, King's College London, London, United Kingdom
| | - Andriana Margariti
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| |
Collapse
|
18
|
Tsekoura EK, K C RB, Uludag H. Biomaterials to Facilitate Delivery of RNA Agents in Bone Regeneration and Repair. ACS Biomater Sci Eng 2016; 3:1195-1206. [PMID: 33440509 DOI: 10.1021/acsbiomaterials.6b00387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bone healing after traumatic injuries or pathological diseases remains an important worldwide problem. In search of safer and more effective approaches to bone regeneration and repair, RNA-based therapeutic agents, specifically microRNAs (miRNAs) and short interfering RNA (siRNA), are beginning to be actively explored. In this review, we summarize current attempts to employ miRNAs and siRNAs in preclinical models of bone repair. We provide a summary of current limitations when attempting to utilize bioactive nucleic acids for therapeutic purposes and position the unique aspects of RNA reagents for clinical bone repair. Delivery strategies for RNA reagents are emphasized and nonviral carriers (biomaterial-based) employed to deliver such reagents are reviewed. Critical features of biomaterial carriers and various delivery technologies centered around nanoparticulate systems are highlighted. We conclude with the authors' perspectives on the future of the field, outlining main critical issues important to address as RNA reagents are explored for clinical applications.
Collapse
Affiliation(s)
- Eleni K Tsekoura
- Department of Chemical & Materials Engineering, Faculty of Engineering, ‡Department of Biomedical Engineering, Faculty of Medicine & Dentistry, and §Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Remant Bahadur K C
- Department of Chemical & Materials Engineering, Faculty of Engineering, Department of Biomedical Engineering, Faculty of Medicine & Dentistry, and §Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Hasan Uludag
- Department of Chemical & Materials Engineering, Faculty of Engineering, Department of Biomedical Engineering, Faculty of Medicine & Dentistry, and Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
19
|
Wang CC, Yang KC, Lin KH, Liu YL, Yang YT, Kuo TF, Chen IH. Expandable Scaffold Improves Integration of Tissue-Engineered Cartilage: An In Vivo Study in a Rabbit Model. Tissue Eng Part A 2016; 22:873-84. [DOI: 10.1089/ten.tea.2015.0510] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chen-Chie Wang
- Department of Orthopedic Surgery, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Department of Orthopedics, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kai-Chiang Yang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Keng-Hui Lin
- Institute of Physics and Research, Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | - Yen-Liang Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Ya-Ting Yang
- Department of Orthopedic Surgery, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Tzong-Fu Kuo
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Ing-Ho Chen
- Department of Orthopedics, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Orthopedic Surgery, Hualien Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
20
|
Santo VE, Babo P, Amador M, Correia C, Cunha B, Coutinho DF, Neves NM, Mano JF, Reis RL, Gomes ME. Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers. Biomacromolecules 2016; 17:1985-97. [DOI: 10.1021/acs.biomac.6b00150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vítor E. Santo
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Pedro Babo
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Miguel Amador
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Cláudia Correia
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Bárbara Cunha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Daniela F. Coutinho
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Nuno M. Neves
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - João F. Mano
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Rui L. Reis
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Manuela E. Gomes
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| |
Collapse
|
21
|
Early in-situ cellularization of a supramolecular vascular graft is modified by synthetic stromal cell-derived factor-1α derived peptides. Biomaterials 2016; 76:187-95. [DOI: 10.1016/j.biomaterials.2015.10.052] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/13/2015] [Accepted: 10/18/2015] [Indexed: 02/08/2023]
|
22
|
Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Adv Drug Deliv Rev 2015; 94:126-40. [PMID: 25777059 DOI: 10.1016/j.addr.2015.03.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/27/2015] [Accepted: 03/07/2015] [Indexed: 02/06/2023]
Abstract
Integration between tendon/ligament and bone occurs through a specialized tissue interface called enthesis. The complex and heterogeneous structure of the enthesis is essential to ensure smooth mechanical stress transfer between bone and soft tissues. Following injury, the interface is not regenerated, resulting in high rupture recurrence rates. Tissue engineering is a promising strategy for the regeneration of a functional enthesis. However, the complex structural and cellular composition of the native interface makes enthesis tissue engineering particularly challenging. Thus, it is likely that a combination of biomaterials and cells stimulated with appropriate biochemical and mechanical cues will be needed. The objective of this review is to describe the current state-of-the-art, challenges and future directions in the field of enthesis tissue engineering focusing on four key parameters: (1) scaffold and biomaterials, (2) cells, (3) growth factors and (4) mechanical stimuli.
Collapse
Affiliation(s)
- Sonia Font Tellado
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Elizabeth R Balmayor
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Martijn Van Griensven
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| |
Collapse
|
23
|
Schmitt SK, Xie AW, Ghassemi RM, Trebatoski DJ, Murphy WL, Gopalan P. Polyethylene Glycol Coatings on Plastic Substrates for Chemically Defined Stem Cell Culture. Adv Healthc Mater 2015; 4:1555-64. [PMID: 25995154 PMCID: PMC5172397 DOI: 10.1002/adhm.201500191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/26/2015] [Indexed: 01/13/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are a widely available and clinically relevant cell type with a host of applications in regenerative medicine. Current clinical expansion methods can lead to selective changes in hMSC phenotype potentially resulting from relatively undefined cell culture surfaces. Chemically defined synthetic surfaces can aid in understanding the influence of cell-material interactions on stem cell behavior. Here, a thin copolymer coating for hMSC culture on plastic substrates is developed. The random copolymer is synthesized by living free radical polymerization and characterized in solution before application to the substrate, ensuring a homogeneous coating and limiting the sample-to-sample variations. The ability to coat multiple substrate types and cover large surface areas is reported. Arg-Gly-Asp-containing peptides are incorporated into the coating under aqueous conditions via their lysine or cysteine side chains, resulting in amide and thioester linkages, respectively. Stability studies show amide linkages to be stable and thioester linkages to be labile under standard serum-containing culture conditions. In addition, chemically defined passaging of hMSCs using only ethylenediaminetetraacetic acid on polystyrene dishes is shown. After passage, the hMSCs can be seeded back onto the same plate, indicating potential reusability of the coating.
Collapse
Affiliation(s)
- Samantha K Schmitt
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Angela W Xie
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Raha M Ghassemi
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - David J Trebatoski
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - William L Murphy
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Padma Gopalan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
24
|
Sundaram S, Ramaseshan R, Dash S, Rao SR. Evaluation of the nanostructure of cervical third cementum in health and chronic periodontitis: An in vitro study. J Indian Soc Periodontol 2014; 18:560-6. [PMID: 25425815 PMCID: PMC4239743 DOI: 10.4103/0972-124x.142440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/10/2014] [Indexed: 12/23/2022] Open
Abstract
Background: During the progression of periodontal disease, the cementum undergoes alterations in its structure and composition. Understanding the nanostructure of cementum, in terms of its mechanical properties, will provide an insight into the milieu that periodontal ligament cells encounter in health and chronic periodontitis. This study aims to analyze the nanomechanical properties of the cervical third of the cementum (transverse section) in health and chronic periodontitis. Materials and Methods: Twenty teeth (10 healthy and 10 periodontally diseased) were collected and the nanomechanical properties of the transverse section of the cervical third cementum were evaluated with depth-sensing nanoindentation technique under dry conditions. A total of 100 nanoindentations were performed to analyze the modulus of elasticity and hardness of cervical third of the cementum. Results: The nanomechanical properties of the healthy cervical third cementum sections were significantly higher (P < 0.05) (hardness: 0.720 ± 0.305 GPa; modulus: 15.420 ± 3.902 GPa) than the diseased cementum section (hardness: 0.422 ± 0.157 GPa; modulus: 11.056 ± 3.434 GPa). Conclusion: The results of our study indicate that the hardness and modulus of elasticity of the cervical third cementum decreases significantly in chronic periodontitis.
Collapse
Affiliation(s)
- Subramoniam Sundaram
- Department of Periodontics, Faculty of Dental Sciences, Sri Ramachandra University, Porur, Chennai, India
| | - Rajagopalan Ramaseshan
- Surface and Nanoscience Division, Thin Films and Coatings Section, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Sitaram Dash
- Surface and Nanoscience Division, Thin Films and Coatings Section, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Suresh Ranga Rao
- Department of Periodontics, Faculty of Dental Sciences, Sri Ramachandra University, Porur, Chennai, India
| |
Collapse
|
25
|
Montani C, Steimberg N, Boniotti J, Biasiotto G, Zanella I, Diafera G, Biunno I, Caimi L, Mazzoleni G, Di Lorenzo D. Fibroblasts maintained in 3 dimensions show a better differentiation state and higher sensitivity to estrogens. Toxicol Appl Pharmacol 2014; 280:421-33. [DOI: 10.1016/j.taap.2014.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/24/2014] [Accepted: 08/12/2014] [Indexed: 01/07/2023]
|
26
|
Dimmeler S, Ding S, Rando TA, Trounson A. Translational strategies and challenges in regenerative medicine. Nat Med 2014; 20:814-21. [PMID: 25100527 DOI: 10.1038/nm.3627] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 02/08/2023]
Abstract
The scientific community is currently witnessing substantial strides in understanding stem cell biology in humans; however, major disappointments in translating this knowledge into medical therapies are flooding the field as well. Despite these setbacks, investigators are determined to better understand the caveats of regeneration, so that major pathways of repair and regrowth can be exploited in treating aged and diseased tissues. Last year, in an effort to contribute to this burgeoning field, Nature Medicine, in collaboration with the Volkswagen Foundation, organized a meeting with a panel of experts in regenerative medicine to identify the most pressing challenges, as well as the crucial strategies and stem cell concepts that can best help advance the translational regenerative field. Here some experts who participated in the meeting provide an outlook at some of those key issues and concepts.
Collapse
Affiliation(s)
- Stefanie Dimmeler
- 1] Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany. [2]
| | - Sheng Ding
- 1] Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, San Francisco, California, USA. [2]
| | - Thomas A Rando
- 1] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA. [2] Glenn Center for the Biology of Aging at Stanford University, Stanford, California, USA. [3]
| | - Alan Trounson
- 1] California Institute for Regenerative Medicine (CIRM), San Francisco, California, USA. [2]
| |
Collapse
|
27
|
Nakayama KH, Hou L, Huang NF. Role of extracellular matrix signaling cues in modulating cell fate commitment for cardiovascular tissue engineering. Adv Healthc Mater 2014; 3:628-41. [PMID: 24443420 PMCID: PMC4031033 DOI: 10.1002/adhm.201300620] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/09/2013] [Indexed: 01/01/2023]
Abstract
It is generally agreed that engineered cardiovascular tissues require cellular interactions with the local milieu. Within the microenvironment, the extracellular matrix (ECM) is an important support structure that provides dynamic signaling cues in part through its chemical, physical, and mechanical properties. In response to ECM factors, cells activate biochemical and mechanotransduction pathways that modulate their survival, growth, migration, differentiation, and function. This Review describes the role of ECM chemical composition, spatial patterning, and mechanical stimulation in the specification of cardiovascular lineages, with a focus on stem cell differentiation, direct transdifferentiation, and endothelial-to-mesenchymal transition. The translational application of ECMs is discussed in the context of cardiovascular tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Karina H Nakayama
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Stanford, CA, 94305, USA; Cardiovascular Institute, Stanford University, 265 Campus Drive, G1120, MC-5454, Stanford, CA, 94305, USA; Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Mail Code 153, Palo Alto, CA, 94304 60031l, 650-493-5000, USA
| | | | | |
Collapse
|
28
|
Bloom AB, Zaman MH. Influence of the microenvironment on cell fate determination and migration. Physiol Genomics 2014; 46:309-14. [PMID: 24619520 DOI: 10.1152/physiolgenomics.00170.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Several critical cell functions are influenced not only by internal cellular machinery but also by external mechanical and biochemical cues from the surrounding microenvironment. Slight changes to the microenvironment can result in dramatic changes to the cell's phenotype; for example, a change in the nutrients or pH of a tumor microenvironment can result in increased tumor metastasis. While cellular fate and the regulators of cell fate have been studied in detail for several decades now, our understanding of the extracellular regulators remains qualitative and far from comprehensive. In this review, we discuss the microenvironment influence on cell fate in terms of adhesion, migration, and differentiation and focus on both developments in experimental and computation tools to analyze cellular fate.
Collapse
Affiliation(s)
- Alexander B Bloom
- Department of Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts; and
| | | |
Collapse
|
29
|
Kinney MA, Hookway TA, Wang Y, McDevitt TC. Engineering three-dimensional stem cell morphogenesis for the development of tissue models and scalable regenerative therapeutics. Ann Biomed Eng 2014; 42:352-67. [PMID: 24297495 PMCID: PMC3939035 DOI: 10.1007/s10439-013-0953-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/21/2013] [Indexed: 12/11/2022]
Abstract
The physiochemical stem cell microenvironment regulates the delicate balance between self-renewal and differentiation. The three-dimensional assembly of stem cells facilitates cellular interactions that promote morphogenesis, analogous to the multicellular, heterotypic tissue organization that accompanies embryogenesis. Therefore, expansion and differentiation of stem cells as multicellular aggregates provides a controlled platform for studying the biological and engineering principles underlying spatiotemporal morphogenesis and tissue patterning. Moreover, three-dimensional stem cell cultures are amenable to translational screening applications and therapies, which underscores the broad utility of scalable suspension cultures across laboratory and clinical scales. In this review, we discuss stem cell morphogenesis in the context of fundamental biophysical principles, including the three-dimensional modulation of adhesions, mechanics, and molecular transport and highlight the opportunities to employ stem cell spheroids for tissue modeling, bioprocessing, and regenerative therapies.
Collapse
Affiliation(s)
- Melissa A. Kinney
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Tracy A. Hookway
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Yun Wang
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Todd C. McDevitt
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology/Emory University, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
30
|
Babczyk P, Conzendorf C, Klose J, Schulze M, Harre K, Tobiasch E. Stem Cells on Biomaterials for Synthetic Grafts to Promote Vascular Healing. J Clin Med 2014; 3:39-87. [PMID: 26237251 PMCID: PMC4449663 DOI: 10.3390/jcm3010039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 10/28/2013] [Accepted: 11/16/2013] [Indexed: 12/25/2022] Open
Abstract
This review is divided into two interconnected parts, namely a biological and a chemical one. The focus of the first part is on the biological background for constructing tissue-engineered vascular grafts to promote vascular healing. Various cell types, such as embryonic, mesenchymal and induced pluripotent stem cells, progenitor cells and endothelial- and smooth muscle cells will be discussed with respect to their specific markers. The in vitro and in vivo models and their potential to treat vascular diseases are also introduced. The chemical part focuses on strategies using either artificial or natural polymers for scaffold fabrication, including decellularized cardiovascular tissue. An overview will be given on scaffold fabrication including conventional methods and nanotechnologies. Special attention is given to 3D network formation via different chemical and physical cross-linking methods. In particular, electron beam treatment is introduced as a method to combine 3D network formation and surface modification. The review includes recently published scientific data and patents which have been registered within the last decade.
Collapse
Affiliation(s)
- Patrick Babczyk
- Department of Natural Science, Bonn-Rhein-Sieg University of Applied Science, Von-Liebig-Street 20, Rheinbach 53359, Germany.
| | - Clelia Conzendorf
- Faculty of Mechanical Engineering/Process Engineering, University of Applied Science Dresden, Friedrich-List-Platz 1, Dresden 01069, Germany.
| | - Jens Klose
- Faculty of Mechanical Engineering/Process Engineering, University of Applied Science Dresden, Friedrich-List-Platz 1, Dresden 01069, Germany.
| | - Margit Schulze
- Department of Natural Science, Bonn-Rhein-Sieg University of Applied Science, Von-Liebig-Street 20, Rheinbach 53359, Germany.
| | - Kathrin Harre
- Faculty of Mechanical Engineering/Process Engineering, University of Applied Science Dresden, Friedrich-List-Platz 1, Dresden 01069, Germany.
| | - Edda Tobiasch
- Department of Natural Science, Bonn-Rhein-Sieg University of Applied Science, Von-Liebig-Street 20, Rheinbach 53359, Germany.
| |
Collapse
|
31
|
Lim HL, Hwang Y, Kar M, Varghese S. Smart hydrogels as functional biomimetic systems. Biomater Sci 2014; 2:603-618. [DOI: 10.1039/c3bm60288e] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review discusses the principles underlying stimuli-responsive behavior of hydrogels and how these properties contribute to their biomimetic functions and applications.
Collapse
Affiliation(s)
- Han L. Lim
- Department of Bioengineering
- University of California
- La Jolla, USA
| | - Yongsung Hwang
- Department of Bioengineering
- University of California
- La Jolla, USA
| | - Mrityunjoy Kar
- Department of Bioengineering
- University of California
- La Jolla, USA
| | - Shyni Varghese
- Department of Bioengineering
- University of California
- La Jolla, USA
| |
Collapse
|
32
|
Petrov YP, Kukhareva LV, Krylova TA. The effect of type I collagen and fibronectin on the morphology of human mesenchymal stromal cells in culture. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s1990519x13060096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Cheng ZA, Zouani OF, Glinel K, Jonas AM, Durrieu MC. Bioactive chemical nanopatterns impact human mesenchymal stem cell fate. NANO LETTERS 2013; 13:3923-9. [PMID: 23905702 DOI: 10.1021/nl4020149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We present a method of preparing and characterizing nanostructured bioactive motifs using a combination of nanoimprint lithography and surface functionalization. Nanodots were fabricated on silicon surfaces and modified with a cell-adhesive RGD peptide for studies in human mesenchymal stem cell adhesion and differentiation. We report that bioactive nanostructures induce mature focal adhesions on human mesenchymal stem cells with an impact on their behavior and dynamics specifically in terms of cell spreading, cell-material contact, and cell differentiation.
Collapse
Affiliation(s)
- Zhe A Cheng
- Institut Européen de la Chimie et Biologie, CBMN-UMR5248, Université de Bordeaux 1, Pessac, France
| | | | | | | | | |
Collapse
|
34
|
Arshi A, Nakashima Y, Nakano H, Eaimkhong S, Evseenko D, Reed J, Stieg AZ, Gimzewski JK, Nakano A. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2013; 14:025003. [PMID: 24311969 PMCID: PMC3845966 DOI: 10.1088/1468-6996/14/2/025003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 03/21/2013] [Indexed: 05/23/2023]
Abstract
While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of the matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examined the role of matrix rigidity on the cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using an genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of the already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.
Collapse
Affiliation(s)
- Armin Arshi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Yasuhiro Nakashima
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Haruko Nakano
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Sarayoot Eaimkhong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Jason Reed
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Adam Z Stieg
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- WPI Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - James K Gimzewski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- WPI Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Atsushi Nakano
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
35
|
The modulation of endothelial cell morphology, function, and survival using anisotropic nanofibrillar collagen scaffolds. Biomaterials 2013; 34:4038-4047. [PMID: 23480958 DOI: 10.1016/j.biomaterials.2013.02.036] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/12/2013] [Indexed: 01/06/2023]
Abstract
Endothelial cells (ECs) are aligned longitudinally under laminar flow, whereas they are polygonal and poorly aligned in regions of disturbed flow. The unaligned ECs in disturbed flow fields manifest altered function and reduced survival that promote lesion formation. We demonstrate that the alignment of the ECs may directly influence their biology, independent of fluid flow. We developed aligned nanofibrillar collagen scaffolds that mimic the structure of collagen bundles in blood vessels, and examined the effects of these materials on EC alignment, function, and in vivo survival. ECs cultured on 30-nm diameter aligned fibrils re-organized their F-actin along the nanofibril direction, and were 50% less adhesive for monocytes than the ECs grown on randomly oriented fibrils. After EC transplantation into both subcutaneous tissue and the ischemic hindlimb, EC viability was enhanced when ECs were cultured and implanted on aligned nanofibrillar scaffolds, in contrast to non-patterned scaffolds. ECs derived from human induced pluripotent stem cells and cultured on aligned scaffolds also persisted for over 28 days, as assessed by bioluminescence imaging, when implanted in ischemic tissue. By contrast, ECs implanted on scaffolds without nanopatterning generated no detectable bioluminescent signal by day 4 in either normal or ischemic tissues. We demonstrate that 30-nm aligned nanofibrillar collagen scaffolds guide cellular organization, modulate endothelial inflammatory response, and enhance cell survival after implantation in normal and ischemic tissues.
Collapse
|
36
|
Lovett DB, Shekhar N, Nickerson JA, Roux KJ, Lele TP. Modulation of Nuclear Shape by Substrate Rigidity. Cell Mol Bioeng 2013; 6:230-238. [PMID: 23914256 DOI: 10.1007/s12195-013-0270-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The nucleus is mechanically coupled to the three cytoskeletal elements in the cell via linkages maintained by the LINC complex (for Linker of Nucleoskeleton to Cyto-skeleton). It has been shown that mechanical forces from the extracellular matrix (ECM) can be transmitted through the cytoskeleton to the nuclear surface. Here we quantified nuclear shape in NIH 3T3 fibroblasts on polyacrylamide gels with a controlled degree of cross-linking. On soft substrates with a Young's modulus of 0.4 kPa, the nucleus appeared rounded in its vertical cross-section, while on stiff substrates (308 kPa), the nucleus appears more flattened. Over-expression of dominant negative Klarsicht ANC-1 Syne Homology (KASH) domains, which disrupts the LINC complex, eliminated the sensitivity of nuclear shape to substrate rigidity; myosin inhibition had similar effects. GFP-KASH4 over-expression altered the rigidity dependence of cell motility and cell spreading. Taken together, our results suggest that nuclear shape is modulated by substrate rigidity-induced changes in actomyosin tension, and that a mechanically integrated nucleus-cytoskeleton is required for rigidity sensing. These results are significant because they suggest that substrate rigidity can potentially control nuclear function and hence cell function.
Collapse
Affiliation(s)
- David B Lovett
- Department of Chemical Engineering, University of Florida, Bldg. 723, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
37
|
Zorlutuna P, Vrana NE, Khademhosseini A. The expanding world of tissue engineering: the building blocks and new applications of tissue engineered constructs. IEEE Rev Biomed Eng 2012; 6:47-62. [PMID: 23268388 DOI: 10.1109/rbme.2012.2233468] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The field of tissue engineering has been growing in the recent years as more products have made it to the market and as new uses for the engineered tissues have emerged, motivating many researchers to engage in this multidisciplinary field of research. Engineered tissues are now not only considered as end products for regenerative medicine, but also have emerged as enabling technologies for other fields of research ranging from drug discovery to biorobotics. This widespread use necessitates a variety of methodologies for production of tissue engineered constructs. In this review, these methods together with their non-clinical applications will be described. First, we will focus on novel materials used in tissue engineering scaffolds; such as recombinant proteins and synthetic, self assembling polypeptides. The recent advances in the modular tissue engineering area will be discussed. Then scaffold-free production methods, based on either cell sheets or cell aggregates will be described. Cell sources used in tissue engineering and new methods that provide improved control over cell behavior such as pathway engineering and biomimetic microenvironments for directing cell differentiation will be discussed. Finally, we will summarize the emerging uses of engineered constructs such as model tissues for drug discovery, cancer research and biorobotics applications.
Collapse
Affiliation(s)
- Pinar Zorlutuna
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA.
| | | | | |
Collapse
|
38
|
Wang F, Li Z, Guan J. Fabrication of mesenchymal stem cells-integrated vascular constructs mimicking multiple properties of the native blood vessels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:769-83. [PMID: 23594067 DOI: 10.1080/09205063.2012.712029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs)-populated small diameter (6 mm) vascular constructs were fabricated. The constructs mimicked the native vessels in multiple levels, i.e. having similar structure and morphology to that of the extracellular matrix in the native blood vessels; recapitulating mechanical properties such as compliance and burst pressure of the native blood vessels; simulating the highly cellularized nature of the native blood vessels; and having an antithrombogenic lumen. The constructs were fabricated by simultaneously assembling poly(ester carbonate urethane) urea nanofibers and MSCs in an electrical field. The nanofibers had a diameter similar to that of the collagen and elastin fibers in the native blood vessels. MSCs were distributed evenly in the constructs. The constructs were highly cellularized when the cell loading density was exceeded 6 million/ml. The vascular constructs were strong and flexible with breaking strains of 144-202%, tensile strengths of 0.80-1.29 MPa, compliances of 13.23-21.96 × 10(-4 )mmHg(-1), stiffness indexes of 7.3-9.8, and burst pressures greater than 1700 mmHg. These mechanical properties were similar to those of the native blood vessels. In vitro platelet deposition experiments showed that platelet adhesion was remarkably decreased in the MSCs-populated constructs compared to that in the construct without MSCs. An increase in MSC density in the constructs further decreased platelet adhesion. When cultured in a spinner flask, MSCs maintained their mitochondria viability and cell number during a two-week culture period, as confirmed by MTT and dsDNA assays. These vascular constructs may hold the potential to regenerate functional small diameter vessels for cardiovascular tissue repair.
Collapse
Affiliation(s)
- Feng Wang
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | | | | |
Collapse
|