1
|
Jin S, Huang J, Dong Y, Hu D, Sun J, Li Z, Zhong BY, Liu Z, Zhu R, Wang G. Ultrastable PLGA-Coated 177Lu-Microspheres for Radioembolization Therapy of Hepatocellular Carcinoma. Mol Pharm 2024; 21:3407-3415. [PMID: 38822792 DOI: 10.1021/acs.molpharmaceut.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Transarterial radioembolization (TARE) is a highly effective localized radionuclide therapy that has been successfully used to treat hepatocellular carcinoma (HCC). Extensive research has been conducted on the use of radioactive microspheres (MSs) in TARE, and the development of ideal radioactive MSs is crucial for clinical trials and patient treatment. This study presents the development of a radioactive MS for TARE of HCC. These MSs, referred to as 177Lu-MS@PLGA, consist of poly(lactic-co-glycolic acid) (PLGA) copolymer and radioactive silica MSs, labeled with 177Lu and then coated with PLGA. It has an extremely high level of radiostability. Cellular experiments have shown that it can cause DNA double-strand breaks, leading to cell death. In vivo radiostability of 177Lu-MS@PLGA is demonstrated by microSPECT/CT imaging. In addition, the antitumor study has shown that TARE of 177Lu-MS@PLGA can effectively restrain tumor growth without harmful side effects. Thus, 177Lu-MS@PLGA exhibits significant potential as a radioactive MS for the treatment of HCC.
Collapse
Affiliation(s)
- Shuo Jin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jintao Huang
- Department of Interventional Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yi Dong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Di Hu
- Department of Interventional Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jing Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhihao Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Bin-Yan Zhong
- Department of Interventional Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhiyong Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ran Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Ciołek L, Krok-Borkowicz M, Gąsiński A, Biernat M, Antosik A, Pamuła E. Bioactive Glasses Enriched with Strontium or Zinc with Different Degrees of Structural Order as Components of Chitosan-Based Composite Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2023; 15:3994. [PMID: 37836043 PMCID: PMC10575023 DOI: 10.3390/polym15193994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The development of innovative biomaterials with improved integration with bone tissue and stimulating regeneration processes is necessary. Here, we evaluate the usefulness of bioactive glasses from the SiO2-P2O5-CaO system enriched with 2 wt.% SrO or ZnO in the manufacturing of chitosan-based scaffolds. Bioglasses produced using the sol-gel method were subjected to thermal treatment in different regimes. Chitosan/bioglass composites were produced with a weight ratio. Bioglasses were evaluated via TG-DTA, FTIR, and SEM-EDS before and after incubation in simulated body fluid (SBF). The release of ions was tested. The cytocompatibility of the composites in contact with MG63 osteoblast-like cells was evaluated. The results showed that the presence of the crystalline phase decreased from 41.2-44.8% for nonmodified bioglasses to 24.2-24.3% for those modified with ZnO and 22.0-24.2% for those modified with SrO. The samples released Ca2+, Zn2+, and/or Sr2+ ions and were bioactive according to the SBF test. The highest cytocompatibility was observed for the composites containing nonmodified bioglasses, followed by those enriched with SrO bioglasses. The least cytocompatible were the composites containing ZnO bioglasses that released the highest amount of Zn2+ ions (0.58 ± 0.07 mL/g); however, those that released 0.38 ± 0.04 mL/g were characterised by acceptable cytocompatibility. The study confirmed that it is feasible to control the biological performance of chitosan/bioglass composites by adjusting the composition and heat treatment parameters of bioglasses.
Collapse
Affiliation(s)
- Lidia Ciołek
- Biomaterials Research Group, Łukasiewicz Research Network—Institute of Ceramic and Building Materials, 31-983 Kraków, Poland;
| | - Małgorzata Krok-Borkowicz
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland;
| | - Arkadiusz Gąsiński
- Ceramics Research Group, Łukasiewicz Research Network—Institute of Ceramic and Building Materials, 31-983 Kraków, Poland; (A.G.); (A.A.)
| | - Monika Biernat
- Biomaterials Research Group, Łukasiewicz Research Network—Institute of Ceramic and Building Materials, 31-983 Kraków, Poland;
| | - Agnieszka Antosik
- Ceramics Research Group, Łukasiewicz Research Network—Institute of Ceramic and Building Materials, 31-983 Kraków, Poland; (A.G.); (A.A.)
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland;
| |
Collapse
|
3
|
Łukowicz K, Zagrajczuk B, Truchan K, Niedzwiedzki Ł, Cholewa-Kowalska K, Osyczka AM. Chemical Compounds Released from Specific Osteoinductive Bioactive Materials Stimulate Human Bone Marrow Mesenchymal Stem Cell Migration. Int J Mol Sci 2022; 23:ijms23052598. [PMID: 35269740 PMCID: PMC8909964 DOI: 10.3390/ijms23052598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 01/12/2023] Open
Abstract
In this work, a poly(L-lactide-co-glycolide) (PLGA)-based composite was enriched with one of the following sol-gel bioactive glasses (SBG) at 50 wt.%: A1—40 mol% SiO2, 60 mol% CaO, CaO/SiO2 ratio of 1.50; S1—80 mol% SiO2, 20 mol% CaO, CaO/SiO2 ratio of 0.25; A2—40 mol% SiO2, 54 mol% CaO, 6 mol% P2O5, CaO/SiO2 ratio of 1.35; S2—80 mol% SiO2,16 mol% CaO, 4 mol% P2O5, CaO/SiO2 ratio of 0.20. The composites and PLGA control sheets were then soaked for 24 h in culture media, and the obtained condition media (CM) were used to treat human bone marrow stromal cells (hBMSCs) for 72 h. All CMs from the composites increased ERK 1/2 activity vs. the control PLGA CM. However, expressions of cell migration-related c-Fos, osteopontin, matrix metalloproteinase-2, C-X-C chemokine receptor type 4, vascular endothelial growth factor, and bone morphogenetic protein 2 were significantly increased only in cells treated with the CM from the A1/PLGA composite. This CM also significantly increased the rate of human BMSC migration but did not affect cell metabolic activity. These results indicate important biological markers that are upregulated by products released from the bioactive composites of a specific chemical composition, which may eventually prompt osteoprogenitor cells to colonize the bioactive material and accelerate the process of tissue regeneration.
Collapse
Affiliation(s)
- Krzysztof Łukowicz
- Department Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (K.Ł.); (K.T.)
| | - Barbara Zagrajczuk
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland; (B.Z.); (K.C.-K.)
| | - Karolina Truchan
- Department Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (K.Ł.); (K.T.)
| | - Łukasz Niedzwiedzki
- Department of Orthopedics and Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, Kopernika 19e, 31-501 Krakow, Poland;
| | - Katarzyna Cholewa-Kowalska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland; (B.Z.); (K.C.-K.)
| | - Anna M. Osyczka
- Department Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (K.Ł.); (K.T.)
- Correspondence:
| |
Collapse
|
4
|
Bargavi P, Chandran RR, Durgalakshmi D, Rajashree P, Ramya R, Balakumar S. Drug infused Al 2O 3-bioactive glass coatings toward the cure of orthopedic infection. Prog Biomater 2022; 11:79-94. [PMID: 35094302 DOI: 10.1007/s40204-022-00181-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022] Open
Abstract
A unique implant coated substrate with dual-drug-eluting system exhibiting antibacterial, anti-inflammatory, and bone regenerative capacity has been fabricated using spray pyrolysis deposition (SPD) method. Bioglass (BG) and BG-alumina (BG-Al) composites coatings with different concentrations of Al incorporated on BG network over the Cp-Ti substrate were fabricated using SPD technique. Phase purity of BG and BG-Al composites were analyzed by XRD in which Na2Ca2Si3O9 and β-Na2Ca4(PO4)2SiO4) and Na7.15(Al7.2Si8.8O32) phases were formed. Surface morphology of the coated substrates was analyzed by SEM. Uniformity of the coatings were evaluated by surface profilometer and the uniform distribution the nanoparticles were confirmed with Elemental mapping. Systematically, each apatite layer formation on coated substrate was confirmed by immersing the samples for 1, 3, and 7 days in simulated body fluid and the needle-like structure was characterized using SEM. Cumulative release of Tetracycline hydrochloride (Tet) antibiotic and Dexamethasone (Dex) anti-inflammatory drug-loaded BG-Al and BG-Al composite-coated substrate were studied for 24 h. Antibacterial activity of the coated substrates were evaluated by time-dependent growth inhibition and minimal inhibitory concentration (MIC) assays in which BG-Al and BG-Al composite loaded with Tet showed considerable growth inhibition against S. aureus. Osteoblast-like cells (MG-63) exhibited profound proliferation with no cytotoxic effects which was due to release of Dex drug-coated substrates. Thus, surface modification of Cp-Ti substrate with BG, BG-Al composites coatings loaded with Tet and Dex drug can be considered for post-operative orthopedic implant infection application.
Collapse
Affiliation(s)
- P Bargavi
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - R Riju Chandran
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - D Durgalakshmi
- Department of Medical Physics, Anna University, Chennai, 600 025, India
| | - P Rajashree
- CAS in Crystallography & Biophysics, University of Madras, Guindy campus, Chennai, 600 025, India
| | - R Ramya
- Saveetha Dental College & Hospitals, SIMTS, Poonamallee High Road, Chennai, 600089, India
| | - S Balakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, 600 025, India.
| |
Collapse
|
5
|
Klara J, Marczak A, Łatkiewicz A, Horak W, Lewandowska-Łańcucka J. Lysine-functionalized chondroitin sulfate improves the biological properties of collagen/chitosan-based injectable hydrogels. Int J Biol Macromol 2022; 202:318-331. [PMID: 35038473 DOI: 10.1016/j.ijbiomac.2022.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 11/18/2022]
Abstract
Novel bioactive collagen/chitosan/lysine-functionalized chondroitin sulfate (CSmod) injectable hydrogels are presented. The modification of CS with amine groups introduced with lysine moieties (the degree of substitution about 21%) guarantees its covalent binding with the hydrogel network while genipin crosslinking. Both the physicochemical and biological features of developed hydrogels might be adjusted by playing with CSmod and crosslinking agent concentrations. It was revealed that materials became more hydrophobic with increased CSmod content, while crosslinking degree and enzymatic degradation studies established the influence of CSmod concentration and Ch:CSmod ratio on the crosslinking process. In situ rheological experiments verified the injectability of resulted systems. The biological in vitro evaluation demonstrated that all designed materials are biocompatible as they supported proliferation and adhesion of MG-63 cell line. In vitro biomineralization study employing simulated body fluid model revealed CSmod-content dependent bioactivity of obtained hydrogels. Importantly for pristine collagen/chitosan materials, the formation of apatite-like structures was not observed. Our findings demonstrate that developed injectable ColChCSmod hydrogels particularly system with the greatest CSmod concentration exhibits high bioactive potential, without the need of applying additional inducers what renders them promising materials within tissue engineering applications.
Collapse
Affiliation(s)
- Joanna Klara
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Adrianna Marczak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Anna Łatkiewicz
- Laboratory of Field Emission Scanning Electron Microscopy and Microanalysis at the Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland
| | - Wojciech Horak
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | | |
Collapse
|
6
|
El Khatib M, Russo V, Prencipe G, Mauro A, Wyrwa R, Grimm G, Di Mattia M, Berardinelli P, Schnabelrauch M, Barboni B. Amniotic Epithelial Stem Cells Counteract Acidic Degradation By-Products of Electrospun PLGA Scaffold by Improving Their Immunomodulatory Profile In Vitro. Cells 2021; 10:cells10113221. [PMID: 34831443 PMCID: PMC8623927 DOI: 10.3390/cells10113221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/25/2022] Open
Abstract
Electrospun poly(lactic-co-glycolic acid) (PLGA) scaffolds with highly aligned fibers (ha-PLGA) represent promising materials in the field of tendon tissue engineering (TE) due to their characteristics in mimicking fibrous extracellular matrix (ECM) of tendon native tissue. Among these properties, scaffold biodegradability must be controlled allowing its replacement by a neo-formed native tendon tissue in a controlled manner. In this study, ha-PLGA were subjected to hydrolytic degradation up to 20 weeks, under di-H2O and PBS conditions according to ISO 10993-13:2010. These were then characterized for their physical, morphological, and mechanical features. In vitro cytotoxicity tests were conducted on ovine amniotic epithelial stem cells (oAECs), up to 7 days, to assess the effect of non-buffered and buffered PLGA by-products at different concentrations on cell viability and their stimuli on oAECs’ immunomodulatory properties. The ha-PLGA scaffolds degraded slowly as evidenced by a slight decrease in mass loss (14%) and average molecular weight (35%), with estimated degradation half-time of about 40 weeks under di-H2O. The ultrastructure morphology of the scaffolds showed no significant fiber degradation even after 20 weeks, but alteration of fiber alignment was already evident at week 1. Moreover, mechanical properties decreased throughout the degradation times under wet as well as dry PBS conditions. The influence of acid degradation media on oAECs was dose-dependent, with a considerable effect at 7 days’ culture point. This effect was notably reduced by using buffered media. To a certain level, cells were able to compensate the generated inflammation-like microenvironment by upregulating IL-10 gene expression and favoring an anti-inflammatory rather than pro-inflammatory response. These in vitro results are essential to better understand the degradation behavior of ha-PLGA in vivo and the effect of their degradation by-products on affecting cell performance. Indeed, buffering the degradation milieu could represent a promising strategy to balance scaffold degradation. These findings give good hope with reference to the in vivo condition characterized by physiological buffering systems.
Collapse
Affiliation(s)
- Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (V.R.); (A.M.); (M.D.M.); (P.B.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (V.R.); (A.M.); (M.D.M.); (P.B.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (V.R.); (A.M.); (M.D.M.); (P.B.); (B.B.)
- Correspondence:
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (V.R.); (A.M.); (M.D.M.); (P.B.); (B.B.)
| | - Ralf Wyrwa
- Department of Biomaterials, INNOVENT e.V., 07745 Jena, Germany; (R.W.); (G.G.); (M.S.)
| | - Gabriele Grimm
- Department of Biomaterials, INNOVENT e.V., 07745 Jena, Germany; (R.W.); (G.G.); (M.S.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (V.R.); (A.M.); (M.D.M.); (P.B.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (V.R.); (A.M.); (M.D.M.); (P.B.); (B.B.)
| | | | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (V.R.); (A.M.); (M.D.M.); (P.B.); (B.B.)
| |
Collapse
|
7
|
Advances in the Fabrication of Scaffold and 3D Printing of Biomimetic Bone Graft. Ann Biomed Eng 2021; 49:1128-1150. [PMID: 33674908 DOI: 10.1007/s10439-021-02752-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/14/2021] [Indexed: 12/26/2022]
Abstract
The need for bone grafts is tremendous, and that leads to the use of autograft, allograft, and bone graft substitutes. The biology of the bone is quite complex regarding cellular composition and architecture, hence developing a mineralized connective tissue graft is challenging. Traditionally used bone graft substitutes including metals, biomaterial coated metals and biodegradable scaffolds, suffer from persistent limitations. With the advent and rise of additive manufacturing technologies, the future of repairing bone trauma and defects seems to be optimistic. 3D printing has significant advantages, the foremost of all being faster manipulation of various biocompatible materials and live cells or tissues into the complex natural geometries necessary to mimic and stimulate cellular bone growth. The advent of new-generation bioprinters working with high-precision, micro-dispensing and direct digital manufacturing is aiding in ground-breaking organ and tissue printing, including the bone. The future bone replacement for patients holds excellent promise as scientists are moving closer to the generation of better 3D printed bio-bone grafts that will be safer and more effective. This review aims to summarize the advances in scaffold fabrication techniques, emphasizing 3D printing of biomimetic bone grafts.
Collapse
|
8
|
Kaczmarek B, Miłek O, Michalska-Sionkowska M, Zasada L, Twardowska M, Warżyńska O, Kleszczyński K, Osyczka AM. Novel Eco-Friendly Tannic Acid-Enriched Hydrogels-Preparation and Characterization for Biomedical Application. MATERIALS 2020; 13:ma13204572. [PMID: 33066572 PMCID: PMC7602252 DOI: 10.3390/ma13204572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022]
Abstract
Sodium alginate and tannic acid are natural compounds that can be mixed with each other. In this study, we propose novel eco-friendly hydrogels for biomedical applications. Thus, we conducted the following assessments including (i) observation of the structure of hydrogels by scanning electron microscope; (ii) bioerosion and the concentration of released tannic acid from subjected material; (iii) dehydrogenase activity assay to determine antibacterial activity of prepared hydrogels; and (iv) blood and cell compatibility. The results showed that hydrogels based on sodium alginate/tannic acid exert a porous structure. The immersion in simulated body fluid (SBF) results in the biomineralization process occurring on their surface while the bioerosion studies revealed that the addition of tannic acid improves hydrogels’ stability proportional to its concentration. Besides, tannic acid release concentration depends on the type of hydrogels and the highest amount was noticed for those based on sodium alginate with the content of 30% tannic acid. Antibacterial activity of hydrogels was proven for both Gram-negative and Gram-positive bacteria, the hemolysis rate was below 5% and the viability of the cells was elevated with an increasing amount of tannic acid in hydrogels. Collectively, we assume that obtained materials make the imperative to consider them for biomedical applications.
Collapse
Affiliation(s)
- Beata Kaczmarek
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (L.Z.); (M.T.)
- Correspondence: ; Tel.: +48-56-611-4833
| | - Oliwia Miłek
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Kraków, Poland; (O.M.); (A.M.O.)
| | - Marta Michalska-Sionkowska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.M.-S.); (O.W.)
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (L.Z.); (M.T.)
| | - Marta Twardowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (L.Z.); (M.T.)
| | - Oliwia Warżyńska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.M.-S.); (O.W.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany;
| | - Anna Maria Osyczka
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Kraków, Poland; (O.M.); (A.M.O.)
| |
Collapse
|
9
|
Arbade GK, Srivastava J, Tripathi V, Lenka N, Patro TU. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1648-1670. [PMID: 32402230 DOI: 10.1080/09205063.2020.1769799] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, poly(ε-caprolactone) (PCL) has been blended with a more hydrophilic poly(ethylene glycol) (PEG) and with a biocompatible block-co-polymer: poly(L-lactide-co-ε-caprolactone-co-glycolide) (PLCG) in order to improve hydrophilicity, biocompatibility and biodegradability of PCL. PCL and the blend solutions were subjected to electrospinning to produce nanofiber scaffolds by the addition of only 1 wt% of PEG and PLCG either singly or in combination in PCL to retain the mechanical properties of the scaffolds. PCL-PEG-PLCG ternary and two binary (PCL-PEG and PCL-PLCG) blend nanofiber scaffolds have been prepared for comparison. The resulting nanofibers showed a smooth and flaw-free surface and the diameter of the nanofibers displayed a normal distribution. The PCL-PEG nanofiber scaffold showed improved hydrophilicity [water contact angle (WCA) ∼84°] over pristine PCL (WCA ∼127°); while PCL-PLCG and PCL-PEG-PLCG scaffolds exhibited absolute wetting by water, likely due to high porosity. In vitro biocompatibility studies using gingival mesenchymal stem cells (gMSCs) suggested that, both the PCL and the blend scaffolds were biocompatible supporting cell-viability and growth of gMSCs following their seeding on these scaffolds. Biodegradation studies in phosphate buffer solution showed that the addition of PEG and PLCG in PCL increased the weight loss of scaffolds with time, indicating higher extent of biodegradation in the blend scaffolds and the weight loss followed the power law curve with time.
Collapse
Affiliation(s)
- Gajanan Kashinathrao Arbade
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Pune, Maharashtra, India.,National Centre for Cell Science, Pune, Maharashtra, India
| | | | | | - Nibedita Lenka
- National Centre for Cell Science, Pune, Maharashtra, India
| | - T Umasankar Patro
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Pune, Maharashtra, India
| |
Collapse
|
10
|
Wu P, Wang Y, Sun D, Luo Y, Chen C, Tang Z, Liao Y, Cao X, Xu L, Cheng C, Liu W, Liang X. In-vivo histocompatibility and osteogenic potential of biodegradable PLDLA composites containing silica-based bioactive glass fiber. J Biomater Appl 2020; 35:59-71. [PMID: 32233716 DOI: 10.1177/0885328220911598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The purpose of this two-year study was to evaluate the histocompatibility and osteogenic properties of a composite material consisting of poly(l-co-d,l lactide) (PLDLA) and silica-based bioactive glass fibers in vivo. PLDLA and PLDLA/silica-based bioactive glass fibers pins were implanted into the erector spinae muscles and femurs of beagles. Muscle and bone tissue samples were harvested 6, 12, 16, 26, 52, 78, and 104 weeks after implantation. Histology analysis was used to assess the histocompatibility, angiogenesis, and bone-implant contact. Micro-computed tomography was used to evaluate bone formation around the pins. Immunohistochemistry and western blotting revealed the expression level of the osteogenesis-related proteins. Addition of bioactive glass was demonstrated to possess better histocompatibility and reduce the inflammatory reactions in vivo. Moreover, PLDLA/silica-based bioactive glass fibers pins were demonstrated to promote angiogenesis and increase osteogenesis-related proteins expression, and thus played a positive role in osteogenesis and osseointegration after implantation. Our findings indicated that a composite of PLDLA and silica-based bioactive glass fiber is a promising biodegradable material for clinical use.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongyuan Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Youran Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ziqing Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunmao Liao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Xiaoyan Cao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Lijun Xu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
| | - Chengkung Cheng
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Weiqing Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xing Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Wang Y, Wu P, Sun D, Luo Y, Chen C, Tang Z, Liao Y, Cao X, Cheng C, Liu W, Liang X. Mechanical and degradative properties of PLDLA biodegradable pins with bioactive glass fibers in a beagle model. ACTA ACUST UNITED AC 2020; 15:035010. [PMID: 32066131 DOI: 10.1088/1748-605x/ab772d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study aimed to evaluate the mechanical and degradative properties of poly(L-co-D,L-lactic acid)/silicate bioactive glass fibers (PLDLA/SGFs) composite pins in vivo. Both PLDLA and PLDLA/SGFs pins were inserted into the erector spinae muscles and femurs of beagle dogs and were harvested 6, 12, 16, 26, 52, 78, and 104 weeks after insertion. Bone formation around the pins was evaluated by micro-computed tomography. Mechanical properties were measured by the shear strength test. Thermogravimetric analysis, differential scanning calorimetry, and gel permeation chromatography were used to assess the degradation of these materials. The surface and cross-sectional morphology of both pins were observed using a scanning electron microscope. The experimental data demonstrated that PLDLA/SGFs pins can support new bone formation due to the influence of bioactive glass fibers. PLDLA/SGFs composite pins had higher initial shear strength and were relatively stable for at least 26 weeks. The addition of bioactive glass fibers accelerated the degradation rate of the composite pins. Thus, PLDLA/SGFs composite pins have promising potential for bone fixation applications.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Qi J, Zhang T, Xiao J, Zhang Q, Xiong C. The effect of ethenyltrimethoxysilane modification of nano bioactive glass on the physiochemical and mechanical properties and in vitro bioactivity of poly(lactide- co-glycolide)/poly(trimethylene carbonate) composite. NEW J CHEM 2020. [DOI: 10.1039/d0nj03859h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The new biodegradable PLGA/PTMC/YDH-NBG composite with excellent mechanical properties and good in vitro bioactivity.
Collapse
Affiliation(s)
- Jin Qi
- Chengdu Institute of Organical Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
- University of the Chinese Academy of Sciences
| | - Tianyao Zhang
- Chengdu Institute of Organical Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| | - Jianping Xiao
- Chengdu Institute of Organical Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| | - Qianmao Zhang
- Chengdu Institute of Organical Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| | - Chengdong Xiong
- Chengdu Institute of Organical Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| |
Collapse
|
13
|
The role of CaO/SiO 2 ratio and P 2O 5 content in gel-derived bioactive glass-polymer composites in the modulation of their bioactivity and osteoinductivity in human BMSCs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110535. [PMID: 32228933 DOI: 10.1016/j.msec.2019.110535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/19/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
We obtained a range of PLGA-based composites containing sol-gel bioactive glasses (SBG) from the SiO2-CaO and SiO2-CaO-P2O5 systems. Eight SBGs with different CaO/SiO2 ratios with and without P2O5 were incorporated at 50% w/w to PLGA matrix and structured into thin films suitable for cell culture. The SBG/PLGA composites were examined for their bioactivity in simulated body fluid (SBF), ion release profile in culture media with and without cells, and osteoinductivity in standard human bone marrow stromal cell (hBMSC) cultures without osteogenic growth factors. Our results indicate different surface activity of composites depending on the presence/absence of P2O5 in SBG composition. Furthermore, ion release profile to culture medium differed depending on the presence/absence of cells. Direct culture of hBMSC on the SiO2-CaO/PLGA composite films resulted in elevated Runx-2 mRNA, opposite to low Runx-2 mRNA levels on SiO2-CaO-P2O5/PLGA films. All studied composites increased Osx mRNA levels. Whereas some of SiO2-CaO/PLGA composites did not elevate BMP-2 and -6 proteins in hBMSC cultures, high levels of these BMPs were present in all cultures on SiO2-CaO-P2O5/PLGA composites. All composites induced BMP-related Tak1 signalling, whereas Smad1 signalling was restricted mostly to composites containing three-component SBGs. ALP activity of hBMSC and BMP-related luciferase activity of mouse BRITE cells differed depending on whether the cells were stimulated with culture medium conditioned with SBG/PLGA composites or the cells were directly cultured on the composite surfaces. Altogether, beyond bioactivity and osteoinductivity of SBG/PLGA composites, our studies show key differences in the biological response to both the bioactive material dissolution products and upon direct cell-material contacts.
Collapse
|
14
|
Magri AMP, Fernandes KR, Kido HW, Fernandes GS, Fermino SDS, Gabbai-Armelin PR, Braga FJC, Góes CP, Prado JLDS, Neves Granito R, Rennó ACM. Bioglass/PLGA associated to photobiomodulation: effects on the healing process in an experimental model of calvarial bone defect. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:105. [PMID: 31494718 DOI: 10.1007/s10856-019-6307-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Bioactive glasses (BG) are known for their ability to bond to bone tissue. However, in critical situations, even the osteogenic properties of BG may be not enough to induce bone consolidation. Thus, the enrichment of BG with polymers such as Poly (D, L-lactic-co-glycolic) acid (PLGA) and associated to photobiomodulation (PBM) may be a promising strategy to promote bone tissue healing. The aim of the present study was to investigate the in vivo performance of PLGA supplemented BG, associated to PBM therapy, using an experimental model of cranial bone defect in rats. Rats were distributed in 4 different groups (Bioglass, Bioglass/PBM, Bioglas/PLGA and BG/PLGA/PBM). After the surgical procedure to induce cranial bone defects, the pre-set samples were implanted and PBM treatment (low-level laser therapy) started (808 nm, 100 mW, 30 J/cm2). After 2 and 6 weeks, animals were euthanized, and the samples were retrieved for the histopathological, histomorphometric, picrosirius red staining and immunohistochemistry analysis. At 2 weeks post-surgery, it was observed granulation tissue and areas of newly formed bone in all experimental groups. At 6 weeks post-surgery, BG/PLGA (with or without PBM) more mature tissue around the biomaterial particles. Furthermore, there was a higher deposition of collagen for BG/PLGA in comparison with BG/PLGA/PBM, at second time-point. Histomorphometric analysis demonstrated higher values of BM.V/TV for BG compared to BG/PLGA (2 weeks post-surgery) and N.Ob/T.Ar for BG/PLGA compared to BG and BG/PBM (6 weeks post-surgery). This current study concluded that the use of BG/PLGA composites, associated or not to PBM, is a promising strategy for bone tissue engineering.
Collapse
Affiliation(s)
- Angela Maria Paiva Magri
- Federal University of São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil.
- University Center of the Guaxupé Educational Foundation (UNIFEG), Avenida Dona Floriana, Guaxupé, MG, 37800000, Brazil.
| | | | - Hueliton Wilian Kido
- Federal University of São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| | | | | | | | | | - Cíntia Pereirade Góes
- Federal University of São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| | | | - Renata Neves Granito
- Federal University of São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| | - Ana Claudia Muniz Rennó
- Federal University of São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| |
Collapse
|
15
|
Michalska J, Sowa M, Piotrowska M, Widziołek M, Tylko G, Dercz G, Socha RP, Osyczka AM, Simka W. Incorporation of Ca ions into anodic oxide coatings on the Ti-13Nb-13Zr alloy by plasma electrolytic oxidation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109957. [PMID: 31500028 DOI: 10.1016/j.msec.2019.109957] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Accepted: 07/05/2019] [Indexed: 01/04/2023]
Abstract
The present work concerns the surface modification of The Ti-13Nb-13Zr alloy by electropolishing and plasma electrolytic oxidation (PEO) process in Ca-containing electrolytes: calcium formate and calcium lactate solutions (0.1-1.0 mol dm-3) under voltages of 200 and 400 V. As a result of the PEO process, a porous oxide layer containing incorporated calcium compounds was formed on the Ti-13Nb-13Zr alloy surface. The morphology and chemical composition of the modified Ti-13Nb-13Zr alloy were investigated using scanning electron microscopy (SEM + EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). An increase in the applied voltage caused an increase in the number of pores and an increase in the amount of calcium incorporated in the oxide layer. Analysis showed that all samples were covered by titanium oxide, which was present in the form of anatase and/or rutile. In course of the experiments, it was showed that the proposed procedure has a positive effect on the overall bioactivity of the Ti-13Nb-13Zr alloy. Bioactivity investigations using simulated body fluid (SBF) confirmed the formation of apatite on the anodized surfaces. The cell adhesion results obtained by the use of human bone marrow mesenchymal stem cells (hBMSC) demonstrated that the PEO coatings on the Ti-13Nb-13Zr alloy remarkably enhanced the cytocompatibility of the substrate, indicating a potential application in orthopedic surgeries. The incorporation of Ca into the oxide layer proceeded to a higher extent when the PEO treatment was performed in the calcium lactate bath. The oxide layers formed in the calcium lactate solution exhibited also superior biological behavior towards hBMSC. This can be ascribed to the presence of carboxylic groups onto coatings' surface (as identified by XPS), which facilitated the anchoring of cells and tissues.
Collapse
Affiliation(s)
- Joanna Michalska
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice, Poland.
| | - Maciej Sowa
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice, Poland
| | - Magdalena Piotrowska
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice, Poland
| | - Magdalena Widziołek
- Faculty of Biology and Earth Sciences, Jagiellonian University, Gronostajowa Street 9, 30-060 Kraków, Poland
| | - Grzegorz Tylko
- Faculty of Biology and Earth Sciences, Jagiellonian University, Gronostajowa Street 9, 30-060 Kraków, Poland
| | - Grzegorz Dercz
- Institute of Materials Science, University of Silesia, 75 Pułku Piechoty Street 1a, 41-500 Chorzów, Poland
| | - Robert P Socha
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Niezapominajek 8 Street, 30-239 Krakow, Poland
| | - Anna M Osyczka
- Faculty of Biology and Earth Sciences, Jagiellonian University, Gronostajowa Street 9, 30-060 Kraków, Poland
| | - W Simka
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice, Poland; Osteoplant Research and Development, Metalowców 25, 39-200 Dębica, Poland
| |
Collapse
|
16
|
Gritsch L, Conoscenti G, La Carrubba V, Nooeaid P, Boccaccini AR. Polylactide-based materials science strategies to improve tissue-material interface without the use of growth factors or other biological molecules. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:1083-1101. [DOI: 10.1016/j.msec.2018.09.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/14/2018] [Accepted: 09/11/2018] [Indexed: 01/11/2023]
|
17
|
Alizadeh-Osgouei M, Li Y, Wen C. A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact Mater 2018; 4:22-36. [PMID: 30533554 PMCID: PMC6258879 DOI: 10.1016/j.bioactmat.2018.11.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
The application of various materials in biomedical procedures has recently experienced rapid growth. One area that is currently receiving significant attention from the scientific community is the treatment of a number of different types of bone-related diseases and disorders by using biodegradable polymer-ceramic composites. Biomaterials, the most common materials used to repair or replace damaged parts of the human body, can be categorized into three major groups: metals, ceramics, and polymers. Composites can be manufactured by combining two or more materials to achieve enhanced biocompatibility and biomechanical properties for specific applications. Biomaterials must display suitable properties for their applications, about strength, durability, and biological influence. Metals and their alloys such as titanium, stainless steel, and cobalt-based alloys have been widely investigated for implant-device applications because of their excellent mechanical properties. However, these materials may also manifest biological issues such as toxicity, poor tissue adhesion and stress shielding effect due to their high elastic modulus. To mitigate these issues, hydroxyapatite (HA) coatings have been used on metals because their chemical composition is similar to that of bone and teeth. Recently, a wide range of synthetic polymers such as poly (l-lactic acid) and poly (l-lactide-co-glycolide) have been studied for different biomedical applications, owing to their promising biocompatibility and biodegradability. This article gives an overview of synthetic polymer-ceramic composites with a particular emphasis on calcium phosphate group and their potential applications in tissue engineering. It is hoped that synthetic polymer-ceramic composites such as PLLA/HA and PCL/HA will provide advantages such as eliminating the stress shielding effect and the consequent need for revision surgery.
Collapse
Affiliation(s)
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
18
|
Jaroszewicz J, Idaszek J, Choinska E, Szlazak K, Hyc A, Osiecka-Iwan A, Swieszkowski W, Moskalewski S. Formation of calcium phosphate coatings within polycaprolactone scaffolds by simple, alkaline phosphatase based method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:319-328. [PMID: 30606539 DOI: 10.1016/j.msec.2018.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/11/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022]
Abstract
The paper presents a novel approach to the production of calcium phosphate coatings of scaffolds. Mineral deposits were formed during incubation of polycaprolactone (PCL) scaffolds with bovine intestinal alkaline phosphatase in sodium glycerophosphate and calcium chloride medium. To modify hydrophobic surface of scaffolds and intensify attachment of coating, scaffolds were incubated at 50 °C (thermal activation, TA) or at 37 °C after short exposition to lipase (lipase activation, LA). Micro-computed tomography observations demonstrated that both methods resulted in deposition of mineral on the surface of external and internal walls of the scaffolds. Precipitate formed after thermal and lipase activation contained particles with average size of 200-400 nm, and the shape of donuts. In thermal activated PCL coatings X-ray diffraction disclosed peaks typical for hydroxyapatite (HAp), while after lipase activation these peaks could be precisely defined only if left for 6 days in the incubation medium. The Fourier-transform infrared spectroscopy suggested crystalline structure of HAp both after thermal and lipase activation. The adherence of bone marrow mesenchymal stem cells was initially higher on coated than pristine PCL, but during 7 days of culture the cell number increased and was similar on all tested samples. Alkaline phosphatase activity, considered as a sign of osteogenic differentiation, measured on PCL samples after 7 days was 2-3 times lower on pristine PCL than on the coated samples, but after 2 weeks increased significantly and reached similar value as on the calcium phosphate substrates.
Collapse
Affiliation(s)
- Jakub Jaroszewicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland.
| | - Joanna Idaszek
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Emilia Choinska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Karol Szlazak
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Anna Hyc
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Anna Osiecka-Iwan
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Stanislaw Moskalewski
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
19
|
Pawlik J, Ziąbka M, Lach R, Łączka M, Cholewa-Kowalska K. Tailoring the porosity, mechanical and bioactive properties of sol-gel bioactive glasses, hydroxyapatite and titanium dioxide porous composites. J Mech Behav Biomed Mater 2018; 87:40-49. [PMID: 30031362 DOI: 10.1016/j.jmbbm.2018.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Justyna Pawlik
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow, Poland.
| | - Magdalena Ziąbka
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Ceramics and Refractory Materials, 30 Mickiewicza Ave., 30-059 Krakow, Poland
| | - Radosław Lach
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Ceramics and Refractory Materials, 30 Mickiewicza Ave., 30-059 Krakow, Poland
| | - Maria Łączka
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow, Poland
| | - Katarzyna Cholewa-Kowalska
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow, Poland
| |
Collapse
|
20
|
Comparison of Cell Proliferation and Adhesion of Human Osteoblast Differentiated Cells on Electrospun and Freeze-Dried PLGA/Bioglass Scaffolds. ARCHIVES OF NEUROSCIENCE 2018. [DOI: 10.5812/ans.67266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Filipowska J, Lewandowska-Łańcucka J, Gilarska A, Niedźwiedzki Ł, Nowakowska M. In vitro osteogenic potential of collagen/chitosan-based hydrogels-silica particles hybrids in human bone marrow-derived mesenchymal stromal cell cultures. Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2018.02.161] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Toosi S, Behravan N, Behravan J. Nonunion fractures, mesenchymal stem cells and bone tissue engineering. J Biomed Mater Res A 2018; 106:2552-2562. [PMID: 29689623 DOI: 10.1002/jbm.a.36433] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Abstract
Depending on the duration of healing process, 5-10% of bone fractures may result in either nonunion or delayed union. Because nonunions remain a clinically important problem, there is interest in the utilization of tissue engineering strategies to augment bone fracture repair. Three basic biologic elements that are required for bone regeneration include cells, extracellular matrix scaffolds and biological adjuvants for growth, differentiation and angiogenesis. Mesenchymal stem cells (MSCs) are capable to differentiate into various types of the cells including chondrocytes, myoblasts, osteoblasts, and adipocytes. Due to their potential for multilineage differentiation, MSCs are considered important contributors in bone tissue engineering research. In this review we highlight the progress in the application of biomaterials, stem cells and tissue engineering in promoting nonunion bone fracture healing. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2551-2561, 2018.
Collapse
Affiliation(s)
- Shirin Toosi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Behravan
- Exceptionally Talented Students Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Cao J, Lu Y, Chen H, Zhang L, Xiong C. Preparation, properties and in vitro cellular response of multi-walled carbon nanotubes/bioactive glass/poly(etheretherketone) biocomposite for bone tissue engineering. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1455679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jianfei Cao
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Lu
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hechun Chen
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
| | - Lifang Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
| | - Chengdong Xiong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
24
|
Filipowska J, Cholewa-Kowalska K, Wieczorek J, Semik D, Dąbrowski Z, Łączka M, Osyczka AM. Ectopic bone formation by gel-derived bioactive glass-poly-L-lactide-co-glycolide composites in a rabbit muscle model. Biomed Mater 2017; 12:015015. [DOI: 10.1088/1748-605x/aa4eb7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Dziadek M, Stodolak-Zych E, Cholewa-Kowalska K. Biodegradable ceramic-polymer composites for biomedical applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:1175-1191. [PMID: 27987674 DOI: 10.1016/j.msec.2016.10.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/18/2016] [Accepted: 10/13/2016] [Indexed: 01/11/2023]
Abstract
The present work focuses on the state-of-the-art of biodegradable ceramic-polymer composites with particular emphasis on influence of various types of ceramic fillers on properties of the composites. First, the general needs to create composite materials for medical applications are briefly introduced. Second, various types of polymeric materials used as matrices of ceramic-containing composites and their properties are reviewed. Third, silica nanocomposites and their material as well as biological characteristics are presented. Fourth, different types of glass fillers including silicate, borate and phosphate glasses and their effect on a number of properties of the composites are described. Fifth, wollastonite as a composite modifier and its effect on composite characteristics are discussed. Sixth, composites containing calcium phosphate ceramics, namely hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate are presented. Finally, general possibilities for control of properties of composite materials are highlighted.
Collapse
Affiliation(s)
- Michal Dziadek
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow, Poland.
| | - Ewa Stodolak-Zych
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, 30 Mickiewicza Ave., 30-059 Krakow, Poland.
| | - Katarzyna Cholewa-Kowalska
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow, Poland.
| |
Collapse
|
26
|
Lu M, Zhao C, Wang Q, You G, Wang Y, Deng H, Chen G, Xia S, zhao J, Wang B, Li X, Shao L, Wu Y, Zhao L, Zhou H. Preparation, characterization and in vivo investigation of blood-compatible hemoglobin-loaded nanoparticles as oxygen carriers. Colloids Surf B Biointerfaces 2016; 139:171-9. [PMID: 26708138 DOI: 10.1016/j.colsurfb.2015.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/24/2015] [Accepted: 12/07/2015] [Indexed: 12/22/2022]
|
27
|
Filipowska J, Reilly GC, Osyczka AM. A single short session of media perfusion induces osteogenesis in hBMSCs cultured in porous scaffolds, dependent on cell differentiation stage. Biotechnol Bioeng 2016; 113:1814-24. [PMID: 26806539 DOI: 10.1002/bit.25937] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 01/02/2023]
Abstract
Perfusing culture media through porous cell-seeded scaffolds is now a common approach within many tissue engineering strategies. Human bone-marrow derived mesenchymal stem cells (hBMSC) are a clinically valuable source of osteoprogenitors that respond to mechanical stimuli. However, the optimal mechanical conditions for their osteogenic stimulation in vitro have not been defined. Whereas the effects of short durations of media fluid flow have been studied in monolayers of osteoblastic cells, in 3D culture continuous or repeated perfusion is usually applied. Here, we investigated whether a short, single perfusion session applied to hBMSCs cultured in 3D would enhance their osteogenesis in vitro. We cultured hBMSCs on gelatine-coated, porous polyurethane scaffolds with osteogenic supplements and stimulated them with a single 2-h session of unidirectional, steady, 2.5 mL/min media perfusion, at either early or late stages of culture in 3D. Some cells were pre-treated in monolayer with osteogenic supplements to advance cell differentiation, followed by 3D culture also with the osteogenic supplements. We report that this single, short session of media perfusion can markedly enhance the expression of bone-related transcription and growth factors, and matrix components, by hBMSCs but that it is more effective when cells reach the pre-osteoblast or osteoblast differentiation stage. These findings could aid in the optimization of 3D culture protocols for efficient bone tissue engineering. Biotechnol. Bioeng. 2016;113: 1814-1824. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna Filipowska
- Faculty of Biology and Earth Sciences, Department of Cell Biology and Imaging, Jagiellonian University, 30-387 Kraków, Malopolska, Poland
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Anna M Osyczka
- Faculty of Biology and Earth Sciences, Department of Cell Biology and Imaging, Jagiellonian University, 30-387 Kraków, Malopolska, Poland.
| |
Collapse
|
28
|
Gorodzha S, Douglas TEL, Samal SK, Detsch R, Cholewa-Kowalska K, Braeckmans K, Boccaccini AR, Skirtach AG, Weinhardt V, Baumbach T, Surmeneva MA, Surmenev RA. High-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels. J Biomed Mater Res A 2016; 104:1194-201. [DOI: 10.1002/jbm.a.35642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/07/2015] [Accepted: 01/05/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Svetlana Gorodzha
- Department of Experimental Physics; National Research Tomsk Polytechnic University; Russia
| | | | - Sangram K. Samal
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University; Belgium
| | - Rainer Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg; Cauerstr. 6 Erlangen 91058 Germany
| | - Katarzyna Cholewa-Kowalska
- Department of Glass Technology and Amorphous Coatings; AGH University of Science and Technology; Krakow Poland
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University; Belgium
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg; Cauerstr. 6 Erlangen 91058 Germany
| | - Andre G. Skirtach
- Department of Molecular Biotechnology; Coupure Links 653, Ghent University; Belgium
| | - Venera Weinhardt
- Centre for Organismal Studies, University of Heidelberg; Heidelberg Germany
| | - Tilo Baumbach
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Maria A. Surmeneva
- Department of Experimental Physics; National Research Tomsk Polytechnic University; Russia
| | - Roman A. Surmenev
- Department of Experimental Physics; National Research Tomsk Polytechnic University; Russia
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Stuttgart Germany
| |
Collapse
|
29
|
Zhao F, Zhang W, Fu X, Xie W, Chen X. Fabrication and characterization of bioactive glass/alginate composite scaffolds by a self-crosslinking processing for bone regeneration. RSC Adv 2016. [DOI: 10.1039/c6ra18309c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bioactive glass/alginate composite scaffolds were fabricated through a self-crosslinking process by bioactive glass microspheres provided Ca2+completely.
Collapse
Affiliation(s)
- Fujian Zhao
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Wen Zhang
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Xiaoling Fu
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Weihan Xie
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Xiaofeng Chen
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
30
|
Dziadek M, Menaszek E, Zagrajczuk B, Pawlik J, Cholewa-Kowalska K. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:9-21. [DOI: 10.1016/j.msec.2015.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/04/2015] [Accepted: 06/09/2015] [Indexed: 02/06/2023]
|
31
|
TYLKO G. Cells on biomaterials - some aspects of elemental analysis by means of electron probes. J Microsc 2015; 261:185-95. [DOI: 10.1111/jmi.12318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/11/2015] [Indexed: 12/01/2022]
Affiliation(s)
- G. TYLKO
- Department of Cell Biology and Imaging, Institute of Zoology; Jagiellonian University; Krakow Poland
| |
Collapse
|
32
|
Bioactive glass reinforced elastomer composites for skeletal regeneration: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 53:175-88. [DOI: 10.1016/j.msec.2015.04.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/02/2015] [Accepted: 04/21/2015] [Indexed: 01/21/2023]
|
33
|
Haaparanta AM, Uppstu P, Hannula M, Ellä V, Rosling A, Kellomäki M. Improved dimensional stability with bioactive glass fibre skeleton in poly(lactide-co-glycolide) porous scaffolds for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:457-66. [PMID: 26249615 DOI: 10.1016/j.msec.2015.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/01/2015] [Accepted: 07/09/2015] [Indexed: 11/17/2022]
Abstract
Bone tissue engineering requires highly porous three-dimensional (3D) scaffolds with preferable osteoconductive properties, controlled degradation, and good dimensional stability. In this study, highly porous 3D poly(d,l-lactide-co-glycolide) (PLGA) - bioactive glass (BG) composites (PLGA/BG) were manufactured by combining highly porous 3D fibrous BG mesh skeleton with porous PLGA in a freeze-drying process. The 3D structure of the scaffolds was investigated as well as in vitro hydrolytic degradation for 10weeks. The effect of BG on the dimensional stability, scaffold composition, pore structure, and degradation behaviour of the scaffolds was evaluated. The composites showed superior pore structure as the BG fibres inhibited shrinkage of the scaffolds. The BG was also shown to buffer the acidic degradation products of PLGA. These results demonstrate the potential of these PLGA/BG composites for bone tissue engineering, but the ability of this kind of PLGA/BG composites to promote bone regeneration will be studied in forthcoming in vivo studies.
Collapse
Affiliation(s)
- Anne-Marie Haaparanta
- Department of Electronics and Communications Engineering, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland; BioMediTech, Institute of Biosciences and Medical Technology, Biokatu 10, 33520 Tampere, Finland.
| | - Peter Uppstu
- Laboratory of Polymer Technology, Centre of Excellence in Functional Materials at Biological Interfaces, Åbo Akademi University, Biskopsgatan 8, 20500 Åbo, Finland.
| | - Markus Hannula
- Department of Electronics and Communications Engineering, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland; BioMediTech, Institute of Biosciences and Medical Technology, Biokatu 10, 33520 Tampere, Finland.
| | - Ville Ellä
- Department of Electronics and Communications Engineering, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland; BioMediTech, Institute of Biosciences and Medical Technology, Biokatu 10, 33520 Tampere, Finland.
| | - Ari Rosling
- Laboratory of Polymer Technology, Centre of Excellence in Functional Materials at Biological Interfaces, Åbo Akademi University, Biskopsgatan 8, 20500 Åbo, Finland.
| | - Minna Kellomäki
- Department of Electronics and Communications Engineering, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland; BioMediTech, Institute of Biosciences and Medical Technology, Biokatu 10, 33520 Tampere, Finland.
| |
Collapse
|
34
|
Kazek-Kęsik A, Kuna K, Dec W, Widziołek M, Tylko G, Osyczka AM, Simka W. In vitrobioactivity investigations of Ti-15Mo alloy after electrochemical surface modification. J Biomed Mater Res B Appl Biomater 2015; 104:903-13. [DOI: 10.1002/jbm.b.33442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 01/09/2015] [Accepted: 04/07/2015] [Indexed: 11/09/2022]
Affiliation(s)
| | - Karolina Kuna
- Faculty of Chemistry; Silesian University of Technology; Gliwice Poland
| | - Weronika Dec
- Faculty of Energy and Environmental Engineering; Silesian University of Technology; Gliwice Poland
| | - Magdalena Widziołek
- Faculty of Biology and Earth Sciences; Jagiellonian University; Krakow Poland
| | - Grzegorz Tylko
- Faculty of Biology and Earth Sciences; Jagiellonian University; Krakow Poland
| | - Anna M. Osyczka
- Faculty of Biology and Earth Sciences; Jagiellonian University; Krakow Poland
| | - Wojciech Simka
- Faculty of Chemistry; Silesian University of Technology; Gliwice Poland
| |
Collapse
|
35
|
Sowa M, Piotrowska M, Widziołek M, Dercz G, Tylko G, Gorewoda T, Osyczka AM, Simka W. Bioactivity of coatings formed on Ti–13Nb–13Zr alloy using plasma electrolytic oxidation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:159-173. [DOI: 10.1016/j.msec.2014.12.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/09/2014] [Accepted: 12/20/2014] [Indexed: 01/07/2023]
|
36
|
Dumitru AC, Espinosa FM, Garcia R, Foschi G, Tortorella S, Valle F, Dallavalle M, Zerbetto F, Biscarini F. In situ nanomechanical characterization of the early stages of swelling and degradation of a biodegradable polymer. NANOSCALE 2015; 7:5403-5410. [PMID: 25727249 DOI: 10.1039/c5nr00265f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The interactions of a biodegradable scaffold with cells or living tissues depend on the time-evolution of the nanoscale properties of the scaffold. We present an in situ quantitative study on the early-stage swelling and degradation of poly(lactic-co-glycolic acid) (PLGA). A novel metrology scheme based on force microscopy measurements of the patterns of PLGA nanostructures is developed to characterize the evolution of topography, volume and nanomechanical properties. The volume and nanoscale roughness show an oscillating behaviour during the first eight days of immersion; at a later stage, we observe a continuous decrease of the volume. The effective Young's modulus exhibits a monotonic decrease from an initial value of about 2.4 GPa down to 9 MPa at day 14. The oscillating behaviour of the volume before the onset of full degradation is explained by a coupled diffusion-swelling mechanism. The appearance of a second maximum in the volume evolution results from the competition between swelling and degradation.
Collapse
Affiliation(s)
- A C Dumitru
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dziadek M, Pawlik J, Menaszek E, Stodolak-Zych E, Cholewa-Kowalska K. Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds. J Biomed Mater Res B Appl Biomater 2014; 103:1580-93. [DOI: 10.1002/jbm.b.33350] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/20/2014] [Accepted: 12/02/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Michal Dziadek
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics; AGH University of Science and Technology; 30 Mickiewicza Ave. Krakow 30-059 Poland
| | - Justyna Pawlik
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics; AGH University of Science and Technology; 30 Mickiewicza Ave. Krakow 30-059 Poland
| | - Elzbieta Menaszek
- Department of Cytobiology; Collegium Medicum, Jagiellonian University; 9 Medyczna St. Krakow 30-688 Poland
| | - Ewa Stodolak-Zych
- Department of Biomaterials, Faculty of Materials Science and Ceramics; AGH University of Science and Technology; 30 Mickiewicza Ave. Krakow 30-059 Poland
| | - Katarzyna Cholewa-Kowalska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics; AGH University of Science and Technology; 30 Mickiewicza Ave. Krakow 30-059 Poland
| |
Collapse
|
38
|
Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:183-90. [DOI: 10.1016/j.msec.2014.08.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/17/2014] [Accepted: 08/03/2014] [Indexed: 01/08/2023]
|
39
|
Filipowska J, Pawlik J, Cholewa-Kowalska K, Tylko G, Pamula E, Niedzwiedzki L, Szuta M, Laczka M, Osyczka AM. Incorporation of sol–gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Biomed Mater 2014; 9:065001. [DOI: 10.1088/1748-6041/9/6/065001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Douglas TEL, Piwowarczyk W, Pamula E, Liskova J, Schaubroeck D, Leeuwenburgh SCG, Brackman G, Balcaen L, Detsch R, Declercq H, Cholewa-Kowalska K, Dokupil A, Cuijpers VMJI, Vanhaecke F, Cornelissen R, Coenye T, Boccaccini AR, Dubruel P. Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses. Biomed Mater 2014; 9:045014. [PMID: 25065649 DOI: 10.1088/1748-6041/9/4/045014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogels of biocompatible calcium-crosslinkable polysaccharide gellan gum (GG) were enriched with bioglass particles to enhance (i) mineralization with calcium phosphate (CaP); (ii) antibacterial properties and (iii) growth of bone-forming cells for future bone regeneration applications. Three bioglasses were compared, namely one calcium-rich and one calcium-poor preparation both produced by a sol-gel technique (hereafter referred to as A2 and S2, respectively) and one preparation of composition close to that of the commonly used 45S5 type (hereafter referred to as NBG). Incubation in SBF for 7 d, 14 d and 21 d caused apatite formation in bioglass-containing but not in bioglass-free samples, as confirmed by FTIR, XRD, SEM, ICP-OES, and measurements of dry mass, i.e. mass attributable to polymer and mineral and not water. Mechanical testing revealed an increase in compressive modulus in samples containing S2 and NBG but not A2. Antibacterial testing using biofilm-forming meticillin-resistant staphylococcus aureus (MRSA) showed markedly higher antibacterial activity of samples containing A2 and S2 than samples containing NBG and bioglass-free samples. Cell biological characterization using rat mesenchymal stem cells (rMSCs) revealed a stimulatory effect of NBG on rMSC differentiation. The addition of bioglass thus promotes GG mineralizability and, depending on bioglass type, antibacterial properties and rMSC differentiation.
Collapse
Affiliation(s)
- Timothy E L Douglas
- Polymer Chemistry and Biomaterials (PBM) Group, Department of Organic Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Brie IC, Soritau O, Dirzu N, Berce C, Vulpoi A, Popa C, Todea M, Simon S, Perde-Schrepler M, Virag P, Barbos O, Chereches G, Berce P, Cernea V. Comparative in vitro study regarding the biocompatibility of titanium-base composites infiltrated with hydroxyapatite or silicatitanate. J Biol Eng 2014; 8:14. [PMID: 24987458 PMCID: PMC4077223 DOI: 10.1186/1754-1611-8-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/13/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The development of novel biomaterials able to control cell activities and direct their fate is warranted for engineering functional bone tissues. Adding bioactive materials can improve new bone formation and better osseointegration. Three types of titanium (Ti) implants were tested for in vitro biocompatibility in this comparative study: Ti6Al7Nb implants with 25% total porosity used as controls, implants infiltrated using a sol-gel method with hydroxyapatite (Ti HA) and silicatitanate (Ti SiO2). The behavior of human osteoblasts was observed in terms of adhesion, cell growth and differentiation. RESULTS The two coating methods have provided different morphological and chemical properties (SEM and EDX analysis). Cell attachment in the first hour was slower on the Ti HA scaffolds when compared to Ti SiO2 and porous uncoated Ti implants. The Alamar blue test and the assessment of total protein content uncovered a peak of metabolic activity at day 8-9 with an advantage for Ti SiO2 implants. Osteoblast differentiation and de novo mineralization, evaluated by osteopontin (OP) expression (ELISA and immnocytochemistry), alkaline phosphatase (ALP) activity, calcium deposition (alizarin red), collagen synthesis (SIRCOL test and immnocytochemical staining) and osteocalcin (OC) expression, highlighted the higher osteoconductive ability of Ti HA implants. Higher soluble collagen levels were found for cells cultured in simple osteogenic differentiation medium on control Ti and Ti SiO2 implants. Osteocalcin (OC), a marker of terminal osteoblastic differentiation, was most strongly expressed in osteoblasts cultivated on Ti SiO2 implants. CONCLUSIONS The behavior of osteoblasts depends on the type of implant and culture conditions. Ti SiO2 scaffolds sustain osteoblast adhesion and promote differentiation with increased collagen and non-collagenic proteins (OP and OC) production. Ti HA implants have a lower ability to induce cell adhesion and proliferation but an increased capacity to induce early mineralization. Addition of growth factors BMP-2 and TGFβ1 in differentiation medium did not improve the mineralization process. Both types of infiltrates have their advantages and limitations, which can be exploited depending on local conditions of bone lesions that have to be repaired. These limitations can also be offset through methods of functionalization with biomolecules involved in osteogenesis.
Collapse
Affiliation(s)
- Ioana-Carmen Brie
- The Institute of Oncology "Prof. Dr. I. Chiricuta" Cluj-Napoca, Cluj-Napoca, Romania ; University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, Cluj-Napoca, Romania
| | - Olga Soritau
- The Institute of Oncology "Prof. Dr. I. Chiricuta" Cluj-Napoca, Cluj-Napoca, Romania
| | | | - Cristian Berce
- University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, Cluj-Napoca, Romania
| | - Adriana Vulpoi
- Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes Bolyai University, 400084 Cluj-Napoca, Romania
| | | | - Milica Todea
- Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes Bolyai University, 400084 Cluj-Napoca, Romania
| | - Simion Simon
- Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes Bolyai University, 400084 Cluj-Napoca, Romania
| | - Maria Perde-Schrepler
- The Institute of Oncology "Prof. Dr. I. Chiricuta" Cluj-Napoca, Cluj-Napoca, Romania
| | - Piroska Virag
- The Institute of Oncology "Prof. Dr. I. Chiricuta" Cluj-Napoca, Cluj-Napoca, Romania
| | - Otilia Barbos
- The Institute of Oncology "Prof. Dr. I. Chiricuta" Cluj-Napoca, Cluj-Napoca, Romania
| | - Gabriela Chereches
- The Institute of Oncology "Prof. Dr. I. Chiricuta" Cluj-Napoca, Cluj-Napoca, Romania
| | | | - Valentin Cernea
- The Institute of Oncology "Prof. Dr. I. Chiricuta" Cluj-Napoca, Cluj-Napoca, Romania ; University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
42
|
Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2014; 14:15-56. [PMID: 24730250 PMCID: PMC3997175 DOI: 10.1166/jnn.2014.9127] [Citation(s) in RCA: 490] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The use of bone grafts is the standard to treat skeletal fractures, or to replace and regenerate lost bone, as demonstrated by the large number of bone graft procedures performed worldwide. The most common of these is the autograft, however, its use can lead to complications such as pain, infection, scarring, blood loss, and donor-site morbidity. The alternative is allografts, but they lack the osteoactive capacity of autografts and carry the risk of carrying infectious agents or immune rejection. Other approaches, such as the bone graft substitutes, have focused on improving the efficacy of bone grafts or other scaffolds by incorporating bone progenitor cells and growth factors to stimulate cells. An ideal bone graft or scaffold should be made of biomaterials that imitate the structure and properties of natural bone ECM, include osteoprogenitor cells and provide all the necessary environmental cues found in natural bone. However, creating living tissue constructs that are structurally, functionally and mechanically comparable to the natural bone has been a challenge so far. This focus of this review is on the evolution of these scaffolds as bone graft substitutes in the process of recreating the bone tissue microenvironment, including biochemical and biophysical cues.
Collapse
|
43
|
Kolluru PV, Lipner J, Liu W, Xia Y, Thomopoulos S, Genin GM, Chasiotis I. Strong and tough mineralized PLGA nanofibers for tendon-to-bone scaffolds. Acta Biomater 2013; 9:9442-50. [PMID: 23933048 DOI: 10.1016/j.actbio.2013.07.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/25/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022]
Abstract
Engineering complex tissues such as the tendon-to-bone insertion sites require a strong and tough biomimetic material system that incorporates both mineralized and unmineralized tissues with different strengths and stiffnesses. However, increasing strength without degrading toughness is a fundamental challenge in materials science. Here, we demonstrate a promising nanofibrous polymer-hydroxyapatite system, in which, a continuous fibrous network must function as a scaffold for both mineralized and unmineralized tissues. It is shown that the high toughness of this material system could be maintained without compromising on the strength with the addition of hydroxyapatite mineral. Individual electrospun poly (lactide-co-glycolide) (PLGA) nanofibers demonstrated outstanding strain-hardening behavior and ductility when stretched uniaxially, even in the presence of surface mineralization. This highly desirable hardening behavior which results in simultaneous nanofiber strengthening and toughening was shown to depend on the initial cross-sectional morphology of the PLGA nanofibers. For pristine PLGA nanofibers, it was shown that ellipsoidal cross-sections provide the largest increase in fiber strength by almost 200% compared to bulk PLGA. This exceptional strength accompanied by 100% elongation was shown to be retained for thin and strongly bonded conformal mineral coatings, which were preserved on the nanofiber surface even for such very large extensions.
Collapse
|
44
|
Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo. Acta Biomater 2013; 9:9169-82. [PMID: 23891811 DOI: 10.1016/j.actbio.2013.07.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/28/2013] [Accepted: 07/15/2013] [Indexed: 11/21/2022]
Abstract
Bioactive glass scaffolds (70S30C; 70% SiO2 and 30% CaO) produced by a sol-gel foaming process are thought to be suitable matrices for bone tissue regeneration. Previous in vitro data showed bone matrix production and active remodelling in the presence of osteogenic cells. Here we report their ability to act as scaffolds for in vivo bone regeneration in a rat tibial defect model, but only when preconditioned. Pretreatment methods (dry, pre-wetted or preconditioned without blood) for the 70S30C scaffolds were compared against commercial synthetic bone grafts (NovaBone® and Actifuse®). Poor bone ingrowth was found for both dry and wetted sol-gel foams, associated with rapid increase in pH within the scaffolds. Bone ingrowth was quantified through histology and novel micro-CT image analysis. The percentage bone ingrowth into dry, wetted and preconditioned 70S30C scaffolds at 11 weeks were 10±1%, 21±2% and 39±4%, respectively. Only the preconditioned sample showed above 60% material-bone contact, which was similar to that in NovaBone and Actifuse. Unlike the commercial products, preconditioned 70S30C scaffolds degraded and were replaced with new bone. The results suggest that bioactive glass compositions should be redesigned if sol-gel scaffolds are to be used without preconditioning to avoid excess calcium release.
Collapse
|
45
|
Hild N, Tawakoli PN, Halter JG, Sauer B, Buchalla W, Stark WJ, Mohn D. pH-dependent antibacterial effects on oral microorganisms through pure PLGA implants and composites with nanosized bioactive glass. Acta Biomater 2013; 9:9118-25. [PMID: 23816650 DOI: 10.1016/j.actbio.2013.06.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
Abstract
Biomaterials made of biodegradable poly(α-hydroxyesters) such as poly(lactide-co-glycolide) (PLGA) are known to decrease the pH in the vicinity of the implants. Bioactive glass (BG) is being investigated as a counteracting agent buffering the acidic degradation products. However, in dentistry the question arises whether an antibacterial effect is rather obtained from pure PLGA or from BG/PLGA composites, as BG has been proved to be antimicrobial. In the present study the antimicrobial properties of electrospun PLGA and BG45S5/PLGA fibres were investigated using human oral bacteria (specified with mass spectrometry) incubated for up to 24 h. BG45S5 nanoparticles were prepared by flame spray synthesis. The change in colony-forming units (CFU) of the bacteria was correlated with the pH of the medium during incubation. The morphology and structure of the scaffolds as well as the appearance of the bacteria were followed bymicroscopy. Additionally, we studied if the presence of BG45S5 had an influence on the degradation speed of the polymer. Finally, it turned out that the pH increase induced by the presence of BG45S5 in the scaffold did not last long enough to show a reduction in CFU. On the contrary, pure PLGA demonstrated antibacterial properties that should be taken into consideration when designing biomaterials for dental applications.
Collapse
|
46
|
Félix Lanao RP, Sariibrahimoglu K, Wang H, Wolke JGC, Jansen JA, Leeuwenburgh SCG. Accelerated calcium phosphate cement degradation due to incorporation of glucono-delta-lactone microparticles. Tissue Eng Part A 2013; 20:378-88. [PMID: 24041246 DOI: 10.1089/ten.tea.2012.0427] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Injectable calcium phosphate cements (CPC) are frequently used for filling of bone defects due to their excellent osteocompatibility. Their poor degradability, however, limits complete regeneration of bone defects. Organic additives that produce acid by-products are particularly attractive to create macroporosity in situ since CPC degrade by acid dissolution. The aim of the current study was to investigate whether glucono-delta-lactone (GDL) can be used as acid-producing microparticles for incorporation into CPC without compromising its osteocompatibility. Characterization studies confirmed that CPCs containing either low or high amounts of GDL were injectable and self-setting, while a considerable amount of porosity was formed already within 1 day of incubation in phosphate buffered saline due to dissolution of GDL. Histomorphometrical evaluation after 2 weeks of implantation revealed that CPC containing 10% of GDL degraded faster and was replaced by more bone tissue than CPCs containing either Poly (lactic-co-glycolic acid) (PLGA) or gelatin microspheres. Summarizing, the current study showed that CPCs containing appropriate amounts of GDL display accelerated degradation and new bone formation compared with CPCs containing microparticles made of conventional polymers such as PLGA or gelatin.
Collapse
Affiliation(s)
- Rosa P Félix Lanao
- Department of Biomaterials, Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Pawlik J, Widziołek M, Cholewa-Kowalska K, Łączka M, Osyczka AM. New sol-gel bioactive glass and titania composites with enhanced physico-chemical and biological properties. J Biomed Mater Res A 2013; 102:2383-94. [DOI: 10.1002/jbm.a.34903] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/26/2013] [Accepted: 07/24/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Justyna Pawlik
- Department of Glass Technology and Amorphous Coatings; Faculty of Materials Engineering and Ceramics; University of Science and Technology; Krakow Poland
| | - Magdalena Widziołek
- Department of Cell Biology and Imaging; Institute of Zoology, Faculty of Biology and Earth Sciences, Jagiellonian University; Krakow Poland
| | - Katarzyna Cholewa-Kowalska
- Department of Glass Technology and Amorphous Coatings; Faculty of Materials Engineering and Ceramics; University of Science and Technology; Krakow Poland
| | - Maria Łączka
- Department of Glass Technology and Amorphous Coatings; Faculty of Materials Engineering and Ceramics; University of Science and Technology; Krakow Poland
| | - Anna Maria Osyczka
- Department of Cell Biology and Imaging; Institute of Zoology, Faculty of Biology and Earth Sciences, Jagiellonian University; Krakow Poland
| |
Collapse
|
48
|
Krząkała A, Służalska K, Dercz G, Maciej A, Kazek A, Szade J, Winiarski A, Dudek M, Michalska J, Tylko G, Osyczka AM, Simka W. Characterisation of bioactive films on Ti–6Al–4V alloy. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.12.081] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Krząkała A, Służalska K, Widziołek M, Szade J, Winiarski A, Dercz G, Kazek A, Tylko G, Michalska J, Iwaniak A, Osyczka AM, Simka W. Formation of bioactive coatings on a Ti–6Al–7Nb alloy by plasma electrolytic oxidation. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.07.075] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Félix Lanao RP, Jonker AM, Wolke JG, Jansen JA, van Hest JC, Leeuwenburgh SC. Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2013; 19:380-90. [PMID: 23350707 PMCID: PMC3690090 DOI: 10.1089/ten.teb.2012.0443] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/11/2013] [Indexed: 11/12/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is the most often used synthetic polymer within the field of bone regeneration owing to its biocompatibility and biodegradability. As a consequence, a large number of medical devices comprising PLGA have been approved for clinical use in humans by the American Food and Drug Administration. As compared with the homopolymers of lactic acid poly(lactic acid) and poly(glycolic acid), the co-polymer PLGA is much more versatile with regard to the control over degradation rate. As a material for bone regeneration, the use of PLGA has been extensively studied for application and is included as either scaffolds, coatings, fibers, or micro- and nanospheres to meet various clinical requirements.
Collapse
Affiliation(s)
- Rosa P. Félix Lanao
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Anika M. Jonker
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Joop G.C. Wolke
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - John A. Jansen
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jan C.M. van Hest
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Sander C.G. Leeuwenburgh
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|