1
|
Azarnoosh J, Ghorbannia A, Ibrahim ESH, Jurkiewicz H, Kalvin L, LaDisa JF. Temporal evolution of mechanical stimuli from vascular remodeling in response to the severity and duration of aortic coarctation in a preclinical model. Sci Rep 2023; 13:8352. [PMID: 37221191 PMCID: PMC10205817 DOI: 10.1038/s41598-023-34400-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
Coarctation of the aorta (CoA) is one of the most common congenital cardiovascular diseases. CoA patients frequently undergo surgical repair, but hypertension (HTN) is still common. The current treatment guideline has revealed irreversible changes in structure and function, yet revised severity guidelines have not been proposed. Our objective was to quantify temporal alterations in mechanical stimuli and changes in arterial geometry in response to the range of CoA severities and durations (i.e. age of treatment) seen clinically. Rabbits were exposed to CoA resulting in peak-to-peak blood pressure gradient (BPGpp) severities of ≤ 10, 10-20, and ≥ 20 mmHg for a duration of ~ 1, 3, or 20 weeks using permanent, dissolvable, and rapidly dissolvable sutures. Elastic moduli and thickness were estimated from imaging and longitudinal fluid-structure interaction (FSI) simulations were conducted at different ages using geometries and boundary conditions from experimentally measured data. Mechanical stimuli were characterized including blood flow velocity patterns, wall tension, and radial strain. Experimental results show vascular alternations including thickening and stiffening proximal to the coarctation with increasing severity and/or duration of CoA. FSI simulations indicate wall tension in the proximal region increases markedly with coarctation severity. Importantly, even mild CoA induced stimuli for remodeling that exceeds values seen in adulthood if not treated early and using a BPGpp lower than the current clinical threshold. The findings are aligned with observations from other species and provide some guidance for the values of mechanical stimuli that could be used to predict the likelihood of HTN in human patients with CoA.
Collapse
Affiliation(s)
- Jamasp Azarnoosh
- Department of Pediatrics - Section of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Arash Ghorbannia
- Department of Pediatrics - Section of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - El-Sayed H Ibrahim
- Departments of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hilda Jurkiewicz
- Department of Pediatrics - Section of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lindsey Kalvin
- Departments of Medicine - Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John F LaDisa
- Department of Pediatrics - Section of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, USA
- Departments of Medicine - Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Departments of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Bazzi MS, Balouchzadeh R, Pavey SN, Quirk JD, Yanagisawa H, Vedula V, Wagenseil JE, Barocas VH. Experimental and Mouse-Specific Computational Models of the Fbln4 SMKO Mouse to Identify Potential Biomarkers for Ascending Thoracic Aortic Aneurysm. Cardiovasc Eng Technol 2022; 13:558-572. [PMID: 35064559 PMCID: PMC9304450 DOI: 10.1007/s13239-021-00600-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/28/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE To use computational methods to explore geometric, mechanical, and fluidic biomarkers that could correlate with mouse lifespan in the Fbln4SMKO mouse. Mouse lifespan was used as a surrogate for risk of a severe cardiovascular event in cases of ascending thoracic aortic aneurysm. METHODS Image-based, mouse-specific fluid-structure-interaction models were developed for Fbln4SMKO mice (n = 10) at ages two and six months. The results of the simulations were used to quantify potential biofluidic biomarkers, complementing the geometrical biomarkers obtained directly from the images. RESULTS Comparing the different geometrical and biofluidic biomarkers to the mouse lifespan, it was found that mean oscillatory shear index (OSImin) and minimum time-averaged wall shear stress (TAWSSmin) at six months showed the largest correlation with lifespan (r2 = 0.70, 0.56), with both correlations being positive (i.e., mice with high OSImean and high TAWSSmin tended to live longer). When change between two and six months was considered, the change in TAWSSmin showed a much stronger correlation than OSImean (r2 = 0.75 vs. 0.24), and the correlation was negative (i.e., mice with increasing TAWSSmin over this period tended to live less long). CONCLUSION The results highlight potential biomarkers of ATAA outcomes that can be obtained through noninvasive imaging and computational simulations, and they illustrate the potential synergy between small-animal and computational models.
Collapse
Affiliation(s)
- Marisa S Bazzi
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ramin Balouchzadeh
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO, 63110, USA
| | - Shawn N Pavey
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO, 63110, USA
| | - James D Quirk
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Vijay Vedula
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jessica E Wagenseil
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO, 63110, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Abstract
Cells of the vascular wall are exquisitely sensitive to changes in their mechanical environment. In healthy vessels, mechanical forces regulate signaling and gene expression to direct the remodeling needed for the vessel wall to maintain optimal function. Major diseases of arteries involve maladaptive remodeling with compromised or lost homeostatic mechanisms. Whereas homeostasis invokes negative feedback loops at multiple scales to mediate mechanobiological stability, disease progression often occurs via positive feedback that generates mechanobiological instabilities. In this review, we focus on the cell biology, wall mechanics, and regulatory pathways associated with arterial health and how changes in these processes lead to disease. We discuss how positive feedback loops arise via biomechanical and biochemical means. We conclude that inflammation plays a central role in overriding homeostatic pathways and suggest future directions for addressing therapeutic needs.
Collapse
Affiliation(s)
- Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA;
| | - Martin A Schwartz
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA;
- Department of Cell Biology, Department of Internal Medicine (Cardiology), and Cardiovascular Research Center, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
4
|
Han L, Ren Q, Lian J, Luo L, Liu H, Ma T, Li X, Deng X, Liu X. Numerical analysis of the hemodynamics of rat aorta based on magnetic resonance imaging and fluid-structure interaction. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3457. [PMID: 33750033 DOI: 10.1002/cnm.3457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Murine models have been widely used to investigate the mechanobiology of aortic atherosclerosis and dissections, which develop preferably at different anatomic locations of aorta. Based MRI and finite element analysis with fluid-structure interaction, we numerically investigated factors that may affect the blood flow and structural mechanics of rat aorta. The results indicated that aortic root motion greatly increases time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), displacement of the aorta, and enhances helical flow pattern but has limited influence on effective stress, which is highly modulated by blood pressure. Moreover, the influence of the motion component on these indicators is different with axial motion more obvious than planar motion. Surrounding fixation of the intercostal arteries and the branch vessels on aortic arch would reduce the influence of aortic root motion. The compliance of the aorta has different influences at different regions, leading to decrease in TAWSS and helical flow, increase in OSI, RRT at the aortic arch, but has reversed effects on the branch vessels. When compared with the steady flow, the pulsatile blood flow would obviously increase the WSS, the displacement, and the effective stress in most regions. In conclusion, to accurately quantify the blood flow and structural mechanics of rat aorta, the motion of the aortic root, the compliance of aortic wall, and the pulsation of blood flow should be considered. However, when only focusing on the effective stress in rat aorta, the motion of the aortic root may be neglected.
Collapse
Affiliation(s)
- Longzhu Han
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Quan Ren
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jianxiu Lian
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Liyi Luo
- School of Instrumentation Science & Opto-electronics Engineering, Beihang University, Beijing, China
| | - Huawei Liu
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Tianxiang Ma
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xin Li
- Miyun Hospital, Peking University First Hospital, Beijing, China
| | - Xiaoyan Deng
- Artificial Intelligence Key Laboratory of Sichuan Province, School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, China
| | - Xiao Liu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
5
|
Bersi MR, Acosta Santamaría VA, Marback K, Di Achille P, Phillips EH, Goergen CJ, Humphrey JD, Avril S. Multimodality Imaging-Based Characterization of Regional Material Properties in a Murine Model of Aortic Dissection. Sci Rep 2020; 10:9244. [PMID: 32514185 PMCID: PMC7280301 DOI: 10.1038/s41598-020-65624-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/04/2020] [Indexed: 01/21/2023] Open
Abstract
Chronic infusion of angiotensin-II in atheroprone (ApoE-/-) mice provides a reproducible model of dissection in the suprarenal abdominal aorta, often with a false lumen and intramural thrombus that thickens the wall. Such lesions exhibit complex morphologies, with different regions characterized by localized changes in wall composition, microstructure, and properties. We sought to quantify the multiaxial mechanical properties of murine dissecting aneurysm samples by combining in vitro extension-distension data with full-field multimodality measurements of wall strain and thickness to inform an inverse material characterization using the virtual fields method. A key advance is the use of a digital volume correlation approach that allows for characterization of properties not only along and around the lesion, but also across its wall. Specifically, deformations are measured at the adventitial surface by tracking motions of a speckle pattern using a custom panoramic digital image correlation technique while deformations throughout the wall and thrombus are inferred from optical coherence tomography. These measurements are registered and combined in 3D to reconstruct the reference geometry and compute the 3D finite strain fields in response to pressurization. Results reveal dramatic regional variations in material stiffness and strain energy, which reflect local changes in constituent area fractions obtained from histology but emphasize the complexity of lesion morphology and damage within the dissected wall. This is the first point-wise biomechanical characterization of such complex, heterogeneous arterial segments. Because matrix remodeling is critical to the formation and growth of these lesions, we submit that quantification of regional material properties will increase the understanding of pathological mechanical mechanisms underlying aortic dissection.
Collapse
Affiliation(s)
- Matthew R Bersi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Karl Marback
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Paolo Di Achille
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Evan H Phillips
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Stéphane Avril
- Mines Saint-Etienne, University of Lyon, University Jean Monnet, INSERM, Saint-Etienne, France.
| |
Collapse
|
6
|
Acuna A, Berman AG, Damen FW, Meyers BA, Adelsperger AR, Bayer KC, Brindise MC, Bungart B, Kiel AM, Morrison RA, Muskat JC, Wasilczuk KM, Wen Y, Zhang J, Zito P, Goergen CJ. Computational Fluid Dynamics of Vascular Disease in Animal Models. J Biomech Eng 2019; 140:2676341. [PMID: 29570754 DOI: 10.1115/1.4039678] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Indexed: 12/19/2022]
Abstract
Recent applications of computational fluid dynamics (CFD) applied to the cardiovascular system have demonstrated its power in investigating the impact of hemodynamics on disease initiation, progression, and treatment outcomes. Flow metrics such as pressure distributions, wall shear stresses (WSS), and blood velocity profiles can be quantified to provide insight into observed pathologies, assist with surgical planning, or even predict disease progression. While numerous studies have performed simulations on clinical human patient data, it often lacks prediagnosis information and can be subject to large intersubject variability, limiting the generalizability of findings. Thus, animal models are often used to identify and manipulate specific factors contributing to vascular disease because they provide a more controlled environment. In this review, we explore the use of CFD in animal models in recent studies to investigate the initiating mechanisms, progression, and intervention effects of various vascular diseases. The first section provides a brief overview of the CFD theory and tools that are commonly used to study blood flow. The following sections are separated by anatomical region, with the abdominal, thoracic, and cerebral areas specifically highlighted. We discuss the associated benefits and obstacles to performing CFD modeling in each location. Finally, we highlight animal CFD studies focusing on common surgical treatments, including arteriovenous fistulas (AVF) and pulmonary artery grafts. The studies included in this review demonstrate the value of combining CFD with animal imaging and should encourage further research to optimize and expand upon these techniques for the study of vascular disease.
Collapse
Affiliation(s)
- Andrea Acuna
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Alycia G Berman
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Brett A Meyers
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907 e-mail:
| | - Amelia R Adelsperger
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Kelsey C Bayer
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Melissa C Brindise
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907 e-mail:
| | - Brittani Bungart
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Alexander M Kiel
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Rachel A Morrison
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Joseph C Muskat
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Kelsey M Wasilczuk
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Yi Wen
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907 e-mail:
| | - Jiacheng Zhang
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907 e-mail:
| | - Patrick Zito
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Craig J Goergen
- ASME Membership Bioengineering Division, Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| |
Collapse
|
7
|
Aslanidou L, Ferraro M, Lovric G, Bersi MR, Humphrey JD, Segers P, Trachet B, Stergiopulos N. Co-localization of microstructural damage and excessive mechanical strain at aortic branches in angiotensin-II-infused mice. Biomech Model Mechanobiol 2019; 19:81-97. [PMID: 31273562 DOI: 10.1007/s10237-019-01197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/26/2019] [Indexed: 02/07/2023]
Abstract
Animal models of aortic aneurysm and dissection can enhance our limited understanding of the etiology of these lethal conditions particularly because early-stage longitudinal data are scant in humans. Yet, the pathogenesis of often-studied mouse models and the potential contribution of aortic biomechanics therein remain elusive. In this work, we combined micro-CT and synchrotron-based imaging with computational biomechanics to estimate in vivo aortic strains in the abdominal aorta of angiotensin-II-infused ApoE-deficient mice, which were compared with mouse-specific aortic microstructural damage inferred from histopathology. Targeted histology showed that the 3D distribution of micro-CT contrast agent that had been injected in vivo co-localized with precursor vascular damage in the aortic wall at 3 days of hypertension, with damage predominantly near the ostia of the celiac and superior mesenteric arteries. Computations similarly revealed higher mechanical strain in branching relative to non-branching regions, thus resulting in a positive correlation between high strain and vascular damage in branching segments that included the celiac, superior mesenteric, and right renal arteries. These results suggest a mechanically driven initiation of damage at these locations, which was supported by 3D synchrotron imaging of load-induced ex vivo delaminations of angiotensin-II-infused suprarenal abdominal aortas. That is, the major intramural delamination plane in the ex vivo tested aortas was also near side branches and specifically around the celiac artery. Our findings thus support the hypothesis of an early mechanically mediated formation of microstructural defects at aortic branching sites that subsequently propagate into a macroscopic medial tear, giving rise to aortic dissection in angiotensin-II-infused mice.
Collapse
Affiliation(s)
- Lydia Aslanidou
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Mauro Ferraro
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Goran Lovric
- Centre d'Imagerie BioMédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Matthew R Bersi
- Department of Biomedical Engineering, Yale University, New Haven, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | | | - Bram Trachet
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- bioMMeda, Ghent University, Ghent, Belgium
| | - Nikos Stergiopulos
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Cuomo F, Ferruzzi J, Agarwal P, Li C, Zhuang ZW, Humphrey JD, Figueroa CA. Sex-dependent differences in central artery haemodynamics in normal and fibulin-5 deficient mice: implications for ageing. Proc Math Phys Eng Sci 2019; 475:20180076. [PMID: 30760948 PMCID: PMC6364598 DOI: 10.1098/rspa.2018.0076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Mouse models provide unique opportunities to study vascular disease, but they demand increased experimental and computational resolution. We describe a workflow for combining in vivo and in vitro biomechanical data to build mouse-specific computational models of the central vasculature including regional variations in biaxial wall stiffness, thickness and perivascular support. These fluid-solid interaction models are informed by micro-computed tomography imaging and in vivo ultrasound and pressure measurements, and include mouse-specific inflow and outflow boundary conditions. Hence, the model can capture three-dimensional unsteady flows and pulse wave characteristics. The utility of this experimental-computational approach is illustrated by comparing central artery biomechanics in adult wild-type and fibulin-5 deficient mice, a model of early vascular ageing. Findings are also examined as a function of sex. Computational results compare well with measurements and data available in the literature and suggest that pulse wave velocity, a spatially integrated measure of arterial stiffness, does not reflect well the presence of regional differences in stiffening, particularly those manifested in male versus female mice. Modelling results are also useful for comparing quantities that are difficult to measure or infer experimentally, including local pulse pressures at the renal arteries and characteristics of the peripheral vascular bed that may differ with disease.
Collapse
Affiliation(s)
- Federica Cuomo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jacopo Ferruzzi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Pradyumn Agarwal
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Chen Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen W. Zhuang
- Translational Research Imaging Center, Yale University, New Haven, CT, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
| | - C. Alberto Figueroa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Ferruzzi J, Di Achille P, Tellides G, Humphrey JD. Combining in vivo and in vitro biomechanical data reveals key roles of perivascular tethering in central artery function. PLoS One 2018; 13:e0201379. [PMID: 30192758 PMCID: PMC6128471 DOI: 10.1371/journal.pone.0201379] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/14/2018] [Indexed: 12/30/2022] Open
Abstract
Considerable insight into effectors of cardiovascular function can be gleaned from controlled studies on mice, especially given the diverse models that are available. Toward this end, however, there is a need for consistent and complementary methods of in vivo and in vitro data analysis, synthesis, and interpretation. The overall objective of this study is twofold. First, we present new semi-automated methods to quantify in vivo measurements of vascular function in anesthetized mice as well as new approaches to synthesize these data with those from in vitro biaxial mechanical characterizations. Second, we contrast regional differences in biomechanical behaviors along the central vasculature by combining biaxial strains measured in vivo with data on the unloaded geometry and biaxial material properties measured in vitro. Results support the hypothesis that the healthy ascending aorta stores significant elastic energy during systole, which is available to work on the heart and blood during diastole, particularly during periods of physical exertion, and further suggest that perivascular tethering allows arteries to work at lower values of wall stress and material stiffness than often assumed. The numerous measurements of vascular function and properties provided herein can also serve as reference values for normal wild-type male and female mice, to which values for myriad genetic, surgical, and pharmacological models can be compared in future studies.
Collapse
Affiliation(s)
- Jacopo Ferruzzi
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - Paolo Di Achille
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, United States of America
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States of America
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States of America
| |
Collapse
|
10
|
Molony D, Park J, Zhou L, Fleischer C, Sun HY, Hu X, Oshinski J, Samady H, Giddens DP, Rezvan A. Bulk Flow and Near Wall Hemodynamics of the Rabbit Aortic Arch: A 4D PC-MRI Derived CFD Study. J Biomech Eng 2018; 141:2698120. [PMID: 30140921 DOI: 10.1115/1.4041222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 11/08/2022]
Abstract
Animal models offer a flexible experimental environment for studying atherosclerosis. The mouse is the most commonly used animal, however, the underlying hemodynamics in larger animals such as the rabbit are far closer to that of humans. The aortic arch is a vessel with complex helical flow and highly heterogeneous shear stress patterns which may influence where atherosclerotic lesions form. A better understanding of intra-species flow variation and the impact of geometry on flow may improve our understanding of where disease forms. In this work we use Magnetic Resonance Angiography (MRA) and 4D Phase contrast magnetic resonance imaging (PC-MRI) to image and measure blood velocity in the rabbit aortic arch. Measured flow rates from the PC-MRI were used as boundary conditions in computational fluid dynamics models of the arches. Helical flow, cross flow index (CFI) and time-averaged wall shear stress (TAWSS) were determined from the simulated flow field. Both traditional geometric metrics and shape modes derived from statistical shape analysis were analyzed with respect to flow helicity. High CFI and low TAWSS were found to co-localize in the ascending aorta and to a lesser extent on the inner curvature of the aortic arch. The Reynolds number was linearly associated with an increase in helical flow intensity (R=0.85, p<.05). Both traditional and statistical shape analysis correlated with increased helical flow symmetry. However, a stronger correlation was obtained from the statistical shape analysis demonstrating its potential for discerning the role of shape in hemodynamic studies.
Collapse
Affiliation(s)
- David Molony
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322
| | - Jaekeun Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332
| | - Lei Zhou
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322
| | - Candace Fleischer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322
| | - He-Ying Sun
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322
| | - Xiaoping Hu
- Department of Bioengineering, University of California, Riverside, CA, 92521
| | - John Oshinski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322
| | - Habib Samady
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322
| | - Don P Giddens
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332
| | - Amir Rezvan
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322
| |
Collapse
|
11
|
Xing R, Moerman AM, Ridwan Y, Daemen MJ, van der Steen AFW, Gijsen FJH, van der Heiden K. Temporal and spatial changes in wall shear stress during atherosclerotic plaque progression in mice. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171447. [PMID: 29657758 PMCID: PMC5882682 DOI: 10.1098/rsos.171447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/07/2018] [Indexed: 05/03/2023]
Abstract
Wall shear stress (WSS) is involved in atherosclerotic plaque initiation, yet its role in plaque progression remains unclear. We aimed to study (i) the temporal and spatial changes in WSS over a growing plaque and (ii) the correlation between WSS and plaque composition, using animal-specific data in an atherosclerotic mouse model. Tapered casts were placed around the right common carotid arteries (RCCA) of ApoE-/- mice. At 5, 7 and 9 weeks after cast placement, RCCA geometry was reconstructed using contrast-enhanced micro-CT. Lumen narrowing was observed in all mice, indicating the progression of a lumen intruding plaque. Next, we determined the flow rate in the RCCA of each mouse using Doppler Ultrasound and computed WSS at all time points. Over time, as the plaque developed and further intruded into the lumen, absolute WSS significantly decreased. Finally at week 9, plaque composition was histologically characterized. The proximal part of the plaque was small and eccentric, exposed to relatively lower WSS. Close to the cast a larger and concentric plaque was present, exposed to relatively higher WSS. Lower WSS was significantly correlated to the accumulation of macrophages in the eccentric plaque. When pooling data of all animals, correlation between WSS and plaque composition was weak and no longer statistically significant. In conclusion, our data showed that in our mouse model absolute WSS strikingly decreased during disease progression, which was significantly correlated to plaque area and macrophage content. Besides, our study demonstrates the necessity to analyse individual animals and plaques when studying correlations between WSS and plaque composition.
Collapse
Affiliation(s)
- R. Xing
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A. M. Moerman
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Y. Ridwan
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M. J. Daemen
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - A. F. W. van der Steen
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - F. J. H. Gijsen
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
- Authors for correspondence: F. J. H. Gijsen e-mail:
| | - K. van der Heiden
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
- Authors for correspondence: K. van der Heiden e-mail:
| |
Collapse
|
12
|
Propagation-based phase-contrast synchrotron imaging of aortic dissection in mice: from individual elastic lamella to 3D analysis. Sci Rep 2018; 8:2223. [PMID: 29396472 PMCID: PMC5797148 DOI: 10.1038/s41598-018-20673-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/23/2018] [Indexed: 11/09/2022] Open
Abstract
In order to show the advantage and potential of propagation-based phase-contrast synchrotron imaging in vascular pathology research, we analyzed aortic medial ruptures in BAPN/AngII-infused mice, a mouse model for aortic dissection. Ascending and thoraco-abdominal samples from n = 3 control animals and n = 10 BAPN/AngII-infused mice (after 3, 7 and 14 days of infusion, total of 24 samples) were scanned. A steep increase in the number of ruptures was already noted after 3 days of BAPN/AngII-infusion. The largest ruptures were found at the latest time points. 133 ruptures affected only the first lamella while 135 ruptures affected multiple layers. Medial ruptures through all lamellar layers, leading to false channel formation and intramural hematoma, occurred only in the thoraco-abdominal aorta and interlamellar hematoma formation in the ascending aorta could be directly related to ruptures of the innermost lamellae. The advantages of this technique are (i) ultra-high resolution that allows to visualize the individual elastic lamellae in the aorta; (ii) quantitative and qualitative analysis of medial ruptures; (iii) 3D analysis of the complete aorta; (iv) high contrast for qualitative information extraction, reducing the need for histology coupes; (v) earlier detection of (micro-) ruptures.
Collapse
|
13
|
Phillips EH, Chang MS, Gorman S, Qureshi HJ, Ejendal KFK, Kinzer-Ursem TL, Blaize AN, Goergen CJ. Angiotensin II Infusion Does Not Cause Abdominal Aortic Aneurysms in Apolipoprotein E-Deficient Rats. J Vasc Res 2017; 55:1-12. [PMID: 29166645 DOI: 10.1159/000484086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 10/07/2017] [Indexed: 12/31/2022] Open
Abstract
The apolipoprotein E-deficient (apoE-/-) mouse model has advanced our understanding of cardiovascular disease mechanisms and experimental therapeutics. This spontaneous model recapitulates aspects of human atherosclerosis, and allows for the development of dissecting abdominal aortic aneurysms (AAAs) when combined with angiotensin II. We characterized apoE-/- rats and hypothesized that, similar to mice, they would develop dissecting AAAs. We created rats with a 16-bp deletion of the apoE gene using transcription activator-like effector nucleases. We imaged the suprarenal aorta for 28 days after implantation of miniosmotic pumps that infuse angiotensin II (AngII, 200 ng/kg/min). Blood pressure (BP), serum lipids and lipoproteins, and histology were also analyzed. These rats did not develop pathological aortic dissection, but we did observe a decrease in circumferential cyclic strain, a rise in BP, and microstructural changes in the aortic medial layer. We also measured increased serum lipids with and without administration of a high-fat diet, but did not detect atherosclerotic plaques. Chronic infusion of AngII did not lead to the formation of dissecting AAAs or atherosclerosis in the rats used in this study. While reduced amounts of atherosclerosis may explain this resistance to dissecting aneurysms, further investigation is needed to fully characterize species-specific differences.
Collapse
Affiliation(s)
- Evan H Phillips
- Weldon School of Biomedical Engineering, West Lafayette, IN, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ferraro M, Trachet B, Aslanidou L, Fehervary H, Segers P, Stergiopulos N. Should We Ignore What We Cannot Measure? How Non-Uniform Stretch, Non-Uniform Wall Thickness and Minor Side Branches Affect Computational Aortic Biomechanics in Mice. Ann Biomed Eng 2017; 46:159-170. [PMID: 29071528 DOI: 10.1007/s10439-017-1945-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/14/2017] [Indexed: 12/18/2022]
Abstract
In order to advance the state-of-the-art in computational aortic biomechanics, we investigated the influence of (i) a non-uniform wall thickness, (ii) minor aortic side branches and (iii) a non-uniform axial stretch distribution on the location of predicted hotspots of principal strain in a mouse model for dissecting aneurysms. After 3 days of angiotensin II infusion, a murine abdominal aorta was scanned in vivo with contrast-enhanced micro-CT. The animal was subsequently sacrificed and its aorta was scanned ex vivo with phase-contrast X-ray tomographic microscopy (PCXTM). An automatic morphing framework was developed to map the non-pressurized, non-stretched PCXTM geometry onto the pressurized, stretched micro-CT geometry. The output of the morphing model was a structural FEM simulation where the output strain distribution represents an estimation of the wall deformation, not only due to the pressurization, but also due to the local axial stretch field. The morphing model also included minor branches and a mouse-specific wall thickness. A sensitivity study was then performed to assess the influence of each of these novel features on the outcome of the simulations. The results were supported by comparing the computed hotspots of principal strain to hotspots of early vascular damage as detected on PCXTM. Non-uniform axial stretch, non-uniform wall thickness and minor subcostal arteries significantly alter the locations of calculated hotspots of maximal principal strain. Even if experimental data on these features are often not available in clinical practice, one should be aware of the important implications that simplifications in the model might have on the final simulated result.
Collapse
Affiliation(s)
- Mauro Ferraro
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, LHTC STI IBI EPFL, MED 32924 Station 9, 1015, Lausanne, Switzerland.
| | - Bram Trachet
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, LHTC STI IBI EPFL, MED 32924 Station 9, 1015, Lausanne, Switzerland
- IBiTech - bioMMeda, Ghent University, Ghent, Belgium
| | - Lydia Aslanidou
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, LHTC STI IBI EPFL, MED 32924 Station 9, 1015, Lausanne, Switzerland
| | | | | | | |
Collapse
|
15
|
Trachet B, Aslanidou L, Piersigilli A, Fraga-Silva RA, Sordet-Dessimoz J, Villanueva-Perez P, Stampanoni MF, Stergiopulos N, Segers P. Angiotensin II infusion into ApoE-/- mice: a model for aortic dissection rather than abdominal aortic aneurysm? Cardiovasc Res 2017; 113:1230-1242. [DOI: 10.1093/cvr/cvx128] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023] Open
Affiliation(s)
- Bram Trachet
- IBiTech–bioMMeda, Ghent University-iMinds Medical IT, De Pintelaan 185 Blok B, 9000 Ghent, Belgium
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lydia Aslanidou
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Rodrigo A. Fraga-Silva
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | - Marco F.M. Stampanoni
- Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
- Institute for Biomedical Engineering, University and ETH Zürich, Zürich, Switzerland
| | - Nikolaos Stergiopulos
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Patrick Segers
- IBiTech–bioMMeda, Ghent University-iMinds Medical IT, De Pintelaan 185 Blok B, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Phillips EH, Di Achille P, Bersi MR, Humphrey JD, Goergen CJ. Multi-Modality Imaging Enables Detailed Hemodynamic Simulations in Dissecting Aneurysms in Mice. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1297-1305. [PMID: 28186882 PMCID: PMC5505237 DOI: 10.1109/tmi.2017.2664799] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A multi-modality imaging-based modeling approach was used to study complex unsteady hemodynamics and lesion growth in a dissecting abdominal aortic aneurysm model. We combined in vivo ultrasound (geometry and flow) and in vitro optical coherence tomography(OCT) (geometry) to obtain the high resolution needed to construct detailed hemodynamic simulations over large portions of the murine vasculature, which include fine geometric complexities. We illustrate this approach for a spectrum of dissecting abdominal aortic aneurysms induced in male apolipoprotein E-null mice by high-dose angiotensin II infusion. In vivo morphological and hemodynamic data provide information on volumetric lesion growth and changes in blood flow dynamics, respectively, occurring from the day of initial aortic expansion. We validated the associated computational models by comparing results on time-varying outlet flows and vortical structures within the lesions. Three out of four lesions exhibited abrupt formation of thrombus, though different in size. We determined that a lesion without thrombus formed with a thickened vessel wall, which was resolvable by OCT and histology. We attribute differences in final sizes and compositions of these lesions to the different computed flow and vortical structures we obtained in our mouse-specific fluid dynamic models. Differences in morphology and hemodynamics play crucial roles in determining the evolution of dissecting abdominal aortic aneurysms. Coupled high resolution in vivo and in vitro imaging approaches provide much-improved geometric models for hemodynamic simulations. Our imaging-based computational findings suggest a link between perturbations in hemodynamic metrics and aneurysmal disease heterogeneity.
Collapse
|
17
|
Pedrigi RM, Mehta VV, Bovens SM, Mohri Z, Poulsen CB, Gsell W, Tremoleda JL, Towhidi L, de Silva R, Petretto E, Krams R. Influence of shear stress magnitude and direction on atherosclerotic plaque composition. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160588. [PMID: 27853578 PMCID: PMC5099003 DOI: 10.1098/rsos.160588] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/19/2016] [Indexed: 05/19/2023]
Abstract
The precise flow characteristics that promote different atherosclerotic plaque types remain unclear. We previously developed a blood flow-modifying cuff for ApoE-/- mice that induces the development of advanced plaques with vulnerable and stable features upstream and downstream of the cuff, respectively. Herein, we sought to test the hypothesis that changes in flow magnitude promote formation of the upstream (vulnerable) plaque, whereas altered flow direction is important for development of the downstream (stable) plaque. We instrumented ApoE-/- mice (n = 7) with a cuff around the left carotid artery and imaged them with micro-CT (39.6 µm resolution) eight to nine weeks after cuff placement. Computational fluid dynamics was then performed to compute six metrics that describe different aspects of atherogenic flow in terms of wall shear stress magnitude and/or direction. In a subset of four imaged animals, we performed histology to confirm the presence of advanced plaques and measure plaque length in each segment. Relative to the control artery, the region upstream of the cuff exhibited changes in shear stress magnitude only (p < 0.05), whereas the region downstream of the cuff exhibited changes in shear stress magnitude and direction (p < 0.05). These data suggest that shear stress magnitude contributes to the formation of advanced plaques with a vulnerable phenotype, whereas variations in both magnitude and direction promote the formation of plaques with stable features.
Collapse
Affiliation(s)
- Ryan M. Pedrigi
- Department of Bioengineering, Imperial College London, London, UK
| | - Vikram V. Mehta
- Department of Bioengineering, Imperial College London, London, UK
| | - Sandra M. Bovens
- Department of Bioengineering, Imperial College London, London, UK
| | - Zahra Mohri
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Willy Gsell
- MRC-Clinical Sciences Centre, Imperial College London, London, UK
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jordi L. Tremoleda
- MRC-Clinical Sciences Centre, Imperial College London, London, UK
- Centre for Trauma Sciences, Queen Mary University of London, London, UK
| | - Leila Towhidi
- Department of Bioengineering, Imperial College London, London, UK
| | - Ranil de Silva
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Enrico Petretto
- MRC-Clinical Sciences Centre, Imperial College London, London, UK
- Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Rob Krams
- Department of Bioengineering, Imperial College London, London, UK
- Author for correspondence: Rob Krams e-mail:
| |
Collapse
|
18
|
Assessment of shear stress related parameters in the carotid bifurcation using mouse-specific FSI simulations. J Biomech 2016; 49:2135-2142. [DOI: 10.1016/j.jbiomech.2015.11.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/07/2015] [Indexed: 01/07/2023]
|
19
|
De Wilde D, Trachet B, De Meyer G, Segers P. The influence of anesthesia and fluid-structure interaction on simulated shear stress patterns in the carotid bifurcation of mice. J Biomech 2016; 49:2741-2747. [PMID: 27342001 DOI: 10.1016/j.jbiomech.2016.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/04/2016] [Accepted: 06/07/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Low and oscillatory wall shear stresses (WSS) near aortic bifurcations have been linked to the onset of atherosclerosis. In previous work, we calculated detailed WSS patterns in the carotid bifurcation of mice using a Fluid-structure interaction (FSI) approach. We subsequently fed the animals a high-fat diet and linked the results of the FSI simulations to those of atherosclerotic plaque location on a within-subject basis. However, these simulations were based on boundary conditions measured under anesthesia, while active mice might experience different hemodynamics. Moreover, the FSI technique for mouse-specific simulations is both time- and labor-intensive, and might be replaced by simpler and easier Computational Fluid Dynamics (CFD) simulations. The goal of the current work was (i) to compare WSS patterns based on anesthesia conditions to those representing active resting and exercising conditions; and (ii) to compare WSS patterns based on FSI simulations to those based on steady-state and transient CFD simulations. METHODS For each of the 3 computational techniques (steady state CFD, transient CFD, FSI) we performed 5 simulations: 1 for anesthesia, 2 for conscious resting conditions and 2 more for conscious active conditions. The inflow, pressure and heart rate were scaled according to representative in vivo measurements obtained from literature. RESULTS When normalized by the maximal shear stress value, shear stress patterns were similar for the 3 computational techniques. For all activity levels, steady state CFD led to an overestimation of WSS values, while FSI simulations yielded a clear increase in WSS reversal at the outer side of the sinus of the external carotid artery that was not visible in transient CFD-simulations. Furthermore, the FSI simulations in the highest locomotor activity state showed a flow recirculation zone in the external carotid artery that was not present under anesthesia. This recirculation went hand in hand with locally increased WSS reversal. CONCLUSIONS Our data show that FSI simulations are not necessary to obtain normalized WSS patterns, but indispensable to assess the oscillatory behavior of the WSS in mice. Flow recirculation and WSS reversal at the external carotid artery may occur during high locomotor activity while they are not present under anesthesia. These phenomena might thus influence plaque formation to a larger extent than what was previously assumed.
Collapse
Affiliation(s)
- David De Wilde
- IBiTech-bioMMeda, Ghent University-IMinds Medical IT, Ghent, Belgium
| | - Bram Trachet
- IBiTech-bioMMeda, Ghent University-IMinds Medical IT, Ghent, Belgium; Institute of Bioengineering, EPFL, Lausanne, Switzerland.
| | - Guido De Meyer
- Division of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Patrick Segers
- IBiTech-bioMMeda, Ghent University-IMinds Medical IT, Ghent, Belgium
| |
Collapse
|
20
|
Pfenniger A, Meens MJ, Pedrigi RM, Foglia B, Sutter E, Pelli G, Rochemont V, Petrova TV, Krams R, Kwak BR. Shear stress-induced atherosclerotic plaque composition in ApoE(-/-) mice is modulated by connexin37. Atherosclerosis 2015; 243:1-10. [PMID: 26342936 DOI: 10.1016/j.atherosclerosis.2015.08.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/17/2015] [Accepted: 08/21/2015] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Shear stress patterns influence atherogenesis and plaque stability; low laminar shear stress (LLSS) promotes unstable plaques whereas oscillatory shear stress (OSS) induces more stable plaques. Endothelial connexin37 (Cx37) expression is also regulated by shear stress, which may contribute to localization of atherosclerotic disease. Moreover, Cx37 reduces initiation of atherosclerosis by inhibiting monocyte adhesion. The present work investigates the effect of Cx37 on the phenotype of plaques induced by LLSS or OSS. METHODS Shear stress-modifying casts were placed around the common carotid artery of ApoE(-/-) or ApoE(-/-)Cx37(-/-) mice, and animals were placed on a high-cholesterol diet for 6 or 9 weeks. Atherosclerotic plaque size and composition were assessed by immunohistochemistry. RESULTS Plaque size in response to OSS was increased in ApoE(-/-)Cx37(-/-) mice compared to ApoE(-/-) animals. Most plaques contained high lipid and macrophage content and a low amount of collagen. In ApoE(-/-) mice, macrophages were more prominent in LLSS than OSS plaques. This difference was reversed in ApoE(-/-)Cx37(-/-) animals, with a predominance of macrophages in OSS plaques. The increase in macrophage content in ApoE(-/-)Cx37(-/-) OSS plaques was mainly due to increased accumulation of M1 and Mox macrophage subtypes. Cx37 expression in macrophages did not affect their proliferation or their polarization in vitro. CONCLUSION Cx37 deletion increased the size of atherosclerotic lesions in OSS regions and abrogated the development of a stable plaque phenotype under OSS in ApoE(-/-) mice. Hence, local hemodynamic factors may modify the risk for adverse atherosclerotic disease outcomes associated to a polymorphism in the human Cx37 gene.
Collapse
Affiliation(s)
- A Pfenniger
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Department of Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland
| | - M J Meens
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Department of Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland
| | - R M Pedrigi
- Department of Bioengineering, Imperial College, London, UK
| | - B Foglia
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Department of Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland
| | - E Sutter
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Department of Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland
| | - G Pelli
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Department of Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland
| | - V Rochemont
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Department of Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland
| | - T V Petrova
- Department of Oncology, CHUV and University of Lausanne, Epalinges, Switzerland
| | - R Krams
- Department of Bioengineering, Imperial College, London, UK
| | - B R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Department of Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
21
|
Trachet B, Fraga-Silva RA, Jacquet PA, Stergiopulos N, Segers P. Incidence, severity, mortality, and confounding factors for dissecting AAA detection in angiotensin II-infused mice: a meta-analysis. Cardiovasc Res 2015; 108:159-70. [PMID: 26307626 DOI: 10.1093/cvr/cvv215] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/25/2015] [Indexed: 01/25/2023] Open
Abstract
AIMS While angiotensin II-infused mice are the most popular model for preclinical aneurysm research, representative data on incidence, severity, and mortality of dissecting abdominal aortic aneurysms (AAAs) have never been established, and the influence of confounding factors is unknown. METHODS AND RESULTS We performed a meta-analysis including 194 manuscripts representing 1679 saline-infused, 4729 non-treated angiotensin II-infused, and 4057 treated angiotensin II-infused mice. Incidence (60%) and mortality (20%) rates are reported overall as well as for grade I (22%), grade II (26%), grade III (29%), and grade IV (24%) aneurysms. Dissecting AAA incidence was significantly (P < 0.05) influenced by sex, age, genetic background, infusion time, and dose of angiotensin II. Mortality was influenced by sex, genetic background, and dose, but not by age or infusion time. Surprisingly, both incidence and mortality were significantly different (P < 0.05) when comparing angiotensin II-infused mice in descriptive studies (56% incidence and 19% mortality) with angiotensin II-infused mice that served as control animals in treatment studies designed to either enhance (35% incidence and 13% mortality) or reduce (73% incidence and 25% mortality) dissecting AAA formation. After stratification to account for confounding factors (selection bias), the observed effect was still present for incidence, but not for mortality. Possible underlying causes are detection bias (non-uniform definition for detection and quantification of dissecting AAA in mice) or publication bias (studies with negative results, related to incidence in the control group, not being published). CONCLUSIONS Our data provide a new meta-analysis-based reference for incidence and mortality of dissecting AAA in angiotensin II-infused mice, and indicate that treatment studies using this mouse model should be interpreted with caution.
Collapse
Affiliation(s)
- Bram Trachet
- IBiTech - bioMMeda, Ghent University-iMinds Medical IT, Ghent, Belgium Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rodrigo A Fraga-Silva
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe A Jacquet
- Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nikolaos Stergiopulos
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Patrick Segers
- IBiTech - bioMMeda, Ghent University-iMinds Medical IT, Ghent, Belgium
| |
Collapse
|
22
|
De Wilde D, Trachet B, Van der Donckt C, Vandeghinste B, Descamps B, Vanhove C, De Meyer GRY, Segers P. Vulnerable Plaque Detection and Quantification with Gold Particle–Enhanced Computed Tomography in Atherosclerotic Mouse Models. Mol Imaging 2015; 14. [DOI: 10.2310/7290.2015.00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- David De Wilde
- From the Biofluid, Tissue and Solid Mechanics for Medical Applications (bioMMeda), iMinds Medical IT, Department of Electronics and Information Systems, Ghent University-iMinds-IBiTech, Gent, Belgium; Institute for Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Division of Physiopharmacology, University of Antwerp, Wilrijk, Belgium; Medical Image and Signal Processing (MEDISIP), iMinds Medical IT, Department of Electronics and Information Systems, Ghent University-
| | - Bram Trachet
- From the Biofluid, Tissue and Solid Mechanics for Medical Applications (bioMMeda), iMinds Medical IT, Department of Electronics and Information Systems, Ghent University-iMinds-IBiTech, Gent, Belgium; Institute for Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Division of Physiopharmacology, University of Antwerp, Wilrijk, Belgium; Medical Image and Signal Processing (MEDISIP), iMinds Medical IT, Department of Electronics and Information Systems, Ghent University-
| | - Carole Van der Donckt
- From the Biofluid, Tissue and Solid Mechanics for Medical Applications (bioMMeda), iMinds Medical IT, Department of Electronics and Information Systems, Ghent University-iMinds-IBiTech, Gent, Belgium; Institute for Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Division of Physiopharmacology, University of Antwerp, Wilrijk, Belgium; Medical Image and Signal Processing (MEDISIP), iMinds Medical IT, Department of Electronics and Information Systems, Ghent University-
| | - Bert Vandeghinste
- From the Biofluid, Tissue and Solid Mechanics for Medical Applications (bioMMeda), iMinds Medical IT, Department of Electronics and Information Systems, Ghent University-iMinds-IBiTech, Gent, Belgium; Institute for Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Division of Physiopharmacology, University of Antwerp, Wilrijk, Belgium; Medical Image and Signal Processing (MEDISIP), iMinds Medical IT, Department of Electronics and Information Systems, Ghent University-
| | - Benedicte Descamps
- From the Biofluid, Tissue and Solid Mechanics for Medical Applications (bioMMeda), iMinds Medical IT, Department of Electronics and Information Systems, Ghent University-iMinds-IBiTech, Gent, Belgium; Institute for Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Division of Physiopharmacology, University of Antwerp, Wilrijk, Belgium; Medical Image and Signal Processing (MEDISIP), iMinds Medical IT, Department of Electronics and Information Systems, Ghent University-
| | - Christian Vanhove
- From the Biofluid, Tissue and Solid Mechanics for Medical Applications (bioMMeda), iMinds Medical IT, Department of Electronics and Information Systems, Ghent University-iMinds-IBiTech, Gent, Belgium; Institute for Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Division of Physiopharmacology, University of Antwerp, Wilrijk, Belgium; Medical Image and Signal Processing (MEDISIP), iMinds Medical IT, Department of Electronics and Information Systems, Ghent University-
| | - Guido R. Y. De Meyer
- From the Biofluid, Tissue and Solid Mechanics for Medical Applications (bioMMeda), iMinds Medical IT, Department of Electronics and Information Systems, Ghent University-iMinds-IBiTech, Gent, Belgium; Institute for Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Division of Physiopharmacology, University of Antwerp, Wilrijk, Belgium; Medical Image and Signal Processing (MEDISIP), iMinds Medical IT, Department of Electronics and Information Systems, Ghent University-
| | - Patrick Segers
- From the Biofluid, Tissue and Solid Mechanics for Medical Applications (bioMMeda), iMinds Medical IT, Department of Electronics and Information Systems, Ghent University-iMinds-IBiTech, Gent, Belgium; Institute for Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Division of Physiopharmacology, University of Antwerp, Wilrijk, Belgium; Medical Image and Signal Processing (MEDISIP), iMinds Medical IT, Department of Electronics and Information Systems, Ghent University-
| |
Collapse
|
23
|
Lin JB, Phillips EH, Riggins TE, Sangha GS, Chakraborty S, Lee JY, Lycke RJ, Hernandez CL, Soepriatna AH, Thorne BRH, Yrineo AA, Goergen CJ. Imaging of small animal peripheral artery disease models: recent advancements and translational potential. Int J Mol Sci 2015; 16:11131-77. [PMID: 25993289 PMCID: PMC4463694 DOI: 10.3390/ijms160511131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022] Open
Abstract
Peripheral artery disease (PAD) is a broad disorder encompassing multiple forms of arterial disease outside of the heart. As such, PAD development is a multifactorial process with a variety of manifestations. For example, aneurysms are pathological expansions of an artery that can lead to rupture, while ischemic atherosclerosis reduces blood flow, increasing the risk of claudication, poor wound healing, limb amputation, and stroke. Current PAD treatment is often ineffective or associated with serious risks, largely because these disorders are commonly undiagnosed or misdiagnosed. Active areas of research are focused on detecting and characterizing deleterious arterial changes at early stages using non-invasive imaging strategies, such as ultrasound, as well as emerging technologies like photoacoustic imaging. Earlier disease detection and characterization could improve interventional strategies, leading to better prognosis in PAD patients. While rodents are being used to investigate PAD pathophysiology, imaging of these animal models has been underutilized. This review focuses on structural and molecular information and disease progression revealed by recent imaging efforts of aortic, cerebral, and peripheral vascular disease models in mice, rats, and rabbits. Effective translation to humans involves better understanding of underlying PAD pathophysiology to develop novel therapeutics and apply non-invasive imaging techniques in the clinic.
Collapse
Affiliation(s)
- Jenny B Lin
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Evan H Phillips
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Ti'Air E Riggins
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Gurneet S Sangha
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Sreyashi Chakraborty
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Janice Y Lee
- Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Roy J Lycke
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Clarissa L Hernandez
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Bradford R H Thorne
- School of Sciences, Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| | - Alexa A Yrineo
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| |
Collapse
|
24
|
Trachet B, Bols J, Degroote J, Verhegghe B, Stergiopulos N, Vierendeels J, Segers P. An animal-specific FSI model of the abdominal aorta in anesthetized mice. Ann Biomed Eng 2015; 43:1298-309. [PMID: 25824368 DOI: 10.1007/s10439-015-1310-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/23/2015] [Indexed: 11/30/2022]
Abstract
Recent research has revealed that angiotensin II-induced abdominal aortic aneurysm in mice can be related to medial ruptures occurring in the vicinity of abdominal side branches. Nevertheless a thorough understanding of the biomechanics near abdominal side branches in mice is lacking. In the current work we present a mouse-specific fluid-structure interaction (FSI) model of the abdominal aorta in ApoE(-/-) mice that incorporates in vivo stresses. The aortic geometry was based on contrast-enhanced in vivo micro-CT images, while aortic flow boundary conditions and material model parameters were based on in vivo high-frequency ultrasound. Flow waveforms predicted by FSI simulations corresponded better to in vivo measurements than those from CFD simulations. Peak-systolic principal stresses at the inner and outer aortic wall were locally increased caudal to the celiac and left lateral to the celiac and mesenteric arteries. Interestingly, these were also the locations at which a tear in the tunica media had been observed in previous work on angiotensin II-infused mice. Our preliminary results therefore suggest that local biomechanics play an important role in the pathophysiology of branch-related ruptures in angiotensin-II infused mice. More elaborate follow-up research is needed to demonstrate the role of biomechanics and mechanobiology in a longitudinal setting.
Collapse
Affiliation(s)
- Bram Trachet
- IBiTech-bioMMeda, Ghent University - iMinds Medical IT, De Pintelaan 185B, 9000, Ghent, Belgium,
| | | | | | | | | | | | | |
Collapse
|
25
|
Cuomo F, Ferruzzi J, Humphrey JD, Figueroa CA. An Experimental-Computational Study of Catheter Induced Alterations in Pulse Wave Velocity in Anesthetized Mice. Ann Biomed Eng 2015; 43:1555-70. [PMID: 25698526 DOI: 10.1007/s10439-015-1272-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/01/2015] [Indexed: 10/24/2022]
Abstract
Computational methods for solving problems of fluid dynamics and fluid-solid-interactions have advanced to the point that they enable reliable estimates of many hemodynamic quantities, including those important for studying vascular mechanobiology or designing medical devices. In this paper, we use a customized version of the open source code SimVascular to develop a computational model of central artery hemodynamics in anesthetized mice that is informed with experimental data on regional geometries, blood flows and pressures, and biaxial wall properties. After validating a baseline model against available data, we then use the model to investigate the effects of commercially available catheters on the very parameters that they are designed to measure, namely, murine blood pressure and (pressure) pulse wave velocity (PWV). We found that a combination of two small profile catheters designed to measure pressure simultaneously in the ascending aorta and femoral artery increased the PWV due to an overall increase in pressure within the arterial system. Conversely, a larger profile dual-sensor pressure catheter inserted through a carotid artery into the descending thoracic aorta decreased the PWV due to an overall decrease in pressure. In both cases, similar reductions in cardiac output were observed due to increased peripheral vascular resistance. As might be expected, therefore, invasive transducers can alter the very quantities that are designed to measure, yet advanced computational models offer a unique method to evaluate or augment such measurements.
Collapse
Affiliation(s)
- Federica Cuomo
- Department of Biomedical Engineering, King's College London, London, UK
| | | | | | | |
Collapse
|
26
|
Trachet B, Fraga-Silva RA, Piersigilli A, Tedgui A, Sordet-Dessimoz J, Astolfo A, Van der Donckt C, Modregger P, Stampanoni MFM, Segers P, Stergiopulos N. Dissecting abdominal aortic aneurysm in Ang II-infused mice: suprarenal branch ruptures and apparent luminal dilatation. Cardiovasc Res 2014; 105:213-22. [DOI: 10.1093/cvr/cvu257] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
27
|
Inadequate reinforcement of transmedial disruptions at branch points subtends aortic aneurysm formation in apolipoprotein-E-deficient mice. Cardiovasc Pathol 2014; 23:152-9. [DOI: 10.1016/j.carpath.2013.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/26/2013] [Accepted: 12/30/2013] [Indexed: 01/16/2023] Open
|
28
|
Longitudinal follow-up of ascending versus abdominal aortic aneurysm formation in angiotensin II-infused ApoE−/− mice. Artery Res 2014. [DOI: 10.1016/j.artres.2014.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Malekzadeh S, Fraga-Silva RA, Trachet B, Montecucco F, Mach F, Stergiopulos N. Role of the renin-angiotensin system on abdominal aortic aneurysms. Eur J Clin Invest 2013; 43:1328-38. [PMID: 24138426 DOI: 10.1111/eci.12173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/31/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a complex degenerative disease, which leads to morbidity and mortality in a large portion of the elderly population. Current treatment options for AAA are quite limited as there is no proven indication for pharmacological therapy and surgery is recommended for AAA larger than 5·5 cm in luminal diameter. Thus, there is a great need to elucidate the underlying pathophysiological cellular and molecular mechanisms to develop effective therapies. In this narrative review, we will discuss recent findings concerning some potential molecular and clinical aspects of the renin-angiotensin system (RAS) in AAA pathophysiology. MATERIALS AND METHODS This narrative review is based on the material found on MEDLINE and PubMed up to April 2013. We looked for the terms 'angiotensin, AT1 receptor, ACE inhibitors' in combination with 'abdominal aortic aneurysm, pathophysiology, pathways'. RESULTS Several basic research and clinical studies have recently investigated the role of the RAS in AAA. In particular, the subcutaneous infusion of Angiotensin II has been shown to induce AAA in Apo56 knockout mice. On the other hand, the pharmacological treatments targeting this system have been shown as beneficial in AAA patients. CONCLUSIONS Emerging evidence suggests that RAS may act as a molecular and therapeutic target for treating AAA. However, several issues on the role of RAS and the protective activities of angiotensin-converting enzyme (ACE) inhibitors and Angiotensin 1 receptors blockers against AAA require further clarifications.
Collapse
Affiliation(s)
- Sonaz Malekzadeh
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Bersi M, Collins M, Wilson E, Humphrey J. Disparate Changes in the Mechanical Properties of Murine Carotid Arteries and Aorta in Response to Chronic Infusion of Angiotensin-II. INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS 2013; 4:228-240. [PMID: 24944461 PMCID: PMC4058430 DOI: 10.1007/s12572-012-0052-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chronic infusion of angiotensin-II has proved useful for generating dissecting aortic aneurysms in atheroprone mice. These lesions preferentially form in the suprarenal abdominal aorta and sometimes in the ascending aorta, but reasons for such localization remain unknown. This study focused on why these lesions do not form in other large (central) arteries. Toward this end, we quantified and compared the geometry, composition, and biaxial material behavior (using a nonlinear constitutive relation) of common carotid arteries from three groups of mice: non-treated controls as well as mice receiving a subcutaneous infusion of angiotensin-II for 28 days that either did or did not lead to the development of a dissecting aortic aneurysm. Consistent with the mild hypertension induced by the angiotensin-II, the carotid wall thickened as expected and remodeled modestly. There was no evidence, however, of a marked loss of elastic fibers or smooth muscle cells, each of which appear to be initiating events for the development of aneurysms, and there was no evidence of intramural discontinuities that might give rise to dissections.
Collapse
Affiliation(s)
- M.R. Bersi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - M.J. Collins
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - E. Wilson
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - J.D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT USA
| |
Collapse
|
31
|
Vandeghinste B, Vandenberghe S, Vanhove C, Staelens S, Van Holen R. Low-dose micro-CT imaging for vascular segmentation and analysis using sparse-view acquisitions. PLoS One 2013; 8:e68449. [PMID: 23840893 PMCID: PMC3698127 DOI: 10.1371/journal.pone.0068449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/29/2013] [Indexed: 11/19/2022] Open
Abstract
The aim of this study is to investigate whether reliable and accurate 3D geometrical models of the murine aortic arch can be constructed from sparse-view data in vivo micro-CT acquisitions. This would considerably reduce acquisition time and X-ray dose. In vivo contrast-enhanced micro-CT datasets were reconstructed using a conventional filtered back projection algorithm (FDK), the image space reconstruction algorithm (ISRA) and total variation regularized ISRA (ISRA-TV). The reconstructed images were then semi-automatically segmented. Segmentations of high- and low-dose protocols were compared and evaluated based on voxel classification, 3D model diameters and centerline differences. FDK reconstruction does not lead to accurate segmentation in the case of low-view acquisitions. ISRA manages accurate segmentation with 1024 or more projection views. ISRA-TV needs a minimum of 256 views. These results indicate that accurate vascular models can be obtained from micro-CT scans with 8 times less X-ray dose and acquisition time, as long as regularized iterative reconstruction is used.
Collapse
Affiliation(s)
- Bert Vandeghinste
- Institute Biomedical Technology, MEDISIP, Ghent University-iMinds, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
32
|
Wathen CA, Foje N, van Avermaete T, Miramontes B, Chapaman SE, Sasser TA, Kannan R, Gerstler S, Leevy WM. In vivo X-ray computed tomographic imaging of soft tissue with native, intravenous, or oral contrast. SENSORS (BASEL, SWITZERLAND) 2013; 13:6957-80. [PMID: 23711461 PMCID: PMC3715264 DOI: 10.3390/s130606957] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/16/2013] [Accepted: 05/23/2013] [Indexed: 02/07/2023]
Abstract
X-ray Computed Tomography (CT) is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site.
Collapse
Affiliation(s)
- Connor A. Wathen
- Department of Biological Sciences, 100 Galvin Life Sciences Center, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mail:
| | - Nathan Foje
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
| | - Tony van Avermaete
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
- Penn High School, 55900 Bittersweet Road, Mishawaka, IN 46545, USA
| | - Bernadette Miramontes
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
- Penn High School, 55900 Bittersweet Road, Mishawaka, IN 46545, USA
| | - Sarah E. Chapaman
- Notre Dame Integrated Imaging Facility, Notre Dame, IN 46556, USA; E-Mail:
| | - Todd A. Sasser
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
- Bruker-Biospin Corporation, 4 Research Drive, Woodbridge, CT 06525, USA
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA; E-Mail:
| | - Steven Gerstler
- Saint Joseph Regional Medical Center, Mishawaka, IN 46545, USA; E-Mail:
| | - W. Matthew Leevy
- Department of Biological Sciences, 100 Galvin Life Sciences Center, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mail:
- Notre Dame Integrated Imaging Facility, Notre Dame, IN 46556, USA; E-Mail:
- Harper Cancer Research Institute, A200 Harper Hall, Notre Dame, IN 46530, USA
| |
Collapse
|
33
|
Molecular imaging of experimental abdominal aortic aneurysms. ScientificWorldJournal 2013; 2013:973150. [PMID: 23737735 PMCID: PMC3655677 DOI: 10.1155/2013/973150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/19/2013] [Indexed: 11/18/2022] Open
Abstract
Current laboratory research in the field of abdominal aortic aneurysm (AAA) disease often utilizes small animal experimental models induced by genetic manipulation or chemical application. This has led to the use and development of multiple high-resolution molecular imaging modalities capable of tracking disease progression, quantifying the role of inflammation, and evaluating the effects of potential therapeutics. In vivo imaging reduces the number of research animals used, provides molecular and cellular information, and allows for longitudinal studies, a necessity when tracking vessel expansion in a single animal. This review outlines developments of both established and emerging molecular imaging techniques used to study AAA disease. Beyond the typical modalities used for anatomical imaging, which include ultrasound (US) and computed tomography (CT), previous molecular imaging efforts have used magnetic resonance (MR), near-infrared fluorescence (NIRF), bioluminescence, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). Mouse and rat AAA models will hopefully provide insight into potential disease mechanisms, and the development of advanced molecular imaging techniques, if clinically useful, may have translational potential. These efforts could help improve the management of aneurysms and better evaluate the therapeutic potential of new treatments for human AAA disease.
Collapse
|
34
|
Trachet B, Bols J, De Santis G, Vandenberghe S, Loeys B, Segers P. The impact of simplified boundary conditions and aortic arch inclusion on CFD simulations in the mouse aorta: a comparison with mouse-specific reference data. J Biomech Eng 2012; 133:121006. [PMID: 22206423 DOI: 10.1115/1.4005479] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Computational fluid dynamics (CFD) simulations allow for calculation of a detailed flow field in the mouse aorta and can thus be used to investigate a potential link between local hemodynamics and disease development. To perform these simulations in a murine setting, one often needs to make assumptions (e.g. when mouse-specific boundary conditions are not available), but many of these assumptions have not been validated due to a lack of reference data. In this study, we present such a reference data set by combining high-frequency ultrasound and contrast-enhanced micro-CT to measure (in vivo) the time-dependent volumetric flow waveforms in the complete aorta (including seven major side branches) of 10 male ApoE -/- deficient mice on a C57Bl/6 background. In order to assess the influence of some assumptions that are commonly applied in literature, four different CFD simulations were set up for each animal: (i) imposing the measured volumetric flow waveforms, (ii) imposing the average flow fractions over all 10 animals, presented as a reference data set, (iii) imposing flow fractions calculated by Murray's law, and (iv) restricting the geometrical model to the abdominal aorta (imposing measured flows). We found that - even if there is sometimes significant variation in the flow fractions going to a particular branch - the influence of using average flow fractions on the CFD simulations is limited and often restricted to the side branches. On the other hand, Murray's law underestimates the fraction going to the brachiocephalic trunk and strongly overestimates the fraction going to the distal aorta, influencing the outcome of the CFD results significantly. Changing the exponential factor in Murray's law equation from 3 to 2 (as suggested by several authors in literature) yields results that correspond much better to those obtained imposing the average flow fractions. Restricting the geometrical model to the abdominal aorta did not influence the outcome of the CFD simulations. In conclusion, the presented reference dataset can be used to impose boundary conditions in the mouse aorta in future studies, keeping in mind that they represent a subsample of the total population, i.e., relatively old, non-diseased, male C57Bl/6 ApoE -/- mice.
Collapse
Affiliation(s)
- Bram Trachet
- IBiTech - bioMMeda, Ghent University, BE-9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
35
|
Remodeling of intramural thrombus and collagen in an Ang-II infusion ApoE-/- model of dissecting aortic aneurysms. Thromb Res 2012; 130:e139-46. [PMID: 22560850 DOI: 10.1016/j.thromres.2012.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/31/2012] [Accepted: 04/10/2012] [Indexed: 01/20/2023]
Abstract
Fibrillar collagen endows the normal aortic wall with significant stiffness and strength and similarly plays important roles in many disease processes. For example, because of the marked loss of elastic fibers and functional smooth cells in aortic aneurysms, collagen plays a particularly important role in controlling the dilatation of these lesions and governing their rupture potential. Recent findings suggest further that collagen remodeling may also be fundamental to the intramural healing of arterial or aneurysmal dissections. To explore this possibility further, we identified and correlated regions of intramural thrombus and newly synthesized fibrillar collagen in a well-established mouse model of dissecting aortic aneurysms. Our findings suggest that intramural thrombus that is isolated from free-flowing blood creates a permissive environment for the synthesis of fibrillar collagen that, albeit initially less dense and organized, could protect that region of the dissected wall from subsequent expansion of the dissection or rupture. Moreover, alpha-smooth muscle actin positive cells appeared to be responsible for the newly produced collagen, which co-localized with significant production of glycosaminoglycans.
Collapse
|
36
|
Regional Finite Strains in an Angiotensin-II Induced Mouse Model of Dissecting Abdominal Aortic Aneurysms. Cardiovasc Eng Technol 2012. [DOI: 10.1007/s13239-012-0083-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Makris E, Neofytou P, Tsangaris S, Housiadas C. A novel method for the generation of multi-block computational structured grids from medical imaging of arterial bifurcations. Med Eng Phys 2012; 34:1157-66. [PMID: 22209311 DOI: 10.1016/j.medengphy.2011.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
Abstract
In this study a description of a new approach, for the generation of multi-block structured computational grids on patient-specific bifurcation geometries is presented. The structured grid generation technique is applied to data obtained by medical imaging examination, resulting in a surface conforming, high quality, multi-block structured grid of the branching geometry. As a case study application a patient specific abdominal aorta bifurcation is selected. For the evaluation of the grid produced by the novel method, a grid convergence study and a comparison between the grid produced by the method and unstructured grids produced by commercial meshing software are carried out.
Collapse
Affiliation(s)
- Evangelos Makris
- Thermal Hydraulics & Multiphase Flow Laboratory, National Centre for Scientific Research Demokritos, 15310 Agia Paraskevi, Greece.
| | | | | | | |
Collapse
|
38
|
On the Use of In Vivo Measured Flow Rates as Boundary Conditions for Image-Based Hemodynamic Models of the Human Aorta: Implications for Indicators of Abnormal Flow. Ann Biomed Eng 2011; 40:729-41. [DOI: 10.1007/s10439-011-0431-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
|