1
|
Uzelac I, Crowley CJ, Iravanian S, Kim TY, Cho HC, Fenton FH. Methodology for Cross-Talk Elimination in Simultaneous Voltage and Calcium Optical Mapping Measurements With Semasbestic Wavelengths. Front Physiol 2022; 13:812968. [PMID: 35222080 PMCID: PMC8874316 DOI: 10.3389/fphys.2022.812968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Most cardiac arrhythmias at the whole heart level result from alteration of cell membrane ionic channels and intracellular calcium concentration ([Ca2+] i ) cycling with emerging spatiotemporal behavior through tissue-level coupling. For example, dynamically induced spatial dispersion of action potential duration, QT prolongation, and alternans are clinical markers for arrhythmia susceptibility in regular and heart-failure patients that originate due to changes of the transmembrane voltage (V m) and [Ca2+] i . We present an optical-mapping methodology that permits simultaneous measurements of the V m - [Ca2+] i signals using a single-camera without cross-talk, allowing quantitative characterization of favorable/adverse cell and tissue dynamical effects occurring from remodeling and/or drugs in heart failure. We demonstrate theoretically and experimentally in six different species the existence of a family of excitation wavelengths, we termed semasbestic, that give no change in signal for one dye, and thus can be used to record signals from another dye, guaranteeing zero cross-talk.
Collapse
Affiliation(s)
- Ilija Uzelac
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | | | - Shahriar Iravanian
- Division of Cardiology, Section of Electrophysiology, Emory University Hospital, Atlanta, GA, United States
| | - Tae Yun Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Hee Cheol Cho
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, United States
- The Sibley Heart Center, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Flavio H. Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
2
|
Wu T, Nguyen HX, Bursac N. In vitro discovery of novel prokaryotic ion channel candidates for antiarrhythmic gene therapy. Methods Enzymol 2021; 654:407-434. [PMID: 34120724 DOI: 10.1016/bs.mie.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sudden cardiac death continues to have a devastating impact on public health prompting the continued efforts to develop more effective therapies for cardiac arrhythmias. Among different approaches to normalize function of ion channels and prevent arrhythmogenic remodeling of tissue substrate, cardiac cell and gene therapies are emerging as promising strategies to restore and maintain normal heart rhythm. Specifically, the ability to genetically enhance electrical excitability of diseased hearts through voltage-gated sodium channel (VGSC) gene transfer could improve velocity of action potential conduction and act to stop reentrant circuits underlying sustained arrhythmias. For this purpose, prokaryotic VGSC genes are promising therapeutic candidates due to their small size (<1kb) and potential to be effectively packaged in adeno-associated viral (AAV) vectors and delivered to cardiomyocytes for stable, long-term expression. This article describes a versatile method to discover and characterize novel prokaryotic ion channels for use in gene and cell therapies for heart disease including cardiac arrhythmias. Detailed protocols are provided for: (1) identification of potential ion channel candidates from large genomic databases, (2) candidate screening and characterization using site-directed mutagenesis and engineered human excitable cell system and, (3) candidate validation using electrophysiological techniques and an in vitro model of impaired cardiac impulse conduction.
Collapse
Affiliation(s)
- Tianyu Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Hung X Nguyen
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, United States.
| |
Collapse
|
3
|
Jaimes R, McCullough D, Siegel B, Swift L, Hiebert J, Mclnerney D, Posnack NG. Lights, camera, path splitter: a new approach for truly simultaneous dual optical mapping of the heart with a single camera. BMC Biomed Eng 2019; 1. [PMID: 31768502 PMCID: PMC6876868 DOI: 10.1186/s42490-019-0024-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Optical mapping of transmembrane voltage and intracellular calcium is a powerful tool for investigating cardiac physiology and pathophysiology. However, simultaneous dual mapping of two fluorescent probes remains technically challenging. We introduce a novel, easy-to-use approach that requires a path splitter, single camera and excitation light to simultaneously acquire voltage and calcium signals from whole heart preparations, which can be applied to other physiological models – including neurons and isolated cardiomyocytes. Results Complementary probes were selected that could be excited with a single wavelength light source. Langendorff-perfused hearts (rat, swine) were stained and imaged using a sCMOS camera outfitted with an optical path splitter to simultaneously acquire two emission fields at high spatial and temporal resolution. Voltage (RH237) and calcium (Rhod2) signals were acquired concurrently on a single sensor, resulting in two 384 × 256 images at 814 frames per second. At this frame rate, the signal-to-noise ratio was 47 (RH237) and 85 (Rhod2). Imaging experiments were performed on small rodent hearts, as well as larger pig hearts with sufficient optical signals. In separate experiments, each dye was used independently to assess crosstalk and demonstrate signal specificity. Additionally, the effect of ryanodine on myocardial calcium transients was validated – with no measurable effect on the amplitude of optical action potentials. To demonstrate spatial resolution, ventricular tachycardia was induced –resulting in the novel finding that spatially discordant calcium alternans can be present in different regions of the heart, even when electrical alternans remain concordant. The described system excels in providing a wide field of view and high spatiotemporal resolution for a variety of cardiac preparations. Conclusions We report the first multiparametric mapping system that simultaneously acquires calcium and voltage signals from cardiac preparations, using a path splitter, single camera and excitation light. This approach eliminates the need for multiple cameras, excitation light patterning or frame interleaving. These features can aid in the adoption of dual mapping technology by the broader cardiovascular research community, and decrease the barrier of entry into panoramic heart imaging, as it reduces the number of required cameras. Electronic supplementary material The online version of this article (10.1186/s42490-019-0024-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafael Jaimes
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA.,Children's National Heart Institute: Children's National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Damon McCullough
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Bryan Siegel
- Children's National Heart Institute: Children's National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Luther Swift
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA.,Children's National Heart Institute: Children's National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - James Hiebert
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Daniel Mclnerney
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA.,Children's National Heart Institute: Children's National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA.,Department of Pediatrics, Department of Pharmacology & Physiology, School of Medicine and Health Sciences: George Washington University, 2300 I Street NW, Washington, DC 20037, USA
| |
Collapse
|
4
|
Uzelac I, Iravanian S, Fenton FH. Parallel Acceleration on Removal of Optical Mapping Baseline Wandering. COMPUTING IN CARDIOLOGY 2019; 46:10.22489/cinc.2019.433. [PMID: 35719209 PMCID: PMC9202644 DOI: 10.22489/cinc.2019.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optical mapping measurements on hearts stained with fluorescent dyes is imagining method widely accepted and recognized as a tool to study complex spatial-temporal dynamics of cardiac electro-physiology. One shortcoming of the method is baseline wandering in obtained fluorescence signals as signals relevant to transmembrane potential (Vm) change and free intracellular calcium concentration ([Ca]i +2), the two most used dyes, are calculated as a relative signal change in respect to the fluorescence baseline. These changes are small fractional changes often smaller than 10 %. Baseline fluorescence drifts due to dye photo-bleaching, heart contraction/movement artifacts, and stability of the excitation light source over time. Depending on experimental instrumentation, recording duration, signal to noise levels and study aims of the optical imagining, many research groups adopted their own techniques tailored to a specific experimental data. Here we present a technique based on finite impulse response (FIR) filters with paralleled acceleration implemented on GPUs and multi-core CPU, in MATLAB.
Collapse
Affiliation(s)
- Ilija Uzelac
- School of Physics, Georgia Intitute of Technology, Atlanta, GA, USA
| | | | - Flavio H Fenton
- School of Physics, Georgia Intitute of Technology, Atlanta, GA, USA
| |
Collapse
|
5
|
Cathey B, Obaid S, Zolotarev AM, Pryamonosov RA, Syunyaev RA, George SA, Efimov IR. Open-Source Multiparametric Optocardiography. Sci Rep 2019; 9:721. [PMID: 30679527 PMCID: PMC6346041 DOI: 10.1038/s41598-018-36809-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/27/2018] [Indexed: 01/17/2023] Open
Abstract
Since the 1970s fluorescence imaging has become a leading tool in the discovery of mechanisms of cardiac function and arrhythmias. Gradual improvements in fluorescent probes and multi-camera technology have increased the power of optical mapping and made a major impact on the field of cardiac electrophysiology. Tandem-lens optical mapping systems facilitated simultaneous recording of multiple parameters characterizing cardiac function. However, high cost and technological complexity restricted its proliferation to the wider biological community. We present here, an open-source solution for multiple-camera tandem-lens optical systems for multiparametric mapping of transmembrane potential, intracellular calcium dynamics and other parameters in intact mouse hearts and in rat heart slices. This 3D-printable hardware and Matlab-based RHYTHM 1.2 analysis software are distributed under an MIT open-source license. Rapid prototyping permits the development of inexpensive, customized systems with broad functionality, allowing wider application of this technology outside biomedical engineering laboratories.
Collapse
Affiliation(s)
- Brianna Cathey
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA
| | - Sofian Obaid
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA
| | - Alexander M Zolotarev
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Roman A Pryamonosov
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia
- Institute of Personalized Medicine, Sechenov University, Moscow, Russia
| | - Roman A Syunyaev
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia
- Institute of Personalized Medicine, Sechenov University, Moscow, Russia
| | - Sharon A George
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA.
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA.
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| |
Collapse
|
6
|
Nguyen HX, Kirkton RD, Bursac N. Generation and customization of biosynthetic excitable tissues for electrophysiological studies and cell-based therapies. Nat Protoc 2018; 13:927-945. [PMID: 29622805 PMCID: PMC6050172 DOI: 10.1038/nprot.2018.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We describe a two-stage protocol to generate electrically excitable and actively conducting cell networks with stable and customizable electrophysiological phenotypes. Using this method, we have engineered monoclonally derived excitable tissues as a robust and reproducible platform to investigate how specific ion channels and mutations affect action potential (AP) shape and conduction. In the first stage of the protocol, we combine computational modeling, site-directed mutagenesis, and electrophysiological techniques to derive optimal sets of mammalian and/or prokaryotic ion channels that produce specific AP shape and conduction characteristics. In the second stage of the protocol, selected ion channels are stably expressed in unexcitable human cells by means of viral or nonviral delivery, followed by flow cytometry or antibiotic selection to purify the desired phenotype. This protocol can be used with traditional heterologous expression systems or primary excitable cells, and application of this method to primary fibroblasts may enable an alternative approach to cardiac cell therapy. Compared with existing methods, this protocol generates a well-defined, relatively homogeneous electrophysiological phenotype of excitable cells that facilitates experimental and computational studies of AP conduction and can decrease arrhythmogenic risk upon cell transplantation. Although basic cell culture and molecular biology techniques are sufficient to generate excitable tissues using the described protocol, experience with patch-clamp techniques is required to characterize and optimize derived cell populations.
Collapse
Affiliation(s)
- Hung X Nguyen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA. Correspondence should be addressed to N.B. ()
| | - Robert D Kirkton
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA. Correspondence should be addressed to N.B. ()
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA. Correspondence should be addressed to N.B. ()
| |
Collapse
|
7
|
Costantino AJ, Hyatt CJ, Kollisch-Singule MC, Beaumont J, Roth BJ, Pertsov AM. Determining the light scattering and absorption parameters from forward-directed flux measurements in cardiac tissue. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:76009. [PMID: 28715543 DOI: 10.1117/1.jbo.22.7.076009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
We describe a method to accurately measure the light scattering model parameters from forward-directed flux (FDF) measurements carried out with a fiber-optic probe (optrode). Improved determination of light scattering parameters will, in turn, permit better modeling and interpretation of optical mapping in the heart using voltage-sensitive dyes. Using our optrode-based system, we carried out high spatial resolution measurements of FDF in intact and homogenized cardiac tissue, as well as in intralipid-based tissue phantoms. The samples were illuminated with a broad collimated beam at 660 and 532 nm. Measurements were performed with a plunge fiber-optic probe (NA=0.22) at a spatial resolution of up to 10 μm. In the vicinity of the illuminated surface, the FDF consistently manifested a fast decaying exponent with a space constant comparable with the decay rate of ballistic photons. Using a Monte Carlo model, we obtained a simple empirical formula linking the rate of the fast exponent to the scattering coefficient, the anisotropy parameter g, and the numerical aperture of the probe. The estimates of scattering coefficient based on this formula were validated in tissue phantoms. Potential applications of optical fiber-based FDF measurements for the evaluation of optical parameters in turbid media are discussed.
Collapse
Affiliation(s)
- Anthony J Costantino
- Binghamton University, Department of Electrical and Computer Engineering, Binghamton, New York, United States
| | - Christopher J Hyatt
- Springfield College, Department of Mathematics, Physics and Computer Science, Springfield, Massachusetts, United States
| | | | - Jacques Beaumont
- Upstate Medical University, Department of Pharmacology, Syracuse, New York, United States
| | - Bradley J Roth
- Oakland University, Department of Physics, Rochester, Michigan, United States
| | - Arkady M Pertsov
- Upstate Medical University, Department of Pharmacology, Syracuse, New York, United States
| |
Collapse
|
8
|
Micu I, Brideau C, Lu L, Stys PK. Effects of laser polarization on responses of the fluorescent Ca 2+ indicator X-Rhod-1 in neurons and myelin. NEUROPHOTONICS 2017; 4:025002. [PMID: 28612034 PMCID: PMC5459219 DOI: 10.1117/1.nph.4.2.025002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/15/2017] [Indexed: 05/05/2023]
Abstract
Laser-scanning optical microscopes generally do not control the polarization of the exciting laser field. We show that laser polarization and imaging mode (confocal versus two photon) exert a profound influence on the ability to detect [Formula: see text] changes in both cultured neurons and living myelin. With two-photon excitation, increasing ellipticity resulted in a [Formula: see text] reduction in resting X-Rhod-1 fluorescence in homogeneous bulk solution, cell cytoplasm, and myelin. In contrast, varying the angle of a linearly polarized laser field only had appreciable effects on dyes that partitioned into myelin in an ordered manner. During injury-induced [Formula: see text] increases, larger ellipticities resulted in a significantly greater injury-induced signal increase in neurons, and particularly in myelin. Indeed, the traditional method of measuring [Formula: see text] changes using one-photon confocal mode with linearly polarized continuous wave laser illumination produced no appreciable X-Rhod-1 signal increase in ischemic myelin, compared to a robust [Formula: see text] fluorescence increase with two-photon excitation and optimized ellipticity with the identical injury paradigm. This underscores the differences in one- versus two-photon excitation and, in particular, the under-appreciated effects of laser polarization on the behavior of certain [Formula: see text] reporters, which may lead to substantial underestimates of the real [Formula: see text] fluctuations in various cellular compartments.
Collapse
Affiliation(s)
- Ileana Micu
- University of Calgary, Cumming School of Medicine, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Craig Brideau
- University of Calgary, Cumming School of Medicine, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Li Lu
- University of Calgary, Cumming School of Medicine, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Peter K. Stys
- University of Calgary, Cumming School of Medicine, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary, Alberta, Canada
- Address all correspondence to: Peter K. Stys, E-mail:
| |
Collapse
|
9
|
Spencer TM, Blumenstein RF, Pryse KM, Lee SL, Glaubke DA, Carlson BE, Elson EL, Genin GM. Fibroblasts Slow Conduction Velocity in a Reconstituted Tissue Model of Fibrotic Cardiomyopathy. ACS Biomater Sci Eng 2016; 3:3022-3028. [PMID: 31119190 DOI: 10.1021/acsbiomaterials.6b00576] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myocardial function deteriorates over the course of fibrotic cardiomyopathy, due to electrophysiological and mechanical effects of myofibroblasts that are not completely understood. Although a range of experimental model systems and associated theoretical treatments exist at the levels of isolated cardiomyocytes and planar co-cultures of myofibroblasts and cardiomyocytes, interactions between these cell types at the tissue level are less clear. We studied these interactions through an engineered heart tissue (EHT) model of fibrotic myocardium and a mathematical model of the effects of cellular composition on EHT impulse conduction velocity. The EHT model allowed for modulation of cardiomyocyte and myofibroblast volume fractions, and observation of cell behavior in a three-dimensional environment that is more similar to native heart tissue than is planar cell culture. The cardiomyocyte and myofibroblast volume fractions determined the retardation of impulse conduction (spread of the action potential) in EHTs as measured by changes of the fluorescence of the Ca2+ probe, Fluo-2. Interpretation through our model showed retardation far in excess of predictions by homogenization theory, with conduction ceasing far below the fibroblast volume fraction associated with steric percolation. Results point to an important multiscale structural role of myofibroblasts in attenuating impulse conduction in fibrotic cardiomyopathy.
Collapse
Affiliation(s)
- Teresa M Spencer
- Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Ryan F Blumenstein
- Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Kenneth M Pryse
- Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA.,Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Drive, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sheng-Lin Lee
- Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - David A Glaubke
- Department of Biomedical Engineering, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Brian E Carlson
- Department of Molecular and Integrative Physiology, NCRC B10 A126, 2800 Plymouth Rd., University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
| | - Elliot L Elson
- Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA.,Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Drive, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Biomedical Engineering, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Guy M Genin
- Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA.,NSF Center for Engineering MechanoBiology, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 USA
| |
Collapse
|
10
|
Simultaneous Sodium and Calcium Imaging from Dendrites and Axons. eNeuro 2015; 2:eN-MNT-0092-15. [PMID: 26730401 PMCID: PMC4699831 DOI: 10.1523/eneuro.0092-15.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/17/2015] [Accepted: 09/28/2015] [Indexed: 11/21/2022] Open
Abstract
Dynamic calcium imaging is a major technique of neuroscientists. It can reveal information about the location of various calcium channels and calcium permeable receptors, the time course, magnitude, and location of intracellular calcium concentration ([Ca2+]i) changes, and indirectly, the occurrence of action potentials. Dynamic sodium imaging, a less exploited technique, can reveal analogous information related to sodium signaling. In some cases, like the examination of AMPA and NMDA receptor signaling, measurements of both [Ca2+]i and [Na+]i changes in the same preparation may provide more information than separate measurements. To this end, we developed a technique to simultaneously measure both signals at high speed and sufficient sensitivity to detect localized physiologic events. This approach has advantages over sequential imaging because the preparation may not respond identically in different trials. We designed custom dichroic and emission filters to allow the separate detection of the fluorescence of sodium and calcium indicators loaded together into a single neuron in a brain slice from the hippocampus of Sprague-Dawley rats. We then used high-intensity light emitting diodes (LEDs) to alternately excite the two indicators at the appropriate wavelengths. These pulses were synchronized with the frames of a CCD camera running at 500 Hz. Software then separated the data streams to provide independent sodium and calcium signals. With this system we could detect [Ca2+]i and [Na+]i changes from single action potentials in axons and synaptically evoked signals in dendrites, both with submicron resolution and a good signal-to-noise ratio (S/N).
Collapse
|
11
|
Wang K, Lee P, Mirams GR, Sarathchandra P, Borg TK, Gavaghan DJ, Kohl P, Bollensdorff C. Cardiac tissue slices: preparation, handling, and successful optical mapping. Am J Physiol Heart Circ Physiol 2015; 308:H1112-25. [PMID: 25595366 PMCID: PMC4551126 DOI: 10.1152/ajpheart.00556.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/14/2015] [Indexed: 01/28/2023]
Abstract
Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands (“fibers”) in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics.
Collapse
Affiliation(s)
- Ken Wang
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Peter Lee
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, United Kingdom
| | - Gary R Mirams
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Padmini Sarathchandra
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Middlesex, United Kingdom
| | - Thomas K Borg
- Department of Regenerative Medicine and Cell Biology, University of South Carolina School of Medicine, Charleston, South Carolina; and
| | - David J Gavaghan
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Peter Kohl
- Department of Computer Science, University of Oxford, Oxford, United Kingdom; Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Middlesex, United Kingdom
| | - Christian Bollensdorff
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Middlesex, United Kingdom; Qatar Cardiovascular Research Center, Qatar Foundation, Doha, Qatar
| |
Collapse
|
12
|
Cardiac electrophysiological imaging systems scalable for high-throughput drug testing. Pflugers Arch 2012; 464:645-56. [PMID: 23053475 PMCID: PMC3513599 DOI: 10.1007/s00424-012-1149-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 12/02/2022]
Abstract
Multi-parametric electrophysiological measurements using optical methods have become a highly valued standard in cardiac research. Most published optical mapping systems are expensive and complex. Although some applications demand high-cost components and complex designs, many can be tackled with simpler solutions. Here, we describe (1) a camera-based voltage and calcium imaging system using a single ‘economy’ electron-multiplying charge-coupled device camera and demonstrate the possibility of using a consumer camera for imaging calcium transients of the heart, and (2) a photodiode-based voltage and calcium high temporal resolution measurement system using single-element photodiodes and an optical fibre. High-throughput drug testing represents an application where system scalability is particularly attractive. Therefore, we tested our systems on tissue exposed to a well-characterized and clinically relevant calcium channel blocker, nifedipine, which has been used to treat angina and hypertension. As experimental models, we used the Langendorff-perfused whole-heart and thin ventricular tissue slices, a preparation gaining renewed interest by the cardiac research community. Using our simplified systems, we were able to monitor simultaneously the marked changes in the voltage and calcium transients that are responsible for the negative inotropic effect of the compound.
Collapse
|
13
|
Lee P, Yan P, Ewart P, Kohl P, Loew LM, Bollensdorff C. Simultaneous measurement and modulation of multiple physiological parameters in the isolated heart using optical techniques. Pflugers Arch 2012; 464:403-14. [PMID: 22886365 DOI: 10.1007/s00424-012-1135-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
Whole-heart multi-parametric optical mapping has provided valuable insight into the interplay of electrophysiological parameters, and this technology will continue to thrive as dyes are improved and technical solutions for imaging become simpler and cheaper. Here, we show the advantage of using improved 2nd-generation voltage dyes, provide a simple solution to panoramic multi-parametric mapping, and illustrate the application of flash photolysis of caged compounds for studies in the whole heart. For proof of principle, we used the isolated rat whole-heart model. After characterising the blue and green isosbestic points of di-4-ANBDQBS and di-4-ANBDQPQ, respectively, two voltage and calcium mapping systems are described. With two newly custom-made multi-band optical filters, (1) di-4-ANBDQBS and fluo-4 and (2) di-4-ANBDQPQ and rhod-2 mapping are demonstrated. Furthermore, we demonstrate three-parameter mapping using di-4-ANBDQPQ, rhod-2 and NADH. Using off-the-shelf optics and the di-4-ANBDQPQ and rhod-2 combination, we demonstrate panoramic multi-parametric mapping, affording a 360° spatiotemporal record of activity. Finally, local optical perturbation of calcium dynamics in the whole heart is demonstrated using the caged compound, o-nitrophenyl ethylene glycol tetraacetic acid (NP-EGTA), with an ultraviolet light-emitting diode (LED). Calcium maps (heart loaded with di-4-ANBDQPQ and rhod-2) demonstrate successful NP-EGTA loading and local flash photolysis. All imaging systems were built using only a single camera. In conclusion, using novel 2nd-generation voltage dyes, we developed scalable techniques for multi-parametric optical mapping of the whole heart from one point of view and panoramically. In addition to these parameter imaging approaches, we show that it is possible to use caged compounds and ultraviolet LEDs to locally perturb electrophysiological parameters in the whole heart.
Collapse
Affiliation(s)
- Peter Lee
- Department of Physics, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|