1
|
Yan S, Lu Y, An C, Hu W, Chen Y, Li Z, Wei W, Chen Z, Zeng X, Xu W, Lv Z, Pan F, Gao W, Wu Y. Biomechanical research using advanced micro-nano devices: In-Vitro cell Characterization focus. J Adv Res 2024:S2090-1232(24)00602-7. [PMID: 39701378 DOI: 10.1016/j.jare.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Cells in the body reside in a dynamic microenvironment subjected to various physical stimuli, where mechanical stimulation plays a crucial role in regulating cellular physiological behaviors and functions. AIM OF REVIEW Investigating the mechanisms and interactions of mechanical transmission is essential for understanding the physiological and functional interplay between cells and physical stimuli. Therefore, establishing an in vitro biomechanical stimulation cell culture system holds significant importance for research related to cellular biomechanics. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we primarily focused on various biomechanically relevant cell culture systems and highlighted the advancements and prospects in their preparation processes. Firstly, we discussed the types and characteristics of biomechanics present in the microenvironment within the human body. Subsequently, we introduced the research progress, working principles, preparation processes, potential advantages, applications, and challenges of various biomechanically relevant in vitro cell culture systems. Additionally, we summarized and categorized currently commercialized biomechanically relevant cell culture systems, offering a comprehensive reference for researchers in related fields.
Collapse
Affiliation(s)
- Shiqiang Yan
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China; Center of Cancer Immunology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Changming An
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wanglai Hu
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Yaofeng Chen
- Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Ziwen Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenbo Wei
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
| | - Zongzheng Chen
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
| | - Xianhai Zeng
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China
| | - Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, Shandong, China
| | - Zhenghua Lv
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, Shandong, China.
| | - Fan Pan
- Center of Cancer Immunology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Wei Gao
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China.
| | - Yongyan Wu
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China; Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
2
|
Connolly S, Newport D, McGourty K. The mechanical responses of advecting cells in confined flow. BIOMICROFLUIDICS 2020; 14:031501. [PMID: 32454924 PMCID: PMC7200165 DOI: 10.1063/5.0005154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/21/2020] [Indexed: 05/03/2023]
Abstract
Fluid dynamics have long influenced cells in suspension. Red blood cells and white blood cells are advected through biological microchannels in both the cardiovascular and lymphatic systems and, as a result, are subject to a wide variety of complex fluidic forces as they pass through. In vivo, microfluidic forces influence different biological processes such as the spreading of infection, cancer metastasis, and cell viability, highlighting the importance of fluid dynamics in the blood and lymphatic vessels. This suggests that in vitro devices carrying cell suspensions may influence the viability and functionality of cells. Lab-on-a-chip, flow cytometry, and cell therapies involve cell suspensions flowing through microchannels of approximately 100-800 μ m. This review begins by examining the current fundamental theories and techniques behind the fluidic forces and inertial focusing acting on cells in suspension, before exploring studies that have investigated how these fluidic forces affect the reactions of suspended cells. In light of these studies' findings, both in vivo and in vitro fluidic cell microenvironments shall also be discussed before concluding with recommendations for the field.
Collapse
Affiliation(s)
- S Connolly
- School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - D Newport
- School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | | |
Collapse
|
3
|
Zhao R, Li FQ, Tian LL, Shang DS, Guo Y, Zhang JR, Liu M. Comprehensive analysis of the whole coding and non-coding RNA transcriptome expression profiles and construction of the circRNA-lncRNA co-regulated ceRNA network in laryngeal squamous cell carcinoma. Funct Integr Genomics 2018; 19:109-121. [PMID: 30128795 DOI: 10.1007/s10142-018-0631-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 07/21/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
Recently, accumulating evidence has demonstrated that non-coding RNAs (ncRNAs) play a vital role in oncogenicity. Nevertheless, the regulatory mechanisms and functions remain poorly understood, especially for lncRNAs and circRNAs. In this study, we simultaneously detected, for the first time, the expression profiles of the whole transcriptome, including miRNA, circRNA and lncRNA + mRNA, in five pairs of laryngeal squamous cell carcinoma (LSCC) and matched non-carcinoma tissues by microarrays. Five miRNAs, four circRNAs, three lncRNAs and five mRNAs that were dysregulated were selected to confirm the verification of the microarray data by quantitative real-time PCR (qRT-PCR) in 20 pairs of LSCC samples. We constructed LSCC-related competing endogenous RNA (ceRNA) networks of lncRNAs and circRNAs (circRNA or lncRNA-miRNA-mRNA) respectively. Functional annotation revealed the lncRNA-mediated ceRNA network were enriched for genes involved in the tumor-associated pathways. Hsa_circ_0033988 with the highest degree in the circRNA-mediated ceRNA network was associated with fatty acid degradation, which was responsible for the depletion of fat in tumor-associated cachexia. Finally, to clarify the ncRNA co-regulation mechanism, we constructed a circRNA-lncRNA co-regulated network by integrating the above two networks and identified 9 modules for further study. A subnetwork of module 2 with the most dysregulated microRNAs was extracted to establish the ncRNA-involved TGF-β-associated pathway. In conclusion, our findings provide a high-throughput microarray data of the coding and non-coding RNAs and establish the foundation for further functional research on the ceRNA regulatory mechanism of non-coding RNAs in LSCC.
Collapse
MESH Headings
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Computational Biology
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Gene Ontology
- Gene Regulatory Networks
- Humans
- Laryngeal Neoplasms/genetics
- Laryngeal Neoplasms/metabolism
- Laryngeal Neoplasms/pathology
- MicroRNAs/classification
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Microarray Analysis
- Molecular Sequence Annotation
- RNA/classification
- RNA/genetics
- RNA/metabolism
- RNA, Circular
- RNA, Long Noncoding/classification
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/classification
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Rui Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Feng-Qing Li
- Department of Gerontology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin-Li Tian
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - De-Si Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yan Guo
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Jia-Rui Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Ming Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|