1
|
Christierson L, Frieberg P, Lala T, Töger J, Liuba P, Revstedt J, Isaksson H, Hakacova N. Multi-Modal in Vitro Experiments Mimicking the Flow Through a Mitral Heart Valve Phantom. Cardiovasc Eng Technol 2024; 15:572-583. [PMID: 38782878 PMCID: PMC11582118 DOI: 10.1007/s13239-024-00732-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Fluid-structure interaction (FSI) models are more commonly applied in medical research as computational power is increasing. However, understanding the accuracy of FSI models is crucial, especially in the context of heart valve disease in patient-specific models. Therefore, this study aimed to create a multi-modal benchmarking data set for cardiac-inspired FSI models, based on clinically important parameters, such as the pressure, velocity, and valve opening, with an in vitro phantom setup. METHOD An in vitro setup was developed with a 3D-printed phantom mimicking the left heart, including a deforming mitral valve. A range of pulsatile flows were created with a computer-controlled motor-and-pump setup. Catheter pressure measurements, magnetic resonance imaging (MRI), and echocardiography (Echo) imaging were used to measure pressure and velocity in the domain. Furthermore, the valve opening was quantified based on cine MRI and Echo images. RESULT The experimental setup, with 0.5% cycle-to-cycle variation, was successfully built and six different flow cases were investigated. Higher velocity through the mitral valve was observed for increased cardiac output. The pressure difference across the valve also followed this trend. The flow in the phantom was qualitatively assessed by the velocity profile in the ventricle and by streamlines obtained from 4D phase-contrast MRI. CONCLUSION A multi-modal set of data for validation of FSI models has been created, based on parameters relevant for diagnosis of heart valve disease. All data is publicly available for future development of computational heart valve models.
Collapse
Affiliation(s)
- Lea Christierson
- Department of Clinical Sciences Lund, Pediatric Heart Center, Skåne University Hospital, Lund University, Lund, Sweden.
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Petter Frieberg
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Tania Lala
- Department of Biomedical Engineering, Lund University, Lund, Sweden
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Johannes Töger
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Petru Liuba
- Department of Clinical Sciences Lund, Pediatric Heart Center, Skåne University Hospital, Lund University, Lund, Sweden
| | - Johan Revstedt
- Department of Energy Science, Lund University, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Nina Hakacova
- Department of Clinical Sciences Lund, Pediatric Heart Center, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Darwish A, Papolla C, Rieu R, Kadem L. An Anatomically Shaped Mitral Valve for Hemodynamic Testing. Cardiovasc Eng Technol 2024; 15:374-381. [PMID: 38228812 DOI: 10.1007/s13239-024-00714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
In vitro modeling of the left heart relies on accurately replicating the physiological conditions of the native heart. The targeted physiological conditions include the complex fluid dynamics coming along with the opening and closing of the aortic and mitral valves. As the mitral valve possess a highly sophisticated apparatus, thence, accurately modeling it remained a missing piece in the perfect heart duplicator puzzle. In this study, we explore using a hydrogel-based mitral valve that offers a full representation of the mitral valve apparatus. The valve is tested using a custom-made mock circulatory loop to replicate the left heart. The flow analysis includes performing particle image velocimetry measurements in both left atrium and ventricle. The results showed the ability of the new mitral valve to replicate the real interventricular and atrial flow patterns during the whole cardiac cycle. Moreover, the investigated valve has a ventricular vortex formation time of 5.2, while the peak e- and a-wave ventricular velocities was 0.9 m/s and 0.4 m/s respectively.
Collapse
Affiliation(s)
- Ahmed Darwish
- Laboratory of Cardiovascular Fluid Dynamics, Concordia University, Montreal, QC, H3G 1M8, Canada.
- Mechanical Power Engineering Department, Assiut University, Assiut, 71515, Egypt.
| | - Chloé Papolla
- Laboratory of Cardiovascular Fluid Dynamics, Concordia University, Montreal, QC, H3G 1M8, Canada
- Aix-Marseille University, LBA UMR T24, Marseille, France
| | - Régis Rieu
- Aix-Marseille University, LBA UMR T24, Marseille, France
| | - Lyes Kadem
- Laboratory of Cardiovascular Fluid Dynamics, Concordia University, Montreal, QC, H3G 1M8, Canada
| |
Collapse
|
3
|
Karl R, Romano G, Marx J, Eden M, Schlegel P, Stroh L, Fischer S, Hehl M, Kühle R, Mohl L, Karck M, Frey N, De Simone R, Engelhardt S. An ex-vivo and in-vitro dynamic simulator for surgical and transcatheter mitral valve interventions. Int J Comput Assist Radiol Surg 2024; 19:411-421. [PMID: 38064021 PMCID: PMC10881771 DOI: 10.1007/s11548-023-03036-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/06/2023] [Indexed: 02/22/2024]
Abstract
PURPOSE Minimally invasive mitral valve surgery (MIMVS) and transcatheter edge-to-edge repair (TEER) are complex procedures used to treat mitral valve (MV) pathologies, but with limited training opportunities available. To enable training, a realistic hemodynamic environment is needed. In this work we aimed to develop and validate a simulator that enables investigation of MV pathologies and their repair by MIMVS and TEER in a hemodynamic setting. METHODS Different MVs were installed in the simulator, and pressure, flow, and transesophageal echocardiographic measurements were obtained. To confirm the simulator's physiological range, we first installed a biological prosthetic, a mechanical prosthetic, and a competent excised porcine MV. Subsequently, we inserted two porcine MVs-one with induced chordae tendineae rupture and the other with a dilated annulus, along with a patient-specific silicone valve extracted from echocardiography with bi-leaflet prolapse. Finally, TEER and MIMVS procedures were conducted by experts to repair the MVs. RESULTS Systolic pressures, cardiac outputs, and regurgitations volumes (RVol) with competent MVs were 119 ± 1 mmHg, 4.78 ± 0.16 l min-1, and 5 ± 3 ml respectively, and thus within the physiological range. In contrast, the pathological MVs displayed increased RVols. MIMVS and TEER resulted in a decrease in RVols and mitigated the severity of mitral regurgitation. CONCLUSION Ex-vivo modelling of MV pathologies and repair procedures using the described simulator realistically replicated physiological in-vivo conditions. Furthermore, we showed the feasibility of performing MIMVS and TEER at the simulator, also at patient-specific level, thus providing new clinical perspectives in terms of training modalities and personalized planning.
Collapse
Affiliation(s)
- Roger Karl
- Ruprecht-Karls University of Heidelberg, Heidelberg, Germany.
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- Department of Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Gabriele Romano
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Josephin Marx
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Matthias Eden
- Department of Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Philipp Schlegel
- Department of Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lubov Stroh
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Samantha Fischer
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Maximilian Hehl
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Reinald Kühle
- Clinic and Polyclinic for Oral and Maxillofacial Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Lukas Mohl
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Norbert Frey
- Department of Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Raffaele De Simone
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Sandy Engelhardt
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
4
|
Christierson L, Frieberg P, Lala T, Töger J, Liuba P, Revstedt J, Isaksson H, Hakacova N. Validation of fluid-structure interaction simulations of the opening phase of phantom mitral heart valves under physiologically inspired conditions. Comput Biol Med 2024; 171:108033. [PMID: 38430739 DOI: 10.1016/j.compbiomed.2024.108033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/22/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Atrioventricular valve disease is a common cause of heart failure, and successful surgical or interventional outcomes are crucial. Patient-specific fluid-structure interaction (FSI) modeling may provide valuable insights into valve dynamics and guidance of valve repair strategies. However, lack of validation has kept FSI modeling from clinical implementation. Therefore, this study aims to validate FSI simulations against in vitro benchmarking data, based on clinically relevant parameters for evaluating heart valve disease. METHODS An FSI model that mimics the left heart was developed. The domain included a deformable mitral valve of different stiffnesses run with different inlet velocities. Five different cases were simulated and compared to in vitro data based on the pressure difference across the valve, the valve opening, and the velocity in the flow domain. RESULTS The simulations underestimate the pressure difference across the valve by 6.8-14 % compared to catheter measurements. Evaluation of the valve opening showed an underprediction of 5.4-7.3 % when compared to cine MRI, 2D Echo, and 3D Echo data. Additionally, the simulated velocity through the valve showed a 7.9-8.4 % underprediction in relation to Doppler Echo measurements. Qualitative assessment of the velocity profile in the ventricle and the streamlines of the flow in the domain showed good agreement of the flow behavior. CONCLUSIONS Parameters relevant to the diagnosis of heart valve disease estimated by FSI simulations showed good agreement when compared to in vitro benchmarking data, with differences small enough not to affect the grading of heart valve disease. The FSI model is thus deemed good enough for further development toward patient-specific cases.
Collapse
Affiliation(s)
- Lea Christierson
- Department of Clinical Sciences Lund, Pediatric Heart Center, Skåne University Hospital, Lund University, Lund, Sweden. Address: Barnhjärtcentrum mottagning, Skånes universitetssjukhus, Lasarettsgatan 48, 221 85, Lund, Sweden; Department of Biomedical Engineering, Lund University, Lund, Sweden. Address: Box 118, 221 00, Lund, Sweden.
| | - Petter Frieberg
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden. Address: Box 177, 221 00, Lund, Sweden
| | - Tania Lala
- Department of Biomedical Engineering, Lund University, Lund, Sweden. Address: Box 118, 221 00, Lund, Sweden; Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden. Address: Box 177, 221 00, Lund, Sweden
| | - Johannes Töger
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden. Address: Box 177, 221 00, Lund, Sweden
| | - Petru Liuba
- Department of Clinical Sciences Lund, Pediatric Heart Center, Skåne University Hospital, Lund University, Lund, Sweden. Address: Barnhjärtcentrum mottagning, Skånes universitetssjukhus, Lasarettsgatan 48, 221 85, Lund, Sweden
| | - Johan Revstedt
- Department of Energy Science, Lund University, Lund, Sweden. Address: Box 118, 221 00, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden. Address: Box 118, 221 00, Lund, Sweden
| | - Nina Hakacova
- Department of Clinical Sciences Lund, Pediatric Heart Center, Skåne University Hospital, Lund University, Lund, Sweden. Address: Barnhjärtcentrum mottagning, Skånes universitetssjukhus, Lasarettsgatan 48, 221 85, Lund, Sweden
| |
Collapse
|
5
|
Gooden SCM, Hatoum H, Boudoulas KD, Vannan MA, Dasi LP. Effects of MitraClip Therapy on Mitral Flow Patterns and Vortex Formation: An In Vitro Study. Ann Biomed Eng 2022; 50:680-690. [PMID: 35411431 PMCID: PMC11070279 DOI: 10.1007/s10439-022-02944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/03/2022] [Indexed: 11/01/2022]
Abstract
MitraClip transcatheter edge-to-edge repair is used to treat mitral regurgitation (MR). While MR is reduced, diastolic left ventricular flows are altered. An in vitro left heart simulator was used to assess a porcine mitral valve in the native, MR, and MR plus MitraClip cases. Velocity, vorticity, and Reynolds shear stress (RSS) were quantified by particle image velocimetry. Peak velocity increased from 1.20 m/s for native to 1.30 m/s with MR. With MitraClip, two divergent jets of 1.18 and 0.61 m/s emerged. Higher vorticity was observed with MR than native and lessened with MitraClip. MitraClip resulted in shear layer formation and downstream vortex formation. Native RSS decreased from 33 Pa in acceleration to 29 Pa at peak flow, then increased to 31 Pa with deceleration. MR RSS increased from 27 Pa in acceleration to 40 Pa at peak flow to 59 Pa during deceleration. MitraClip RSS increased from 79 Pa in acceleration to 162 Pa during peak flow, then decreased to 45 Pa during deceleration. After MitraClip, two divergent jets of reduced velocity emerged, accompanied by shear layers and recirculation. Chaotic flow developed, resulting in elevated RSS magnitude and coverage. Findings help understand consequences of MitraClip on left ventricular flow dynamics.
Collapse
Affiliation(s)
- Shelley Chee-Mei Gooden
- Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle, Atlanta, GA, 30313, USA
| | - Hoda Hatoum
- Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle, Atlanta, GA, 30313, USA
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA
| | | | - Mani A Vannan
- Marcus Heart Valve Center, Piedmont Heart Institute, Atlanta, GA, USA
| | - Lakshmi P Dasi
- Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle, Atlanta, GA, 30313, USA.
| |
Collapse
|
6
|
Park MH, Zhu Y, Imbrie-Moore AM, Wang H, Marin-Cuartas M, Paulsen MJ, Woo YJ. Heart Valve Biomechanics: The Frontiers of Modeling Modalities and the Expansive Capabilities of Ex Vivo Heart Simulation. Front Cardiovasc Med 2021; 8:673689. [PMID: 34307492 PMCID: PMC8295480 DOI: 10.3389/fcvm.2021.673689] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/17/2021] [Indexed: 01/05/2023] Open
Abstract
The field of heart valve biomechanics is a rapidly expanding, highly clinically relevant area of research. While most valvular pathologies are rooted in biomechanical changes, the technologies for studying these pathologies and identifying treatments have largely been limited. Nonetheless, significant advancements are underway to better understand the biomechanics of heart valves, pathologies, and interventional therapeutics, and these advancements have largely been driven by crucial in silico, ex vivo, and in vivo modeling technologies. These modalities represent cutting-edge abilities for generating novel insights regarding native, disease, and repair physiologies, and each has unique advantages and limitations for advancing study in this field. In particular, novel ex vivo modeling technologies represent an especially promising class of translatable research that leverages the advantages from both in silico and in vivo modeling to provide deep quantitative and qualitative insights on valvular biomechanics. The frontiers of this work are being discovered by innovative research groups that have used creative, interdisciplinary approaches toward recapitulating in vivo physiology, changing the landscape of clinical understanding and practice for cardiovascular surgery and medicine.
Collapse
Affiliation(s)
- Matthew H Park
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Mateo Marin-Cuartas
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
7
|
Addressing Discrepancies between Experimental and Computational Procedures. BIOLOGY 2021; 10:biology10060536. [PMID: 34203829 PMCID: PMC8232572 DOI: 10.3390/biology10060536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary This technical note addresses the need to consider uncertainties when using experimental procedures to extract a geometry that is consequently used for computational simulations. Many uncertainties enter the process in both the experimental and computational techniques. Abstract Imaging subject-specific heart valve, a crucial step to its design, has experimental variables that if unaccounted for, may lead to erroneous computational analysis and geometric errors of the resulting model. Preparation methods are developed to mitigate some sources of the geometric error. However, the resulting 3D geometry often does not retain the original dimensions before excision. Inverse fluid–structure interaction analysis is used to analyze the resulting geometry and to assess the valve’s closure. Based on the resulting closure, it is determined if the geometry used can yield realistic results. If full closure is not reached, the geometry is adjusted adequately until closure is observed.
Collapse
|
8
|
Stephens S, Bean M, Surber H, Ingels NB, Jensen HK, Liachenko S, Wenk JF, Jensen MO. MicroCT Imaging of Heart Valve Tissue in Fluid. EXPERIMENTAL MECHANICS 2021; 61:253-261. [PMID: 34326554 PMCID: PMC8315378 DOI: 10.1007/s11340-020-00667-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/12/2020] [Accepted: 09/22/2020] [Indexed: 06/03/2023]
Abstract
BACKGROUND Heart valve computational models require high quality geometric input data, commonly obtained using micro-computed tomography. Whether in the open or closed configuration, most studies utilize dry valves, which poses significant challenges including gravitational and surface tension effects along with desiccation induced mechanical changes. OBJECTIVE These challenges are overcome by scanning in a stress-free configuration in fluid. Utilizing fluid backgrounds however reduces overall contrast due to the similar density of fluid and tissue. METHODS The work presented here demonstrates imaging of the mitral valve by utilizing an iodine-based staining solution to improve the contrast of valve tissue against a fluid background and investigates the role of stain time and concentration. RESULTS It is determined that an Olea europaea oil bath with a relatively high concentration, short stain time approach produces high quality imagery suitable for creating accurate 3D renderings. CONCLUSIONS Micro-CT scanning of heart valves in fluid is shown to be feasible using iodine staining techniques.
Collapse
Affiliation(s)
- S.E. Stephens
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - M. Bean
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - H. Surber
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - N. B. Ingels
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - H. K. Jensen
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
- Departments of Radiology and Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - S. Liachenko
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - J. F. Wenk
- Department of Mechanical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - M. O. Jensen
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
9
|
Imbrie-Moore AM, Park MH, Paulsen MJ, Sellke M, Kulkami R, Wang H, Zhu Y, Farry JM, Bourdillon AT, Callinan C, Lucian HJ, Hironaka CE, Deschamps D, Joseph Woo Y. Biomimetic six-axis robots replicate human cardiac papillary muscle motion: pioneering the next generation of biomechanical heart simulator technology. J R Soc Interface 2020; 17:20200614. [PMID: 33259750 DOI: 10.1098/rsif.2020.0614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Papillary muscles serve as attachment points for chordae tendineae which anchor and position mitral valve leaflets for proper coaptation. As the ventricle contracts, the papillary muscles translate and rotate, impacting chordae and leaflet kinematics; this motion can be significantly affected in a diseased heart. In ex vivo heart simulation, an explanted valve is subjected to physiologic conditions and can be adapted to mimic a disease state, thus providing a valuable tool to quantitatively analyse biomechanics and optimize surgical valve repair. However, without the inclusion of papillary muscle motion, current simulators are limited in their ability to accurately replicate cardiac biomechanics. We developed and implemented image-guided papillary muscle (IPM) robots to mimic the precise motion of papillary muscles. The IPM robotic system was designed with six degrees of freedom to fully capture the native motion. Mathematical analysis was used to avoid singularity conditions, and a supercomputing cluster enabled the calculation of the system's reachable workspace. The IPM robots were implemented in our heart simulator with motion prescribed by high-resolution human computed tomography images, revealing that papillary muscle motion significantly impacts the chordae force profile. Our IPM robotic system represents a significant advancement for ex vivo simulation, enabling more reliable cardiac simulations and repair optimizations.
Collapse
Affiliation(s)
- Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Matthew H Park
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Mark Sellke
- Department of Mathematics, Stanford University, Stanford, CA, USA
| | - Rohun Kulkami
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Justin M Farry
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | - Christine Callinan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Haley J Lucian
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Camille E Hironaka
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Daniela Deschamps
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
10
|
Fluid-Structure Interaction Analysis of Subject-Specific Mitral Valve Regurgitation Treatment with an Intra-Valvular Spacer. PROSTHESIS 2020. [DOI: 10.3390/prosthesis2020007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitral regurgitation imposes a significant symptomatic burden on patients who are not candidates for conventional surgery. For these patients, transcatheter repair and replacement devices are emerging as alternative options. One such device is an intravalvular balloon or spacer that is inserted between the mitral valve leaflets to fill the gap that gives rise to mitral regurgitation. In this study, we apply a large-deformation fluid-structure interaction analysis to a fully 3D subject-specific mitral valve model to assess the efficacy of the intra-valvular spacer for reducing mitral regurgitation severity. The model includes a topologically 3D subvalvular apparatus with unprecedented detail. Results show that device fixation and anchoring at the location of the subject’s regurgitant orifice is imperative for optimal reduction of mitral regurgitation.
Collapse
|
11
|
Ross CJ, Laurence DW, Hsu MC, Baumwart R, Zhao YD, Mir A, Burkhart HM, Holzapfel GA, Wu Y, Lee CH. Mechanics of Porcine Heart Valves' Strut Chordae Tendineae Investigated as a Leaflet-Chordae-Papillary Muscle Entity. Ann Biomed Eng 2020; 48:1463-1474. [PMID: 32006267 PMCID: PMC8048774 DOI: 10.1007/s10439-020-02464-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/23/2020] [Indexed: 11/28/2022]
Abstract
Proper blood flow through the atrioventricular heart valves (AHVs) relies on the holistic function of the valve and subvalvular structures, and a failure of any component can lead to life-threatening heart disease. A comprehension of the mechanical characteristics of healthy valvular components is necessary for the refinement of heart valve computational models. In previous studies, the chordae tendineae have been mechanically characterized as individual structures, usually in a clamping-based approach, which may not accurately reflect the in vivo chordal interactions with the leaflet insertion and papillary muscles. In this study, we performed uniaxial mechanical testing of strut chordae tendineae of the AHVs under a unique tine-based leaflet-chordae-papillary muscle testing to observe the chordae mechanics while preserving the subvalvular component interactions. Results of this study provided insight to the disparity of chordae tissue stress-stretch responses between the mitral valve (MV) and the tricuspid valve (TV) under their respective emulated physiological loading. Specifically, strut chordae tendineae of the MV anterior leaflet had peak stretches of 1.09-1.16, while peak stretches of 1.08-1.11 were found for the TV anterior leaflet strut chordae. Constitutive parameters were also derived for the chordae tissue specimens using an Ogden model, which is useful for AHV computational model refinement. Results of this study are beneficial to the eventual improvement of treatment methods for valvular disease.
Collapse
Affiliation(s)
- Colton J Ross
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK, 73019-3609, USA
| | - Devin W Laurence
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK, 73019-3609, USA
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Ryan Baumwart
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yan D Zhao
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Arshid Mir
- Department of Pediatric Cardiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Harold M Burkhart
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Yi Wu
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK, 73019-3609, USA
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK, 73019-3609, USA.
- Institute for Biomedical Engineering, Science and Technology (IBEST), The University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
12
|
Imbrie-Moore AM, Paulsen MJ, Zhu Y, Wang H, Lucian HJ, Farry JM, MacArthur JW, Ma M, Woo YJ. A novel cross-species model of Barlow's disease to biomechanically analyze repair techniques in an ex vivo left heart simulator. J Thorac Cardiovasc Surg 2020; 161:1776-1783. [PMID: 32249088 DOI: 10.1016/j.jtcvs.2020.01.086] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Barlow's disease remains challenging to repair, given the complex valvular morphology and lack of quantitative data to compare techniques. Although there have been recent strides in ex vivo evaluation of cardiac mechanics, to our knowledge, there is no disease model that accurately simulates the morphology and pathophysiology of Barlow's disease. The purpose of this study was to design such a model. METHODS To simulate Barlow's disease, a cross-species ex vivo model was developed. Bovine mitral valves (n = 4) were sewn into a porcine annulus mount to create excess leaflet tissue and elongated chordae. A heart simulator generated physiologic conditions while hemodynamic data, high-speed videography, and chordal force measurements were collected. The regurgitant valves were repaired using nonresectional repair techniques such as neochord placement. RESULTS The model successfully imitated the complexities of Barlow's disease, including redundant, billowing bileaflet tissues with notable regurgitation. After repair, hemodynamic data confirmed reduction of mitral leakage volume (25.9 ± 2.9 vs 2.1 ± 1.8 mL, P < .001) and strain gauge analysis revealed lower primary chordae forces (0.51 ± 0.17 vs 0.10 ± 0.05 N, P < .001). In addition, the maximum rate of change of force was significantly lower postrepair for both primary (30.80 ± 11.38 vs 8.59 ± 4.83 N/s, P < .001) and secondary chordae (33.52 ± 10.59 vs 19.07 ± 7.00 N/s, P = .006). CONCLUSIONS This study provides insight into the biomechanics of Barlow's disease, including sharply fluctuating force profiles experienced by elongated chordae prerepair, as well as restoration of primary chordae forces postrepair. Our disease model facilitates further in-depth analyses to optimize the repair of Barlow's disease.
Collapse
Affiliation(s)
- Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif; Department of Mechanical Engineering, Stanford University, Stanford, Calif
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif; Department of Bioengineering, Stanford University, Stanford, Calif
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Haley J Lucian
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Justin M Farry
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - John W MacArthur
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Michael Ma
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif; Department of Bioengineering, Stanford University, Stanford, Calif.
| |
Collapse
|
13
|
Kaiser AD, McQueen DM, Peskin CS. Modeling the mitral valve. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3240. [PMID: 31330567 DOI: 10.1002/cnm.3240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/18/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
This work is concerned with modeling and simulation of the mitral valve, one of the four valves in the human heart. The valve is composed of leaflets, the free edges of which are supported by a system of chordae, which themselves are anchored to the papillary muscles inside the left ventricle. First, we examine valve anatomy and present the results of original dissections. These display the gross anatomy and information on fiber structure of the mitral valve. Next, we build a model valve following a design-based methodology, meaning that we derive the model geometry and the forces that are needed to support a given load and construct the model accordingly. We incorporate information from the dissections to specify the fiber topology of this model. We assume the valve achieves mechanical equilibrium while supporting a static pressure load. The solution to the resulting differential equations determines the pressurized configuration of the valve model. To complete the model, we then specify a constitutive law based on a stress-strain relation consistent with experimental data that achieves the necessary forces computed in previous steps. Finally, using the immersed boundary method, we simulate the model valve in fluid in a computer test chamber. The model opens easily and closes without leak when driven by physiological pressures over multiple beats. Further, its closure is robust to driving pressures that lack atrial systole or are much lower or higher than normal.
Collapse
Affiliation(s)
- Alexander D Kaiser
- Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, New York
| | - David M McQueen
- Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, New York
| | - Charles S Peskin
- Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, New York
| |
Collapse
|
14
|
Sacks M, Drach A, Lee CH, Khalighi A, Rego B, Zhang W, Ayoub S, Yoganathan A, Gorman RC, Gorman Iii JH. On the simulation of mitral valve function in health, disease, and treatment. J Biomech Eng 2019; 141:2731932. [PMID: 31004145 PMCID: PMC6611349 DOI: 10.1115/1.4043552] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/26/2019] [Indexed: 12/19/2022]
Abstract
The mitral valve (MV) is the heart valve that regulates blood ?ow between the left atrium and left ventricle (LV). In situations where the MV fails to fully cover the left atrioventricular ori?ce during systole, the resulting regurgitation causes pulmonary congestion, leading to heart failure and/or stroke. The causes of MV insuf?ciency can be either primary (e.g. myxomatous degeneration) where the valvular tissue is organically diseased, or secondary (typically inducded by ischemic cardiomyopathy) termed ischemic mitral regurgitation (IMR), is brought on by adverse LV remodeling. IMR is present in up to 40% of patients and more than doubles the probability of cardiovascular morbidity after 3.5 years. There is now agreement that adjunctive procedures are required to treat IMR caused by lea?et tethering. However, there is no consensus regarding the best procedure. Multicenter registries and randomized trials would be necessary to prove which procedure is superior. Given the number of proposed procedures and the complexity and duration of such studies, it is highly unlikely that IMR procedure optimization will be achieved by prospective clinical trials. There is thus an urgent need for cell and tissue physiologically based quantitative assessments of MV function to better design surgical solutions and associated therapies. Novel computational approaches directed towards optimized surgical repair procedures can substantially reduce the need for such trial-and-error approaches. We present the details of our MV modeling techniques, with an emphasis on what is known and investigated at various length scales.
Collapse
Affiliation(s)
- Michael Sacks
- aWillerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Andrew Drach
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Chung-Hao Lee
- Department of Mechanical and Aerospace Engineering, University of Oklahoma, Norman, OK
| | - Amir Khalighi
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Bruno Rego
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Will Zhang
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Salma Ayoub
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Ajit Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Joseph H Gorman Iii
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
15
|
Post-operative ventricular flow dynamics following atrioventricular valve surgical and device therapies: A review. Med Eng Phys 2018; 54:1-13. [DOI: 10.1016/j.medengphy.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/17/2017] [Accepted: 01/28/2018] [Indexed: 01/26/2023]
|
16
|
Experimental Assessment of Flow Fields Associated with Heart Valve Prostheses Using Particle Image Velocimetry (PIV): Recommendations for Best Practices. Cardiovasc Eng Technol 2018. [DOI: 10.1007/s13239-018-0348-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Drach A, Khalighi AH, Sacks MS. A comprehensive pipeline for multi-resolution modeling of the mitral valve: Validation, computational efficiency, and predictive capability. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:10.1002/cnm.2921. [PMID: 28776326 PMCID: PMC5797517 DOI: 10.1002/cnm.2921] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 05/18/2023]
Abstract
Multiple studies have demonstrated that the pathological geometries unique to each patient can affect the durability of mitral valve (MV) repairs. While computational modeling of the MV is a promising approach to improve the surgical outcomes, the complex MV geometry precludes use of simplified models. Moreover, the lack of complete in vivo geometric information presents significant challenges in the development of patient-specific computational models. There is thus a need to determine the level of detail necessary for predictive MV models. To address this issue, we have developed a novel pipeline for building attribute-rich computational models of MV with varying fidelity directly from the in vitro imaging data. The approach combines high-resolution geometric information from loaded and unloaded states to achieve a high level of anatomic detail, followed by mapping and parametric embedding of tissue attributes to build a high-resolution, attribute-rich computational models. Subsequent lower resolution models were then developed and evaluated by comparing the displacements and surface strains to those extracted from the imaging data. We then identified the critical levels of fidelity for building predictive MV models in the dilated and repaired states. We demonstrated that a model with a feature size of about 5 mm and mesh size of about 1 mm was sufficient to predict the overall MV shape, stress, and strain distributions with high accuracy. However, we also noted that more detailed models were found to be needed to simulate microstructural events. We conclude that the developed pipeline enables sufficiently complex models for biomechanical simulations of MV in normal, dilated, repaired states.
Collapse
Affiliation(s)
- Andrew Drach
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Amir H Khalighi
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
18
|
Khalighi AH, Drach A, Gorman RC, Gorman JH, Sacks MS. Multi-resolution geometric modeling of the mitral heart valve leaflets. Biomech Model Mechanobiol 2017; 17:351-366. [PMID: 28983742 DOI: 10.1007/s10237-017-0965-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
An essential element of cardiac function, the mitral valve (MV) ensures proper directional blood flow between the left heart chambers. Over the past two decades, computational simulations have made marked advancements toward providing powerful predictive tools to better understand valvular function and improve treatments for MV disease. However, challenges remain in the development of robust means for the quantification and representation of MV leaflet geometry. In this study, we present a novel modeling pipeline to quantitatively characterize and represent MV leaflet surface geometry. Our methodology utilized a two-part additive decomposition of the MV geometric features to decouple the macro-level general leaflet shape descriptors from the leaflet fine-scale features. First, the general shapes of five ovine MV leaflets were modeled using superquadric surfaces. Second, the finer-scale geometric details were captured, quantified, and reconstructed via a 2D Fourier analysis with an additional sparsity constraint. This spectral approach allowed us to easily control the level of geometric details in the reconstructed geometry. The results revealed that our methodology provided a robust and accurate approach to develop MV-specific models with an adjustable level of spatial resolution and geometric detail. Such fully customizable models provide the necessary means to perform computational simulations of the MV at a range of geometric accuracies in order to identify the level of complexity required to achieve predictive MV simulations.
Collapse
Affiliation(s)
- Amir H Khalighi
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Andrew Drach
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
19
|
Stephens SE, Liachenko S, Ingels NB, Wenk JF, Jensen MO. High resolution imaging of the mitral valve in the natural state with 7 Tesla MRI. PLoS One 2017; 12:e0184042. [PMID: 28854273 PMCID: PMC5576658 DOI: 10.1371/journal.pone.0184042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/16/2017] [Indexed: 11/20/2022] Open
Abstract
Imaging techniques of the mitral valve have improved tremendously during the last decade, but challenges persist. The delicate changes in annulus shape and papillary muscle position throughout the cardiac cycle have significant impact on the stress distribution in the leaflets and chords, thus preservation of anatomically accurate positioning is critical. The aim of this study was to develop an in vitro method and apparatus for obtaining high-resolution 3D MRI images of porcine mitral valves in both the diastolic and systolic configurations with physiologically appropriate annular shape, papillary muscle positions and orientations, specific to the heart from which the valve was harvested. Positioning and mounting was achieved through novel, customized mounting hardware consisting of papillary muscle and annulus holders with geometries determined via pre-mortem ultrasonic intra-valve measurements. A semi-automatic process was developed and employed to tailor Computer Aided Design models of the holders used to mount the valve. All valve mounting hardware was 3D printed using a stereolithographic printer, and the material of all fasteners used were brass for MRI compatibility. The mounted valves were placed within a clear acrylic case, capable of holding a zero-pressure and pressurized liquid bath of a MRI-compatible fluid. Obtaining images from the valve submerged in liquid fluid mimics the natural environment surrounding the valve, avoiding artefacts due to tissue surface tension mismatch and gravitational impact on tissue shape when not neutrally buoyant. Fluid pressure was supplied by reservoirs held at differing elevations and monitored and controlled to within ±1mmHg to ensure that the valves remained steady. The valves were scanned in a 7 Tesla MRI system providing a voxel resolution of at least 80μm. The systematic approach produced 3D datasets of high quality which, when combined with physiologically accurate positioning by the apparatus, can serve as an important input for validated computational models.
Collapse
Affiliation(s)
- Sam E. Stephens
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Serguei Liachenko
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Neil B. Ingels
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Jonathan F. Wenk
- Department of Mechanical Engineering, University of Kentucky, Lexington, Kentucky, United States of America
| | - Morten O. Jensen
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
20
|
Toma M, Bloodworth CH, Pierce EL, Einstein DR, Cochran RP, Yoganathan AP, Kunzelman KS. Fluid-Structure Interaction Analysis of Ruptured Mitral Chordae Tendineae. Ann Biomed Eng 2017; 45:619-631. [PMID: 27624659 PMCID: PMC5332285 DOI: 10.1007/s10439-016-1727-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/02/2016] [Indexed: 10/21/2022]
Abstract
The chordal structure is a part of mitral valve geometry that has been commonly neglected or simplified in computational modeling due to its complexity. However, these simplifications cannot be used when investigating the roles of individual chordae tendineae in mitral valve closure. For the first time, advancements in imaging, computational techniques, and hardware technology make it possible to create models of the mitral valve without simplifications to its complex geometry, and to quickly run validated computer simulations that more realistically capture its function. Such simulations can then be used for a detailed analysis of chordae-related diseases. In this work, a comprehensive model of a subject-specific mitral valve with detailed chordal structure is used to analyze the distinct role played by individual chordae in closure of the mitral valve leaflets. Mitral closure was simulated for 51 possible chordal rupture points. Resultant regurgitant orifice area and strain change in the chordae at the papillary muscle tips were then calculated to examine the role of each ruptured chorda in the mitral valve closure. For certain subclassifications of chordae, regurgitant orifice area was found to trend positively with ruptured chordal diameter, and strain changes correlated negatively with regurgitant orifice area. Further advancements in clinical imaging modalities, coupled with the next generation of computational techniques will enable more physiologically realistic simulations.
Collapse
Affiliation(s)
- Milan Toma
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Technology Enterprise Park, Suite 200, 387 Technology Circle, Atlanta, GA, 30313-2412, USA
| | - Charles H Bloodworth
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Technology Enterprise Park, Suite 200, 387 Technology Circle, Atlanta, GA, 30313-2412, USA
| | - Eric L Pierce
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Technology Enterprise Park, Suite 200, 387 Technology Circle, Atlanta, GA, 30313-2412, USA
| | - Daniel R Einstein
- Department of Mechanical Engineering, St. Martin's University, 5000 Abbey Way SE, Lacey, WA, 98503, USA
| | - Richard P Cochran
- Department of Mechanical Engineering, University of Maine, 219 Boardman Hall, Orono, ME, 04469-5711, USA
| | - Ajit P Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Technology Enterprise Park, Suite 200, 387 Technology Circle, Atlanta, GA, 30313-2412, USA.
| | - Karyn S Kunzelman
- Department of Mechanical Engineering, University of Maine, 219 Boardman Hall, Orono, ME, 04469-5711, USA
| |
Collapse
|
21
|
Bloodworth CH, Pierce EL, Easley TF, Drach A, Khalighi AH, Toma M, Jensen MO, Sacks MS, Yoganathan AP. Ex Vivo Methods for Informing Computational Models of the Mitral Valve. Ann Biomed Eng 2017; 45:496-507. [PMID: 27699507 PMCID: PMC5300906 DOI: 10.1007/s10439-016-1734-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/12/2016] [Indexed: 11/28/2022]
Abstract
Computational modeling of the mitral valve (MV) has potential applications for determining optimal MV repair techniques and risk of recurrent mitral regurgitation. Two key concerns for informing these models are (1) sensitivity of model performance to the accuracy of the input geometry, and, (2) acquisition of comprehensive data sets against which the simulation can be validated across clinically relevant geometries. Addressing the first concern, ex vivo micro-computed tomography (microCT) was used to image MVs at high resolution (~40 micron voxel size). Because MVs distorted substantially during static imaging, glutaraldehyde fixation was used prior to microCT. After fixation, MV leaflet distortions were significantly smaller (p < 0.005), and detail of the chordal tree was appreciably greater. Addressing the second concern, a left heart simulator was designed to reproduce MV geometric perturbations seen in vivo in functional mitral regurgitation and after subsequent repair, and maintain compatibility with microCT. By permuting individual excised ovine MVs (n = 5) through each state (healthy, diseased and repaired), and imaging with microCT in each state, a comprehensive data set was produced. Using this data set, work is ongoing to construct and validate high-fidelity MV biomechanical models. These models will seek to link MV function across clinically relevant states.
Collapse
Affiliation(s)
- Charles H Bloodworth
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Eric L Pierce
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Thomas F Easley
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Andrew Drach
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th Street, Austin, TX, 78712, USA
| | - Amir H Khalighi
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th Street, Austin, TX, 78712, USA
| | - Milan Toma
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Morten O Jensen
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th Street, Austin, TX, 78712, USA
| | - Ajit P Yoganathan
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA.
| |
Collapse
|
22
|
Khalighi AH, Drach A, Bloodworth CH, Pierce EL, Yoganathan AP, Gorman RC, Gorman JH, Sacks MS. Mitral Valve Chordae Tendineae: Topological and Geometrical Characterization. Ann Biomed Eng 2017; 45:378-393. [PMID: 27995395 PMCID: PMC7077931 DOI: 10.1007/s10439-016-1775-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 12/07/2016] [Indexed: 01/27/2023]
Abstract
Mitral valve (MV) closure depends upon the proper function of each component of the valve apparatus, which includes the annulus, leaflets, and chordae tendineae (CT). Geometry plays a major role in MV mechanics and thus highly impacts the accuracy of computational models simulating MV function and repair. While the physiological geometry of the leaflets and annulus have been previously investigated, little effort has been made to quantitatively and objectively describe CT geometry. The CT constitute a fibrous tendon-like structure projecting from the papillary muscles (PMs) to the leaflets, thereby evenly distributing the loads placed on the MV during closure. Because CT play a major role in determining the shape and stress state of the MV as a whole, their geometry must be well characterized. In the present work, a novel and comprehensive investigation of MV CT geometry was performed to more fully quantify CT anatomy. In vitro micro-tomography 3D images of ovine MVs were acquired, segmented, then analyzed using a curve-skeleton transform. The resulting data was used to construct B-spline geometric representations of the CT structures, enriched with a continuous field of cross-sectional area (CSA) data. Next, Reeb graph models were developed to analyze overall topological patterns, along with dimensional attributes such as segment lengths, 3D orientations, and CSA. Reeb graph results revealed that the topology of ovine MV CT followed a full binary tree structure. Moreover, individual chords are mostly planar geometries that together form a 3D load-bearing support for the MV leaflets. We further demonstrated that, unlike flow-based branching patterns, while individual CT branches became thinner as they propagated further away from the PM heads towards the leaflets, the total CSA almost doubled. Overall, our findings indicate a certain level of regularity in structure, and suggest that population-based MV CT geometric models can be generated to improve current MV repair procedures.
Collapse
Affiliation(s)
- Amir H Khalighi
- Department of Biomedical Engineering, Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Andrew Drach
- Department of Biomedical Engineering, Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Charles H Bloodworth
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric L Pierce
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ajit P Yoganathan
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael S Sacks
- Department of Biomedical Engineering, Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
23
|
Grbic S, Easley TF, Mansi T, Bloodworth CH, Pierce EL, Voigt I, Neumann D, Krebs J, Yuh DD, Jensen MO, Comaniciu D, Yoganathan AP. Personalized mitral valve closure computation and uncertainty analysis from 3D echocardiography. Med Image Anal 2017; 35:238-249. [DOI: 10.1016/j.media.2016.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 10/21/2022]
|
24
|
Immunomodulatory effects of adipose tissue-derived stem cells on elastin scaffold remodeling in diabetes. Tissue Eng Regen Med 2016; 13:701-712. [PMID: 30603451 DOI: 10.1007/s13770-016-0018-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 01/11/2023] Open
Abstract
Diabetes is a major risk factor for the progression of vascular disease, contributing to elevated levels of glycoxidation, chronic inflammation and calcification. Tissue engineering emerges as a potential solution for the treatment of vascular diseases however there is a considerable gap in the understanding of how scaffolds and stem cells will perform in patients with diabetes. We hypothesized that adipose tissue-derived stem cells (ASCs) by virtue of their immunosuppressive potential would moderate the diabetes-intensified inflammatory reactions and induce positive construct remodeling. To test this hypothesis, we prepared arterial elastin scaffolds seeded with autologous ASCs and implanted them subdermally in diabetic rats and compared inflammatory markers, macrophage polarization, matrix remodeling, calcification and bone protein expression to control scaffolds implanted with and without cells in nondiabetic rats. ASC-seeded scaffolds exhibited lower levels of CD8+ T-cells and CD68+ pan-macrophages and higher numbers of M2 macrophages, smooth muscle cell-like and fibroblast-like cells. Calcification and osteogenic markers were reduced in ASCseeded scaffolds implanted in non-diabetic rats but remained unchanged in diabetes, unless the scaffolds were first pre-treated with penta-galloyl glucose (PGG), a known anti-oxidative elastin-binding polyphenol. In conclusion, autologous ASC seeding in elastin scaffolds is effective in combating diabetes-related complications. To prevent calcification, the oxidative milieu needs to be reduced by elastin-binding antioxidants such as PGG.
Collapse
|
25
|
Pierce EL, Rabbah JPM, Thiele K, Wei Q, Vidakovic B, Jensen MO, Hung J, Yoganathan AP. Three-Dimensional Field Optimization Method: Gold-Standard Validation of a Novel Color Doppler Method for Quantifying Mitral Regurgitation. J Am Soc Echocardiogr 2016; 29:917-925. [PMID: 27354250 DOI: 10.1016/j.echo.2016.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Accurate diagnosis of mitral regurgitation (MR) severity is central to proper treatment. Although numerous approaches exist, an accurate, gold-standard clinical technique remains elusive. The authors previously reported on the initial development and demonstration of the automated three-dimensional (3D) field optimization method (FOM) algorithm, which exploits 3D color Doppler ultrasound imaging and builds on existing MR quantification techniques. The aim of the present study was to extensively validate 3D FOM in terms of accuracy, ease of use, and repeatability. METHODS Three-dimensional FOM was applied to five explanted ovine mitral valves in a left heart simulator, which were systematically perturbed to yield a total of 29 unique regurgitant geometries. Three-dimensional FOM was compared with a gold-standard flow probe, as well as the most clinically prevalent MR volume quantification technique, the two-dimensional (2D) proximal isovelocity surface area (PISA) method. RESULTS Overall, 3D FOM overestimated and 2D PISA underestimated MR volume, but 3D FOM error had smaller magnitude (5.2 ± 9.9 mL) than 2D PISA error (-6.9 ± 7.7 mL). Two-dimensional PISA remained superior in diagnosis for round orifices and especially mild MR, as predicted by ultrasound physics theory. For slit-type orifices and severe MR, 3D FOM showed significant improvement over 2D PISA. Three-dimensional FOM processing was technically simpler and significantly faster than 2D PISA and required fewer ultrasound acquisitions. Three-dimensional FOM did not show significant interuser variability, whereas 2D PISA did. CONCLUSIONS Three-dimensional FOM may provide increased clinical value compared with 2D PISA because of increased accuracy in the case of complex or severe regurgitant orifices as well as its greater repeatability and simpler work flow.
Collapse
Affiliation(s)
- Eric L Pierce
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Jean Pierre M Rabbah
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | | | - Qifeng Wei
- Philips Health Tech, Andover, Massachusetts
| | - Brani Vidakovic
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Morten O Jensen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Judy Hung
- Echocardiography Laboratory of the Massachusetts General Hospital, Boston, Massachusetts
| | - Ajit P Yoganathan
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| |
Collapse
|
26
|
High-resolution subject-specific mitral valve imaging and modeling: experimental and computational methods. Biomech Model Mechanobiol 2016; 15:1619-1630. [PMID: 27094182 DOI: 10.1007/s10237-016-0786-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/29/2016] [Indexed: 10/21/2022]
Abstract
The diversity of mitral valve (MV) geometries and multitude of surgical options for correction of MV diseases necessitates the use of computational modeling. Numerical simulations of the MV would allow surgeons and engineers to evaluate repairs, devices, procedures, and concepts before performing them and before moving on to more costly testing modalities. Constructing, tuning, and validating these models rely upon extensive in vitro characterization of valve structure, function, and response to change due to diseases. Micro-computed tomography ([Formula: see text]CT) allows for unmatched spatial resolution for soft tissue imaging. However, it is still technically challenging to obtain an accurate geometry of the diastolic MV. We discuss here the development of a novel technique for treating MV specimens with glutaraldehyde fixative in order to minimize geometric distortions in preparation for [Formula: see text]CT scanning. The technique provides a resulting MV geometry which is significantly more detailed in chordal structure, accurate in leaflet shape, and closer to its physiological diastolic geometry. In this paper, computational fluid-structure interaction (FSI) simulations are used to show the importance of more detailed subject-specific MV geometry with 3D chordal structure to simulate a proper closure validated against [Formula: see text]CT images of the closed valve. Two computational models, before and after use of the aforementioned technique, are used to simulate closure of the MV.
Collapse
|
27
|
Midha PA, Raghav V, Condado JF, Arjunon S, Uceda DE, Lerakis S, Thourani VH, Babaliaros V, Yoganathan AP. How Can We Help a Patient With a Small Failing Bioprosthesis? JACC Cardiovasc Interv 2015; 8:2026-2033. [DOI: 10.1016/j.jcin.2015.08.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 10/22/2022]
|
28
|
Siefert AW, Siskey RL. Bench Models for Assessing the Mechanics of Mitral Valve Repair and Percutaneous Surgery. Cardiovasc Eng Technol 2015; 6:193-207. [PMID: 26577235 DOI: 10.1007/s13239-014-0196-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/19/2014] [Indexed: 01/01/2023]
Abstract
Rapid preclinical evaluations of mitral valve (MV) mechanics are currently best facilitated by bench models of the left ventricle (LV). This review aims to provide a comprehensive assessment of these models to aid interpretation of their resulting data, inform future experimental evaluations, and further the translation of results to procedure and device development. For this review, two types of experimental bench models were evaluated. Rigid LV models were characterized as fluid-mechanical systems capable of testing explanted MVs under static and or pulsatile left heart hemodynamics. Passive LV models were characterized as explanted hearts whose left side is placed in series with a static or pulsatile flow-loop. In both systems, MV function and mechanics can be quantitatively evaluated. Rigid and passive LV models were characterized and evaluated. The materials and methods involved in their construction, function, quantitative capabilities, and disease modeling were described. The advantages and disadvantages of each model are compared to aid the interpretation of their resulting data and inform future experimental evaluations. Repair and percutaneous studies completed in these models were additionally summarized with perspective on future advances discussed. Bench models of the LV provide excellent platforms for quantifying MV repair mechanics and function. While exceptional work has been reported, more research and development is necessary to improve techniques and devices for repair and percutaneous surgery. Continuing efforts in this field will significantly contribute to the further development of procedures and devices, predictions of long-term performance, and patient safety.
Collapse
Affiliation(s)
- Andrew W Siefert
- Exponent Failure Analysis Associates, 3440 Market Street Suite 600, Philadelphia, PA, 19104, USA.
| | - Ryan L Siskey
- Exponent Failure Analysis Associates, 3440 Market Street Suite 600, Philadelphia, PA, 19104, USA
| |
Collapse
|
29
|
Tree M, White J, Midha P, Kiblinger S, Yoganathan A. Validation of Cardiac Output as Reported by a Permanently Implanted Wireless Sensor. J Med Device 2015. [DOI: 10.1115/1.4031799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The CardioMEMS heart failure (HF) system was tested for cardiac output (CO) measurement accuracy using an in vitro mock circulatory system. A software algorithm calculates CO based on analysis of the pressure waveform as measured from the pulmonary artery, where the CardioMEMS system resides. Calculated CO was compared to that from reference flow probe in the circulatory system model. CO measurements were compared over a clinically relevant range of stroke volumes and heart rates with normal, pulmonary hypertension (PH), decompensated left heart failure (DLHF), and combined DHLF + PH hemodynamic conditions. The CardioMEMS CO exhibited minimal fixed and proportional bias.
Collapse
Affiliation(s)
- Michael Tree
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 387 Technology Circle, Suite 200, Atlanta, GA 30313 e-mail:
| | - Jason White
- Mem. ASME St. Jude Medical, Inc., 387 Technology Circle, Suite 500, Atlanta, GA 30313 e-mail:
| | - Prem Midha
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 387 Technology Circle, Suite 200, Atlanta, GA 30313 e-mail:
| | - Samantha Kiblinger
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle, Suite 200, Atlanta, GA 30313 e-mail:
| | - Ajit Yoganathan
- Mem. ASME Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle, Suite 200, Atlanta, GA 30313 e-mail:
| |
Collapse
|
30
|
Lee CH, Rabbah JP, Yoganathan AP, Gorman RC, Gorman JH, Sacks MS. On the effects of leaflet microstructure and constitutive model on the closing behavior of the mitral valve. Biomech Model Mechanobiol 2015; 14:1281-302. [PMID: 25947879 PMCID: PMC4881393 DOI: 10.1007/s10237-015-0674-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/01/2015] [Indexed: 12/30/2022]
Abstract
Recent long-term studies showed an unsatisfactory recurrence rate of severe mitral regurgitation 3-5 years after surgical repair, suggesting that excessive tissue stresses and the resulting strain-induced tissue failure are potential etiological factors controlling the success of surgical repair for treating mitral valve (MV) diseases. We hypothesized that restoring normal MV tissue stresses in MV repair techniques would ultimately lead to improved repair durability through the restoration of MV normal homeostatic state. Therefore, we developed a micro- and macro- anatomically accurate MV finite element model by incorporating actual fiber microstructural architecture and a realistic structure-based constitutive model. We investigated MV closing behaviors, with extensive in vitro data used for validating the proposed model. Comparative and parametric studies were conducted to identify essential model fidelity and information for achieving desirable accuracy. More importantly, for the first time, the interrelationship between the local fiber ensemble behavior and the organ-level MV closing behavior was investigated using a computational simulation. These novel results indicated not only the appropriate parameter ranges, but also the importance of the microstructural tuning (i.e., straightening and re-orientation) of the collagen/elastin fiber networks at the macroscopic tissue level for facilitating the proper coaptation and natural functioning of the MV apparatus under physiological loading at the organ level. The proposed computational model would serve as a logical first step toward our long-term modeling goal-facilitating simulation-guided design of optimal surgical repair strategies for treating diseased MVs with significantly enhanced durability.
Collapse
Affiliation(s)
- Chung-Hao Lee
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, 201 East 24th Street, 1 University Station C0200, POB 5.236, Austin, TX, 78712, USA
| | - Jean-Pierre Rabbah
- Cardiovascular Fluid Mechanics Laboratory, Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle NW, Atlanta, GA, 30318, USA
| | - Ajit P Yoganathan
- Cardiovascular Fluid Mechanics Laboratory, Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle NW, Atlanta, GA, 30318, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Michael S Sacks
- W. A. "Tex" Moncrief, Jr. Simulation-Based Engineering Science Chair I, Department of Biomedical Engineering, Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, 201 East 24th Street, 1 University Station C0200, POB 5.236, Austin, TX, 78712, USA.
| |
Collapse
|
31
|
Toma M, Jensen MØ, Einstein DR, Yoganathan AP, Cochran RP, Kunzelman KS. Fluid-Structure Interaction Analysis of Papillary Muscle Forces Using a Comprehensive Mitral Valve Model with 3D Chordal Structure. Ann Biomed Eng 2015; 44:942-53. [PMID: 26183963 DOI: 10.1007/s10439-015-1385-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/07/2015] [Indexed: 11/28/2022]
Abstract
Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with [Formula: see text]CT. Experimental data from the in vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed leaflet dynamics, and force vectors from the in vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements enable validating and adjusting material parameters to improve the accuracy of computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.
Collapse
Affiliation(s)
- Milan Toma
- Department of Biomedical Engineering, Georgia Institute of Technology, Technology Enterprise Park, Suite 200, 387 Technology Circle, Atlanta, GA, 30313-2412, USA
| | - Morten Ø Jensen
- Department of Biomedical Engineering, Georgia Institute of Technology, Technology Enterprise Park, Suite 200, 387 Technology Circle, Atlanta, GA, 30313-2412, USA
| | - Daniel R Einstein
- Computational Biology & Bioinformatics, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ajit P Yoganathan
- Department of Biomedical Engineering, Georgia Institute of Technology, Technology Enterprise Park, Suite 200, 387 Technology Circle, Atlanta, GA, 30313-2412, USA
| | - Richard P Cochran
- Department of Mechanical Engineering, University of Maine, 219 Boardman Hall, Orono, ME, 04469-5711, USA
| | - Karyn S Kunzelman
- Department of Mechanical Engineering, University of Maine, 219 Boardman Hall, Orono, ME, 04469-5711, USA.
| |
Collapse
|
32
|
Barannyk O, Oshkai P. The Influence of the Aortic Root Geometry on Flow Characteristics of a Prosthetic Heart Valve. J Biomech Eng 2015; 137:051005. [DOI: 10.1115/1.4029747] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Indexed: 11/08/2022]
Abstract
In this paper, performance of aortic heart valve prosthesis in different geometries of the aortic root is investigated experimentally. The objective of this investigation is to establish a set of parameters, which are associated with abnormal flow patterns due to the flow through a prosthetic heart valve implanted in the patients that had certain types of valve diseases prior to the valve replacement. Specific valve diseases were classified into two clinical categories and were correlated with the corresponding changes in aortic root geometry while keeping the aortic base diameter fixed. These categories correspond to aortic valve stenosis and aortic valve insufficiency. The control case that corresponds to the aortic root of a patient without valve disease was used as a reference. Experiments were performed at test conditions corresponding to 70 beats/min, 5.5 L/min target cardiac output, and a mean aortic pressure of 100 mmHg. By varying the aortic root geometry, while keeping the diameter of the orifice constant, it was possible to investigate corresponding changes in the levels of Reynolds shear stress and establish the possibility of platelet activation and, as a result of that, the formation of blood clots.
Collapse
Affiliation(s)
- Oleksandr Barannyk
- Mem. ASME Department of Mechanical Engineering, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Peter Oshkai
- Mem. ASME Department of Mechanical Engineering, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
33
|
Chandran KB, Kim H. Computational mitral valve evaluation and potential clinical applications. Ann Biomed Eng 2014; 43:1348-62. [PMID: 25134487 DOI: 10.1007/s10439-014-1094-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/09/2014] [Indexed: 01/15/2023]
Abstract
The mitral valve (MV) apparatus consists of the two asymmetric leaflets, the saddle-shaped annulus, the chordae tendineae, and the papillary muscles. MV function over the cardiac cycle involves complex interaction between the MV apparatus components for efficient blood circulation. Common diseases of the MV include valvular stenosis, regurgitation, and prolapse. MV repair is the most popular and most reliable surgical treatment for early MV pathology. One of the unsolved problems in MV repair is to predict the optimal repair strategy for each patient. Although experimental studies have provided valuable information to improve repair techniques, computational simulations are increasingly playing an important role in understanding the complex MV dynamics, particularly with the availability of patient-specific real-time imaging modalities. This work presents a review of computational simulation studies of MV function employing finite element structural analysis and fluid-structure interaction approach reported in the literature to date. More recent studies towards potential applications of computational simulation approaches in the assessment of valvular repair techniques and potential pre-surgical planning of repair strategies are also discussed. It is anticipated that further advancements in computational techniques combined with the next generations of clinical imaging modalities will enable physiologically more realistic simulations. Such advancement in imaging and computation will allow for patient-specific, disease-specific, and case-specific MV evaluation and virtual prediction of MV repair.
Collapse
Affiliation(s)
- Krishnan B Chandran
- Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, 52242, USA
| | | |
Collapse
|
34
|
Jackson MS, Igo SR, Lindsey TE, Maragiannis D, Chin KE, Autry K, Schutt R, Shah DJ, Valsecchi P, Kline WB, Little SH. Development of a Multi-modality Compatible Flow Loop System for the Functional Assessment of Mitral Valve Prostheses. Cardiovasc Eng Technol 2014. [DOI: 10.1007/s13239-014-0177-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Siefert AW, Icenogle DA, Rabbah JPM, Saikrishnan N, Rossignac J, Lerakis S, Yoganathan AP. Accuracy of a mitral valve segmentation method using J-splines for real-time 3D echocardiography data. Ann Biomed Eng 2013; 41:1258-68. [PMID: 23460042 DOI: 10.1007/s10439-013-0784-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/26/2013] [Indexed: 11/28/2022]
Abstract
Patient-specific models of the heart's mitral valve (MV) exhibit potential for surgical planning. While advances in 3D echocardiography (3DE) have provided adequate resolution to extract MV leaflet geometry, no study has quantitatively assessed the accuracy of their modeled leaflets vs. a ground-truth standard for temporal frames beyond systolic closure or for differing valvular dysfunctions. The accuracy of a 3DE-based segmentation methodology based on J-splines was assessed for porcine MVs with known 4D leaflet coordinates within a pulsatile simulator during closure, peak closure, and opening for a control, prolapsed, and billowing MV model. For all time points, the mean distance error between the segmented models and ground-truth data were 0.40 ± 0.32 mm, 0.52 ± 0.51 mm, and 0.74 ± 0.69 mm for the control, flail, and billowing models. For all models and temporal frames, 95% of the distance errors were below 1.64 mm. When applied to a patient data set, segmentation was able to confirm a regurgitant orifice and post-operative improvements in coaptation. This study provides an experimental platform for assessing the accuracy of an MV segmentation methodology at phases beyond systolic closure and for differing MV dysfunctions. Results demonstrate the accuracy of a MV segmentation methodology for the development of future surgical planning tools.
Collapse
Affiliation(s)
- Andrew W Siefert
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr., Atlanta, GA 30332, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Rausch MK, Famaey N, Shultz TO, Bothe W, Miller DC, Kuhl E. Mechanics of the mitral valve: a critical review, an in vivo parameter identification, and the effect of prestrain. Biomech Model Mechanobiol 2012; 12:1053-71. [PMID: 23263365 DOI: 10.1007/s10237-012-0462-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/04/2012] [Indexed: 11/28/2022]
Abstract
Alterations in mitral valve mechanics are classical indicators of valvular heart disease, such as mitral valve prolapse, mitral regurgitation, and mitral stenosis. Computational modeling is a powerful technique to quantify these alterations, to explore mitral valve physiology and pathology, and to classify the impact of novel treatment strategies. The selection of the appropriate constitutive model and the choice of its material parameters are paramount to the success of these models. However, the in vivo parameters values for these models are unknown. Here, we identify the in vivo material parameters for three common hyperelastic models for mitral valve tissue, an isotropic one and two anisotropic ones, using an inverse finite element approach. We demonstrate that the two anisotropic models provide an excellent fit to the in vivo data, with local displacement errors in the sub-millimeter range. In a complementary sensitivity analysis, we show that the identified parameter values are highly sensitive to prestrain, with some parameters varying up to four orders of magnitude. For the coupled anisotropic model, the stiffness varied from 119,021 kPa at 0 % prestrain via 36 kPa at 30 % prestrain to 9 kPa at 60 % prestrain. These results may, at least in part, explain the discrepancy between previously reported ex vivo and in vivo measurements of mitral leaflet stiffness. We believe that our study provides valuable guidelines for modeling mitral valve mechanics, selecting appropriate constitutive models, and choosing physiologically meaningful parameter values. Future studies will be necessary to experimentally and computationally investigate prestrain, to verify its existence, to quantify its magnitude, and to clarify its role in mitral valve mechanics.
Collapse
Affiliation(s)
- Manuel K Rausch
- Department of Mechanical Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA,
| | | | | | | | | | | |
Collapse
|