1
|
Choe JA, Uthamaraj S, Dragomir-Daescu D, Sandhu GS, Tefft BJ. Magnetic and Biocompatible Polyurethane Nanofiber Biomaterial for Tissue Engineering. Tissue Eng Part A 2023; 29:413-423. [PMID: 37130041 PMCID: PMC10442687 DOI: 10.1089/ten.tea.2022.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Recruitment of endothelial cells to cardiovascular device surfaces could solve issues of thrombosis, neointimal hyperplasia, and restenosis. Since current targeting strategies are often nonspecific, new technologies to allow for site-specific cell localization and capture in vivo are needed. The development of cytocompatible superparamagnetic iron oxide nanoparticles has allowed for the use of magnetism for cell targeting. In this study, a magnetic polyurethane (PU)-2205 stainless steel (2205-SS) nanofibrous composite biomaterial was developed through analysis of composite sheets and application to stent-grafts. The PU nanofibers provide strength and elasticity while the 2205-SS microparticles provide ferromagnetic properties. Sheets were electrospun at mass ratios of 0-4:1 (2205-SS:PU) and stent-grafts with magnetic or nonmagnetic stents were coated at the optimal ratio of 2:1. These composite materials were characterized by microscopy, mechanical testing, a sessile drop test, magnetic field measurement, magnetic cell capture assays, and cytocompatibility after 14 days of culturing with endothelial cells. Results of this study show that an optimal ratio of 2:1 2205-SS:PU results in a hydrophobic material that balanced mechanical and magnetic properties and was cytocompatible up to 14 days. Significant cell capture required a thicker material of 0.5 mm thickness. Stent-grafts fabricated from a magnetic coating and a magnetic stent demonstrated uniform cell capture throughout the device surface. This novel biomaterial exhibits a combination of mechanical and magnetic properties that enables magnetic capture of cells and other therapeutic agents for vascular and other tissue engineering applications.
Collapse
Affiliation(s)
- Joshua A. Choe
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Dan Dragomir-Daescu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Gurpreet S. Sandhu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Brandon J. Tefft
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Mai Q, Wang Z, Chen Q, Zhang J, Zhang D, Li C, Jiang Q. Magnetically empowered bone marrow cells as a micro-living motor can improve early hematopoietic reconstitution. Cytotherapy 2023; 25:162-173. [PMID: 36503865 DOI: 10.1016/j.jcyt.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AIMS Bone marrow-derived hematopoietic stem cell transplantation/hematopoietic progenitor cell transplantation (HSCT/HPCT) is widely used and one of the most useful treatments in clinical practice. However, the homing rate of hematopoietic stem cells/hematopoietic progenitor cells (HSCs/HPCs) by routine cell transfusion is quite low, influencing hematopoietic reconstitution after HSCT/HPCT. METHODS The authors developed a micro-living motor (MLM) strategy to increase the number of magnetically empowered bone marrow cells (ME-BMCs) homing to the bone marrow of recipient mice. RESULTS In the in vitro study, migration and retention of ME-BMCs were greatly improved in comparison with non-magnetized bone marrow cells, and the biological characteristics of ME-BMCs were well maintained. Differentially expressed gene analysis indicated that ME-BMCs might function through gene regulation. In the in vivo study, faster hematopoietic reconstitution was observed in ME-BMC mice, which demonstrated a better survival rate and milder symptoms of acute graft-versus-host disease after transplantation of allogeneic ME-BMCs. CONCLUSIONS This study demonstrated that ME-BMCs serving as MLMs facilitated the homing of HSCs/HPCs and eventually contributed to earlier hematopoietic reconstitution in recipients. These data might provide useful information for other kinds of cell therapies.
Collapse
Affiliation(s)
- Qiusui Mai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhengyuan Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Quanfeng Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jialu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingyi Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Qianli Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Bernad SI, Bernad E. Magnetic Forces by Permanent Magnets to Manipulate Magnetoresponsive Particles in Drug-Targeting Applications. MICROMACHINES 2022; 13:1818. [PMID: 36363839 PMCID: PMC9698488 DOI: 10.3390/mi13111818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
This study presents preliminary computational and experimental findings on two alternative permanent magnet configurations helpful for magnetic drug administration in vivo. A numerical simulation and a direct experimental measurement of the magnetic induction on the magnet system's surface were used to map the magnetic field. In addition, the ferrite-type (grade Y35) and permanent neodymium magnets (grade N52) to produce powerful magnetic forces were also examined analytically and quantitatively. Ansys-Maxwell software and Finite Element Method Magnetism (FEMM) version 4.2 were used for all numerical computations in the current investigation. For both magnets, the generated magnetic fields were comparatively studied for targeting Fe particles having a diameter of 6 μm. The following findings were drawn from the present investigation: (i) the particle deposition on the vessel wall is greatly influenced by the intensity of the magnetic field, the magnet type, the magnet size, and the magnetic characteristics of the micro-sized magnetic particles (MSMPs); (ii) ferrite-type magnets might be employed to deliver magnetoresponsive particles to a target location, even if they are less powerful than neodymium magnets; and (iii) the results from the Computational Fluid Dynamics( CFD) models agree well with the measured magnetic field induction, magnetic field strength, and their fluctuation with the distance from the magnet surface.
Collapse
Affiliation(s)
- Sandor I. Bernad
- Romanian Academy-Timisoara Branch, Centre for Fundamental and Advanced Technical Research, Mihai Viteazul Str. 24, RO-300223 Timisoara, Romania
- Research Center for Engineering of Systems with Complex Fluids, Politehnica University Timisoara, Mihai Viteazul Str. 1, 300222 Timisoara, Romania
| | - Elena Bernad
- Department of Obstetrics and Gynaecology, University of Medicine and Pharmacy “Victor Babes” Timisoara, P-ta Eftimie Murgu 2, RO-300041 Timisoara, Romania
| |
Collapse
|
4
|
Magnetoresponsive Functionalized Nanocomposite Aggregation Kinetics and Chain Formation at the Targeted Site during Magnetic Targeting. Pharmaceutics 2022; 14:pharmaceutics14091923. [PMID: 36145671 PMCID: PMC9503060 DOI: 10.3390/pharmaceutics14091923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Drug therapy for vascular disease has been promoted to inhibit angiogenesis in atherosclerotic plaques and prevent restenosis following surgical intervention. This paper investigates the arterial depositions and distribution of PEG-functionalized magnetic nanocomposite clusters (PEG_MNCs) following local delivery in a stented artery model in a uniform magnetic field produced by a regionally positioned external permanent magnet; also, the PEG_MNCs aggregation or chain formation in and around the implanted stent. The central concept is to employ one external permanent magnet system, which produces enough magnetic field to magnetize and guide the magnetic nanoclusters in the stented artery region. At room temperature (25 °C), optical microscopy of the suspension model’s aggregation process was carried out in the external magnetic field. According to the optical microscopy pictures, the PEG_MNC particles form long linear aggregates due to dipolar magnetic interactions when there is an external magnetic field. During magnetic particle targeting, 20 mL of the model suspensions are injected (at a constant flow rate of 39.6 mL/min for the period of 30 s) by the syringe pump in the mean flow (flow velocity is Um = 0.25 m/s, corresponding to the Reynolds number of Re = 232) into the stented artery model. The PEG_MNC clusters are attracted by the magnetic forces (generated by the permanent external magnet) and captured around the stent struts and the bottom artery wall before and inside the implanted stent. The colloidal interaction among the MNC clusters was investigated by calculating the electrostatic repulsion, van der Waals and magnetic dipole-dipole energies. The current work offers essential details about PEG_MNCs aggregation and chain structure development in the presence of an external magnetic field and the process underlying this structure formation.
Collapse
|
5
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
6
|
The use of neodymium magnets in healthcare and their effects on health. North Clin Istanb 2019; 5:268-273. [PMID: 30688942 PMCID: PMC6323575 DOI: 10.14744/nci.2017.00483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/05/2017] [Indexed: 12/05/2022] Open
Abstract
The strong magnetic field properties of magnets have led to their use in many modern technologies, as well as in the fields of medicine and dentistry. Neodymium magnets are a powerful type of magnet that has been the subject of recent research. This review provides a brief explanation of the definition, history, and characteristics of rare earth magnets. In addition, a broad overview of results obtained in studies performed to date on the effects of magnets, and neodymium magnets in particular, on body systems, tissues, organs, diseases, and treatment is provided. Though they are used in the health sector in various diagnostic devices and as therapeutic tools, there is some potential for harmful effects, as well as the risk of accident. The research is still insufficient; however, neodymium magnets appear to hold great promise for both diagnostic and therapeutic purposes.
Collapse
|
7
|
Wang J, Jin X, Huang Y, Ran X, Luo D, Yang D, Jia D, Zhang K, Tong J, Deng X, Wang G. Endovascular stent-induced alterations in host artery mechanical environments and their roles in stent restenosis and late thrombosis. Regen Biomater 2018; 5:177-187. [PMID: 29942650 PMCID: PMC6007795 DOI: 10.1093/rb/rby006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/11/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular stent restenosis remains a major challenge in interventional treatment of cardiovascular occlusive disease. Although the changes in arterial mechanical environment due to stent implantation are the main causes of the initiation of restenosis and thrombosis, the mechanisms that cause this initiation are still not fully understood. In this article, we reviewed the studies on the issue of stent-induced alterations in arterial mechanical environment and discussed their roles in stent restenosis and late thrombosis from three aspects: (i) the interaction of the stent with host blood vessel, involve the response of vascular wall, the mechanism of mechanical signal transmission, the process of re-endothelialization and late thrombosis; (ii) the changes of hemodynamics in the lumen of the vascular segment and (iii) the changes of mechanical microenvironment within the vascular segment wall due to stent implantation. This review has summarized and analyzed current work in order to better solve the two main problems after stent implantation, namely in stent restenosis and late thrombosis, meanwhile propose the deficiencies of current work for future reference.
Collapse
Affiliation(s)
- Jinxuan Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Xuepu Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Yuhua Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Xiaolin Ran
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Desha Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Dongchuan Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Dongyu Jia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Kang Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Jianhua Tong
- Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
8
|
Tefft BJ, Uthamaraj S, Harbuzariu A, Harburn JJ, Witt TA, Newman B, Psaltis PJ, Hlinomaz O, Holmes DR, Gulati R, Simari RD, Dragomir-Daescu D, Sandhu GS. Nanoparticle-Mediated Cell Capture Enables Rapid Endothelialization of a Novel Bare Metal Stent. Tissue Eng Part A 2018; 24:1157-1166. [PMID: 29431053 DOI: 10.1089/ten.tea.2017.0404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Incomplete endothelialization of intracoronary stents has been associated with stent thrombosis and recurrent symptoms, whereas prolonged use of dual antiplatelet therapy increases bleeding-related adverse events. Facilitated endothelialization has the potential to improve clinical outcomes in patients who are unable to tolerate dual antiplatelet therapy. The objective of this study was to demonstrate the feasibility of magnetic cell capture to rapidly endothelialize intracoronary stents in a large animal model. A novel stent was developed from a magnetizable duplex stainless steel (2205 SS). Polylactic-co-glycolic acid and magnetite (Fe3O4) were used to synthesize biodegradable superparamagnetic iron oxide nanoparticles, and these were used to label autologous blood outgrowth endothelial cells. Magnetic 2205 SS and nonmagnetic 316L SS control stents were implanted in the coronary arteries of pigs (n = 11), followed by intracoronary delivery of magnetically labeled cells to 2205 SS stents. In this study, we show extensive endothelialization of magnetic 2205 SS stents (median 98.4% cell coverage) within 3 days, whereas the control 316L SS stents exhibited significantly less coverage (median 48.9% cell coverage, p < 0.0001). This demonstrates the ability of intracoronary delivery of magnetic nanoparticle labeled autologous endothelial cells to improve endothelialization of magnetized coronary stents within 3 days of implantation.
Collapse
Affiliation(s)
- Brandon J Tefft
- 1 Department of Cardiovascular Medicine, Mayo Clinic , Rochester, Minnesota
| | | | - Adriana Harbuzariu
- 1 Department of Cardiovascular Medicine, Mayo Clinic , Rochester, Minnesota
| | - J Jonathan Harburn
- 3 School of Pharmacy & Institute of Cellular Medicine, Newcastle University , Newcastle-upon-Tyne, United Kingdom
| | - Tyra A Witt
- 1 Department of Cardiovascular Medicine, Mayo Clinic , Rochester, Minnesota
| | - Brant Newman
- 2 Division of Engineering, Mayo Clinic , Rochester, Minnesota
| | - Peter J Psaltis
- 4 Vascular Research Centre, South Australian Health and Medical Research Institute , Adelaide, Australia .,5 School of Medicine, University of Adelaide , Adelaide, Australia
| | - Ota Hlinomaz
- 6 Department of Cardioangiology, St. Anne's University Hospital , Brno, Czech Republic
| | - David R Holmes
- 1 Department of Cardiovascular Medicine, Mayo Clinic , Rochester, Minnesota
| | - Rajiv Gulati
- 1 Department of Cardiovascular Medicine, Mayo Clinic , Rochester, Minnesota
| | - Robert D Simari
- 1 Department of Cardiovascular Medicine, Mayo Clinic , Rochester, Minnesota
| | - Dan Dragomir-Daescu
- 7 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Gurpreet S Sandhu
- 1 Department of Cardiovascular Medicine, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
9
|
Helvenstein M, Hambÿe S, Blankert B. Hepatocyte-based flow analytical bioreactor for online xenobiotics metabolism bioprediction. Nanobiomedicine (Rij) 2017; 4:1849543517702898. [PMID: 29942392 PMCID: PMC6009796 DOI: 10.1177/1849543517702898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/25/2017] [Indexed: 11/23/2022] Open
Abstract
The research for new in vitro screening tools for predictive metabolic profiling of drug candidates is of major interest in the pharmaceutical field. The main motivation is to avoid late rejection in drug development and to deliver safer drugs to the market. Thanks to the superparamagnetic properties of iron oxide nanoparticles, a flow bioreactor has been developed which is able to perform xenobiotic metabolism studies. The selected cell line (HepaRG) maintained its metabolic competencies once iron oxide nanoparticles were internalized. Based on magnetically trapped cells in a homemade immobilization chamber, through which a flow of circulating phase was injected to transport nutrients and/or the studied xenobiotic, off-line and online (when coupled to a high-performance liquid chromatography chain) metabolic assays were developed using diclofenac as a reference compound. The diclofenac demonstrated a similar metabolization profile chromatogram, both with the newly developed setup and with the control situation. Highly versatile, this pioneering and innovative instrumental design paves the way for a new approach in predictive metabolism studies.
Collapse
Affiliation(s)
- M Helvenstein
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - S Hambÿe
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - B Blankert
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| |
Collapse
|
10
|
Uthamaraj S, Tefft BJ, Jana S, Hlinomaz O, Kalra M, Lerman A, Dragomir-Daescu D, Sandhu GS. Fabrication of Small Caliber Stent-grafts Using Electrospinning and Balloon Expandable Bare Metal Stents. J Vis Exp 2016. [PMID: 27805589 DOI: 10.3791/54731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Stent-grafts are widely used for the treatment of various conditions such as aortic lesions, aneurysms, emboli due to coronary intervention procedures and perforations in vasculature. Such stent-grafts are manufactured by covering a stent with a polymer membrane. An ideal stent-graft should have a biocompatible stent covered by a porous, thromboresistant, and biocompatible polymer membrane which mimics the extracellular matrix thereby promoting injury site healing. The goal of this protocol is to manufacture a small caliber stent-graft by encapsulating a balloon expandable stent within two layers of electrospun polyurethane nanofibers. Electrospinning of polyurethane has been shown to assist in healing by mimicking native extracellular matrix, thereby promoting endothelialization. Electrospinning polyurethane nanofibers on a slowly rotating mandrel enabled us to precisely control the thickness of the nanofibrous membrane, which is essential to achieve a small caliber balloon expandable stent-graft. Mechanical validation by crimping and expansion of the stent-graft has shown that the nanofibrous polyurethane membrane is sufficiently flexible to crimp and expand while staying patent without showing any signs of tearing or delamination. Furthermore, stent-grafts fabricated using the methods described here are capable of being implanted using a coronary intervention procedure using standard size guide catheters.
Collapse
Affiliation(s)
| | | | - Soumen Jana
- Department of Cardiovascular Diseases, Mayo Clinic
| | - Ota Hlinomaz
- Department of Cardioangiology, ICRC, St. Anne's University Hospital
| | | | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic
| | - Dan Dragomir-Daescu
- Division of Engineering, Mayo Clinic; Department of Physiology and Biomedical Engineering, Mayo Clinic
| | | |
Collapse
|
11
|
Cicha I, Singh R, Garlichs CD, Alexiou C. Nano-biomaterials for cardiovascular applications: Clinical perspective. J Control Release 2016; 229:23-36. [DOI: 10.1016/j.jconrel.2016.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/22/2023]
|
12
|
Tefft BJ, Uthamaraj S, Harburn JJ, Klabusay M, Dragomir-Daescu D, Sandhu GS. Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles. J Vis Exp 2015:e53099. [PMID: 26554870 DOI: 10.3791/53099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields. The synthesis process involves creating magnetite (Fe3O4) nanoparticles followed by high-speed emulsification to form a poly(lactic-co-glycolic acid) (PLGA) coating. The PLGA-magnetite SPIONs are approximately 120 nm in diameter including the approximately 10 nm diameter magnetite core. When placed in culture medium, SPIONs are naturally endocytosed by cells and stored as small clusters within cytoplasmic endosomes. These particles impart sufficient magnetic mass to the cells to allow for targeting within magnetic fields. Numerous cell sorting and targeting applications are enabled by rendering various cell types responsive to magnetic fields. SPIONs have a variety of other biomedical applications as well including use as a medical imaging contrast agent, targeted drug or gene delivery, diagnostic assays, and generation of local hyperthermia for tumor therapy or tissue soldering.
Collapse
Affiliation(s)
| | | | | | - Martin Klabusay
- Regional Center for Applied Molecular Oncology, Masaryk Memorial Cancer Institute
| | - Dan Dragomir-Daescu
- Division of Engineering, Mayo Clinic; Mayo Clinic College of Medicine, Mayo Clinic;
| | | |
Collapse
|
13
|
Uthamaraj S, Tefft BJ, Hlinomaz O, Sandhu GS, Dragomir-Daescu D. Ferromagnetic Bare Metal Stent for Endothelial Cell Capture and Retention. J Vis Exp 2015. [PMID: 26436434 DOI: 10.3791/53100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rapid endothelialization of cardiovascular stents is needed to reduce stent thrombosis and to avoid anti-platelet therapy which can reduce bleeding risk. The feasibility of using magnetic forces to capture and retain endothelial outgrowth cells (EOC) labeled with super paramagnetic iron oxide nanoparticles (SPION) has been shown previously. But this technique requires the development of a mechanically functional stent from a magnetic and biocompatible material followed by in-vitro and in-vivo testing to prove rapid endothelialization. We developed a weakly ferromagnetic stent from 2205 duplex stainless steel using computer aided design (CAD) and its design was further refined using finite element analysis (FEA). The final design of the stent exhibited a principal strain below the fracture limit of the material during mechanical crimping and expansion. One hundred stents were manufactured and a subset of them was used for mechanical testing, retained magnetic field measurements, in-vitro cell capture studies, and in-vivo implantation studies. Ten stents were tested for deployment to verify if they sustained crimping and expansion cycle without failure. Another 10 stents were magnetized using a strong neodymium magnet and their retained magnetic field was measured. The stents showed that the retained magnetism was sufficient to capture SPION-labeled EOC in our in-vitro studies. SPION-labeled EOC capture and retention was verified in large animal models by implanting 1 magnetized stent and 1 non-magnetized control stent in each of 4 pigs. The stented arteries were explanted after 7 days and analyzed histologically. The weakly magnetic stents developed in this study were capable of attracting and retaining SPION-labeled endothelial cells which can promote rapid healing.
Collapse
Affiliation(s)
| | | | - Ota Hlinomaz
- Department of Cardioangiology, ICRC, St. Anne's University Hospital
| | | | | |
Collapse
|