1
|
Odierna GL, Vucic S, Dyer M, Dickson T, Woodhouse A, Blizzard C. How do we get from hyperexcitability to excitotoxicity in amyotrophic lateral sclerosis? Brain 2024; 147:1610-1621. [PMID: 38408864 PMCID: PMC11068114 DOI: 10.1093/brain/awae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 02/28/2024] Open
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease that, at present, has no effective cure. Evidence of increased circulating glutamate and hyperexcitability of the motor cortex in patients with amyotrophic lateral sclerosis have provided an empirical support base for the 'dying forward' excitotoxicity hypothesis. The hypothesis postulates that increased activation of upper motor neurons spreads pathology to lower motor neurons in the spinal cord in the form of excessive glutamate release, which triggers excitotoxic processes. Many clinical trials have focused on therapies that target excitotoxicity via dampening neuronal activation, but not all are effective. As such, there is a growing tension between the rising tide of evidence for the 'dying forward' excitotoxicity hypothesis and the failure of therapies that target neuronal activation. One possible solution to these contradictory outcomes is that our interpretation of the current evidence requires revision in the context of appreciating the complexity of the nervous system and the limitations of the neurobiological assays we use to study it. In this review we provide an evaluation of evidence relevant to the 'dying forward' excitotoxicity hypothesis and by doing so, identify key gaps in our knowledge that need to be addressed. We hope to provide a road map from hyperexcitability to excitotoxicity so that we can better develop therapies for patients suffering from amyotrophic lateral sclerosis. We conclude that studies of upper motor neuron activity and their synaptic output will play a decisive role in the future of amyotrophic lateral sclerosis therapy.
Collapse
Affiliation(s)
- G Lorenzo Odierna
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney 2050, Australia
| | - Marcus Dyer
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
- Department of Pharmaceutical and Pharmacological Sciences, Center for Neurosciences, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Tracey Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Adele Woodhouse
- The Wicking Dementia Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Catherine Blizzard
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
2
|
Chen D, Philippidou P, Brenha BDF, Schaffer AE, Miranda HC. Scalable, optically-responsive human neuromuscular junction model reveals convergent mechanisms of synaptic dysfunction in familial ALS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575304. [PMID: 38260655 PMCID: PMC10802619 DOI: 10.1101/2024.01.11.575304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neuromuscular junctions (NMJs) are specialized synapses that mediate communication between motor neurons and skeletal muscles and are essential for movement. The degeneration of this system can lead to symptoms observed in neuromuscular and motor neuron diseases. Studying these synapses and their degeneration has proven challenging. Prior NMJ studies heavily relied upon the use of mouse, chick, or isolated primary human cells, which have demonstrated limited fidelity for disease modeling. To enable the study of NMJ dysfunction and model genetic diseases, we, and others, have developed methods to generate human NMJs from pluripotent stem cells (PSCs), embryonic stem cells, and induced pluripotent stem cells. However, published studies have highlighted technical limitations associated with these complex in vitro NMJ models. In this study, we developed a robust PSC-derived motor neuron and skeletal muscle co-culture method, and demonstrated its sensitivity in modeling motor neuron disease. Our method spontaneously and reproducibly forms human NMJs. We developed multiwell-multielectrode array (MEA) parameters to quantify the activity of PSC-derived skeletal muscles, as well as measured the electrophysiological activity of functional human PSC-derived NMJs. We further leveraged our method to morphologically and functionally assess NMJs from the familial amyotrophic lateral sclerosis (fALS) PSCs, C9orf72 hexanucleotide (G4C2)n repeat expansion (HRE), SOD1 A5V , and TDP43 G298S to define the reproducibility and sensitivity of our system. We observed a significant decrease in the numbers and activity of PSC-derived NMJs developed from the different ALS lines compared to their respective controls. Furthermore, we evaluated a therapeutic candidate undergoing clinical trials and observed a variant-dependent rescue of functionality of NMJs. Our newly developed method provides a platform for the systematic investigation of genetic causes of NMJ neurodegeneration and highlights the need for therapeutic avenues to consider patient genotype.
Collapse
|
3
|
Fogarty MJ, Khurram OU, Mantilla CB, Sieck GC. Brain derived neurotrophic factor/tropomyosin related kinase B signaling impacts diaphragm neuromuscular transmission in a novel rat chemogenetic model. Front Cell Neurosci 2022; 16:1025463. [PMID: 36385943 PMCID: PMC9650098 DOI: 10.3389/fncel.2022.1025463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
The neuromuscular junction (NMJ) mediates neural control of skeletal muscle fibers. Neurotrophic signaling, specifically brain derived neurotrophic factor (BDNF) acting through its high-affinity tropomyosin related kinase B (TrkB) receptor is known to improve neuromuscular transmission. BDNF/TrkB signaling also maintains the integrity of antero- and retrograde communication between the motor neuron soma, its distal axons and pre-synaptic terminals and influences neuromuscular transmission. In this study, we employed a novel rat chemogenetic mutation (TrkB F616), in which a 1-naphthylmethyl phosphoprotein phosphatase 1 (1NMPP1) sensitive knock-in allele allowed specific, rapid and sustained inhibition of TrkB kinase activity. In adult female and male TrkB F616 rats, treatment with either 1NMPP1 (TrkB kinase inhibition) or DMSO (vehicle) was administered in drinking water for 14 days. To assess the extent of neuromuscular transmission failure (NMTF), diaphragm muscle isometric force evoked by nerve stimulation at 40 Hz (330 ms duration trains repeated each s) was compared to isometric forces evoked by superimposed direct muscle stimulation (every 15 s). Chronic TrkB kinase inhibition (1NMPP1 group) markedly worsened NMTF compared to vehicle controls. Acute BDNF treatment did not rescue NMTF in the 1NMPP1 group. Chronic TrkB kinase inhibition did not affect the apposition of pre-synaptic terminals (labeled with synaptophysin) and post-synaptic endplates (labeled with α-Bungarotoxin) at diaphragm NMJs. We conclude that inhibition of BDNF/TrkB signaling in TrkB F616 rats disrupts diaphragm neuromuscular transmission in a similar manner to TrkB F616A mice, likely via a pre-synaptic mechanism independent of axonal branch point failure.
Collapse
Affiliation(s)
- Matthew J. Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Obaid U. Khurram
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Carlos B. Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Gary C. Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Development of a Novel Technique for the Measurement of Neuromuscular Junction Functionality in Isotonic Conditions. Cell Mol Bioeng 2022; 15:255-265. [PMID: 35611165 PMCID: PMC9124252 DOI: 10.1007/s12195-022-00721-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/09/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction The neuromuscular junction (NMJ) is a chemical synapse responsible for converting electrical pulses generated by the motor neuron into electrical activity in muscle fibers, and is severely impaired in various diseases, such as Amyotrophic Lateral Sclerosis (ALS). Here, we proposed a novel technique to measure, for the first time, NMJ functionality in isotonic conditions, which better reflect muscle physiological activity. Methods We employed the in-situ testing technique, studied a proper placing of two pairs of wire electrodes for nerve and muscle stimulation, developed an extensive testing protocol, and proposed a novel parameter, the Isotonic Neurotransmission Failure (INF), to properly capture the impairments in neurotransmission during isotonic fatigue. We employed wild-type mice to assess the feasibility of the proposed technique, and the ALS model SOD1G93A mice to demonstrate the validity of the INF. Results Results confirmed the measurement accuracy in term of average value and coefficient of variation of the parameters measured through nerve stimulation in comparison with the corresponding values obtained for membrane stimulation. The INF values computed for the SOD1G93A tibialis anterior muscles pointed out an impairment of ALS mice during the isotonic fatigue test, whereas, as expected, their resistance to fatigue was higher. Conclusions In this work we devised a novel technique and a new parameter for a deep assessment of NMJ functionality in isotonic conditions, including fatigue, which is the most crucial condition for the neuronal signal transmission. This technique may be applied to other animal models, to unravel the mechanisms behind muscle-nerve impairments in other neurodegenerative pathologies.
Collapse
|
5
|
Forcina L, Cosentino M, Musarò A. Mechanisms Regulating Muscle Regeneration: Insights into the Interrelated and Time-Dependent Phases of Tissue Healing. Cells 2020; 9:E1297. [PMID: 32456017 PMCID: PMC7290814 DOI: 10.3390/cells9051297] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a massive body of knowledge which has been produced related to the mechanisms guiding muscle regeneration, great interest still moves the scientific community toward the study of different aspects of skeletal muscle homeostasis, plasticity, and regeneration. Indeed, the lack of effective therapies for several physiopathologic conditions suggests that a comprehensive knowledge of the different aspects of cellular behavior and molecular pathways, regulating each regenerative stage, has to be still devised. Hence, it is important to perform even more focused studies, taking the advantage of robust markers, reliable techniques, and reproducible protocols. Here, we provide an overview about the general aspects of muscle regeneration and discuss the different approaches to study the interrelated and time-dependent phases of muscle healing.
Collapse
Affiliation(s)
| | | | - Antonio Musarò
- Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via Antonio Scarpa, 14, 00161 Rome, Italy; (L.F.); (M.C.)
| |
Collapse
|
6
|
Natarajan A, Sethumadhavan A, Krishnan UM. Toward Building the Neuromuscular Junction: In Vitro Models To Study Synaptogenesis and Neurodegeneration. ACS OMEGA 2019; 4:12969-12977. [PMID: 31460423 PMCID: PMC6682064 DOI: 10.1021/acsomega.9b00973] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
The neuromuscular junction (NMJ) is a unique, specialized chemical synapse that plays a crucial role in transmitting and amplifying information from spinal motor neurons to skeletal muscles. NMJ complexity ensures closely intertwined interactions between numerous synaptic vesicles, signaling molecules, ion channels, motor neurons, glia, and muscle fibers, making it difficult to dissect the underlying mechanisms and factors affecting neurodegeneration and muscle loss. Muscle fiber or motor neuron cell death followed by rapid axonal degeneration due to injury or disease has a debilitating effect on movement and behavior, which adversely affects the quality of life. It thus becomes imperative to study the synapse and intercellular signaling processes that regulate plasticity at the NMJ and elucidate mechanisms and pathways at the cellular level. Studies using in vitro 2D cell cultures have allowed us to gain a fundamental understanding of how the NMJ functions. However, they do not provide information on the intricate signaling networks that exist between NMJs and the biological environment. The advent of 3D cell cultures and microfluidic lab-on-a-chip technologies has opened whole new avenues to explore the NMJ. In this perspective, we look at the challenges involved in building a functional NMJ and the progress made in generating models for studying the NMJ, highlighting the current and future applications of these models.
Collapse
Affiliation(s)
- Anupama Natarajan
- Centre
for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical
& Biotechnology, and School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613 401, India
| | - Anjali Sethumadhavan
- Centre
for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical
& Biotechnology, and School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613 401, India
| | - Uma Maheswari Krishnan
- Centre
for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical
& Biotechnology, and School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613 401, India
| |
Collapse
|
7
|
Seven YB, Mitchell GS. Mechanisms of compensatory plasticity for respiratory motor neuron death. Respir Physiol Neurobiol 2019; 265:32-39. [PMID: 30625378 DOI: 10.1016/j.resp.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/22/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
Respiratory motor neuron death arises from multiple neurodegenerative and traumatic neuromuscular disorders. Despite motor neuron death, compensatory mechanisms minimize its functional impact by harnessing intrinsic mechanisms of compensatory respiratory plasticity. However, the capacity for compensation eventually reaches limits and pathology ensues. Initially, challenges to the system such as increased metabolic demand reveal sub-clinical pathology. With greater motor neuron loss, the eventual result is de-compensation, ventilatory failure, ventilator dependence and then death. In this brief review, we discuss recent advances in our understanding of mechanisms giving rise to compensatory respiratory plasticity in response to respiratory motor neuron death including: 1) increased central respiratory drive, 2) plasticity in synapses on spared phrenic motor neurons, 3) enhanced neuromuscular transmission and 4) shifts in respiratory muscle utilization from more affected to less affected motor pools. Some of these compensatory mechanisms may prolong breathing function, but hasten the demise of surviving motor neurons. Improved understanding of these mechanisms and their impact on survival of spared motor neurons will guide future efforts to develop therapeutic interventions that preserve respiratory function with neuromuscular injury/disease.
Collapse
Affiliation(s)
- Yasin B Seven
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Gordon S Mitchell
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
8
|
Fusco AF, McCall AL, Dhindsa JS, Pucci LA, Strickland LM, Kahn AF, ElMallah MK. The Respiratory Phenotype of Rodent Models of Amyotrophic Lateral Sclerosis and Spinocerebellar Ataxia. JOURNAL OF NEUROINFLAMMATION AND NEURODEGENERATIVE DISEASES 2019; 3:100011. [PMID: 31893284 PMCID: PMC6938301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia (SCA) are neurodegenerative disorders that result in progressive motor dysfunction and ultimately lead to respiratory failure. Rodent models of neurodegenerative disorders provide a means to study the respiratory motor unit pathology that results in respiratory failure. In addition, they are important for pre-clinical studies of novel therapies that improve breathing, quality of life, and survival. The goal of this review is to compare the respiratory phenotype of two neurodegenerative disorders that have different pathological origins, but similar physiological outcomes. Manuscripts reviewed were identified using specific search terms and exclusion criteria. We excluded manuscripts that investigated novel therapeutics and only included those manuscripts that describe the respiratory pathology. The ALS manuscripts describe pathology in respiratory physiology, the phrenic and hypoglossal motor units, respiratory neural control centers, and accessory respiratory muscles. The SCA rodent model manuscripts characterized pathology in overall respiratory function, phrenic motor units and hypoglossal motor neurons. Overall, a combination of pathology in the respiratory motor units and control centers contribute to devastating respiratory dysfunction.
Collapse
Affiliation(s)
- Anna F. Fusco
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC
| | - Angela L. McCall
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC
| | - Justin S. Dhindsa
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC
| | - Logan A. Pucci
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC
| | | | - Amanda F. Kahn
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC
| | - Mai K. ElMallah
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC,Corresponding author: Mai K. ElMallah, Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, NC 27710, USA, Tel: 919-684-3577;
| |
Collapse
|
9
|
Fogarty MJ, Mantilla CB, Sieck GC. Breathing: Motor Control of Diaphragm Muscle. Physiology (Bethesda) 2018; 33:113-126. [PMID: 29412056 PMCID: PMC5899234 DOI: 10.1152/physiol.00002.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Breathing occurs without thought but is controlled by a complex neural network with a final output of phrenic motor neurons activating diaphragm muscle fibers (i.e., motor units). This review considers diaphragm motor unit organization and how they are controlled during breathing as well as during expulsive behaviors.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- School of Biomedical Sciences, The University of Queensland , Brisbane , Australia
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
10
|
Bowerman M, Murray LM, Scamps F, Schneider BL, Kothary R, Raoul C. Pathogenic commonalities between spinal muscular atrophy and amyotrophic lateral sclerosis: Converging roads to therapeutic development. Eur J Med Genet 2017; 61:685-698. [PMID: 29313812 DOI: 10.1016/j.ejmg.2017.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/04/2017] [Accepted: 12/03/2017] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are the two most common motoneuron disorders, which share typical pathological hallmarks while remaining genetically distinct. Indeed, SMA is caused by deletions or mutations in the survival motor neuron 1 (SMN1) gene whilst ALS, albeit being mostly sporadic, can also be caused by mutations within genes, including superoxide dismutase 1 (SOD1), Fused in Sarcoma (FUS), TAR DNA-binding protein 43 (TDP-43) and chromosome 9 open reading frame 72 (C9ORF72). However, it has come to light that these two diseases may be more interlinked than previously thought. Indeed, it has recently been found that FUS directly interacts with an Smn-containing complex, mutant SOD1 perturbs Smn localization, Smn depletion aggravates disease progression of ALS mice, overexpression of SMN in ALS mice significantly improves their phenotype and lifespan, and duplications of SMN1 have been linked to sporadic ALS. Beyond genetic interactions, accumulating evidence further suggests that both diseases share common pathological identities such as intrinsic muscle defects, neuroinflammation, immune organ dysfunction, metabolic perturbations, defects in neuron excitability and selective motoneuron vulnerability. Identifying common molecular effectors that mediate shared pathologies in SMA and ALS would allow for the development of therapeutic strategies and targeted gene therapies that could potentially alleviate symptoms and be equally beneficial in both disorders. In the present review, we will examine our current knowledge of pathogenic commonalities between SMA and ALS, and discuss how furthering this understanding can lead to the establishment of novel therapeutic approaches with wide-reaching impact on multiple motoneuron diseases.
Collapse
Affiliation(s)
- Melissa Bowerman
- School of Medicine, Keele University, Staffordshire, United Kingdom; Institute for Science and Technology in Medicine, Stoke-on-Trent, United Kingdom; Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
| | - Lyndsay M Murray
- Euan McDonald Centre for Motor Neuron Disease Research and Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Frédérique Scamps
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Cédric Raoul
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France.
| |
Collapse
|
11
|
Rizzuto E, Pisu S, Nicoletti C, Del Prete Z, Musarò A. Measuring Neuromuscular Junction Functionality. J Vis Exp 2017. [PMID: 28809841 DOI: 10.3791/55227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neuromuscular junction (NMJ) functionality plays a pivotal role when studying diseases in which the communication between motor neuron and muscle is impaired, such as aging and amyotrophic lateral sclerosis (ALS). Here we describe an experimental protocol that can be used to measure NMJ functionality by combining two types of electrical stimulation: direct muscle membrane stimulation and the stimulation through the nerve. The comparison of the muscle response to these two different stimulations can help to define, at the functional level, potential alterations in the NMJ that lead to functional decline in muscle. Ex vivo preparations are suited to well-controlled studies. Here we describe an intensive protocol to measure several parameters of muscle and NMJ functionality for the soleus-sciatic nerve preparation and for the diaphragm-phrenic nerve preparation. The protocol lasts approximately 60 min and is conducted uninterruptedly by means of a custom-made software that measures the twitch kinetics properties, the force-frequency relationship for both muscle and nerve stimulations, and two parameters specific to NMJ functionality, i.e. neurotransmission failure and intratetanic fatigue. This methodology was used to detect damages in soleus and diaphragm muscle-nerve preparations by using SOD1G93A transgenic mouse, an experimental model of ALS that ubiquitously overexpresses the mutant antioxidant enzyme superoxide dismutase 1 (SOD1).
Collapse
Affiliation(s)
- Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome;
| | - Simona Pisu
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome
| | - Carmine Nicoletti
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome
| | - Zaccaria Del Prete
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia
| | - Antonio Musarò
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia;
| |
Collapse
|
12
|
Jensen VN, Romer SH, Turner SM, Crone SA. Repeated Measurement of Respiratory Muscle Activity and Ventilation in Mouse Models of Neuromuscular Disease. J Vis Exp 2017. [PMID: 28448001 DOI: 10.3791/55599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accessory respiratory muscles help to maintain ventilation when diaphragm function is impaired. The following protocol describes a method for repeated measurements over weeks or months of accessory respiratory muscle activity while simultaneously measuring ventilation in a non-anesthetized, freely behaving mouse. The technique includes the surgical implantation of a radio transmitter and the insertion of electrode leads into the scalene and trapezius muscles to measure the electromyogram activity of these inspiratory muscles. Ventilation is measured by whole-body plethysmography, and animal movement is assessed by video and is synchronized with electromyogram activity. Measurements of muscle activity and ventilation in a mouse model of amyotrophic lateral sclerosis are presented to show how this tool can be used to investigate how respiratory muscle activity changes over time and to assess the impact of muscle activity on ventilation. The described methods can easily be adapted to measure the activity of other muscles or to assess accessory respiratory muscle activity in additional mouse models of disease or injury.
Collapse
Affiliation(s)
| | | | - Sarah M Turner
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center
| | - Steven A Crone
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center;
| |
Collapse
|
13
|
Riuzzi F, Beccafico S, Sorci G, Donato R. S100B protein in skeletal muscle regeneration: regulation of myoblast and macrophage functions. Eur J Transl Myol 2016; 26:5830. [PMID: 27054019 PMCID: PMC4821221 DOI: 10.4081/ejtm.2016.5830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Not available.
Collapse
Affiliation(s)
- F Riuzzi
- Department of Experimental Medicine, Section of Anatomy, University of Perugia , Italy
| | - S Beccafico
- Department of Experimental Medicine, Section of Anatomy, University of Perugia , Italy
| | - G Sorci
- Department of Experimental Medicine, Section of Anatomy, University of Perugia , Italy
| | - R Donato
- Department of Experimental Medicine, Section of Anatomy, University of Perugia , Italy
| |
Collapse
|