1
|
Laurence DW, Sabin PM, Sulentic AM, Daemer M, Maas SA, Weiss JA, Jolley MA. FEBio FINESSE: An Open-Source Finite Element Simulation Approach to Estimate In Vivo Heart Valve Strains Using Shape Enforcement. Ann Biomed Eng 2024:10.1007/s10439-024-03637-3. [PMID: 39499365 DOI: 10.1007/s10439-024-03637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024]
Abstract
PURPOSE Finite element simulations are an enticing tool to evaluate heart valve function; however, patient-specific simulations derived from 3D echocardiography are hampered by several technical challenges. The objective of this work is to develop an open-source method to enforce matching between finite element simulations and in vivo image-derived heart valve geometry in the absence of patient-specific material properties, leaflet thickness, and chordae tendineae structures. METHODS We evaluate FEBio Finite Element Simulations with Shape Enforcement (FINESSE) using three synthetic test cases considering a range of model complexity. FINESSE is then used to estimate the in vivo valve behavior and leaflet strains for three pediatric patients. RESULTS Our results suggest that FINESSE can be used to enforce finite element simulations to match an image-derived surface and estimate the first principal leaflet strains within ± 0.03 strain. Key considerations include: (i) defining the user-defined penalty, (ii) omitting the leaflet commissures to improve simulation convergence, and (iii) emulating the chordae tendineae behavior via prescribed leaflet free edge motion or a chordae emulating force. In all patient-specific cases, FINESSE matched the target surface with median errors of approximately the smallest voxel dimension. Further analysis revealed valve-specific findings, such as the tricuspid valve leaflet strains of a 2-day old patient with HLHS being larger than those of two 13-year old patients. CONCLUSIONS FEBio FINESSE can be used to estimate patient-specific in vivo heart valve leaflet strains. The development of this open-source pipeline will enable future studies to begin linking in vivo leaflet mechanics with patient outcomes.
Collapse
Affiliation(s)
- Devin W Laurence
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patricia M Sabin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Analise M Sulentic
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew Daemer
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Steve A Maas
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Scientific Computing Institute, University of Utah, Salt Lake City, UT, USA
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
- Scientific Computing Institute, University of Utah, Salt Lake City, UT, USA.
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Liu H, Simonian NT, Pouch AM, Iaizzo PA, Gorman JH, Gorman RC, Sacks MS. A Computational Pipeline for Patient-Specific Prediction of the Postoperative Mitral Valve Functional State. J Biomech Eng 2023; 145:111002. [PMID: 37382900 PMCID: PMC10405284 DOI: 10.1115/1.4062849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
While mitral valve (MV) repair remains the preferred clinical option for mitral regurgitation (MR) treatment, long-term outcomes remain suboptimal and difficult to predict. Furthermore, pre-operative optimization is complicated by the heterogeneity of MR presentations and the multiplicity of potential repair configurations. In the present work, we established a patient-specific MV computational pipeline based strictly on standard-of-care pre-operative imaging data to quantitatively predict the post-repair MV functional state. First, we established human mitral valve chordae tendinae (MVCT) geometric characteristics obtained from five CT-imaged excised human hearts. From these data, we developed a finite-element model of the full patient-specific MV apparatus that included MVCT papillary muscle origins obtained from both the in vitro study and the pre-operative three-dimensional echocardiography images. To functionally tune the patient-specific MV mechanical behavior, we simulated pre-operative MV closure and iteratively updated the leaflet and MVCT prestrains to minimize the mismatch between the simulated and target end-systolic geometries. Using the resultant fully calibrated MV model, we simulated undersized ring annuloplasty (URA) by defining the annular geometry directly from the ring geometry. In three human cases, the postoperative geometries were predicted to 1 mm of the target, and the MV leaflet strain fields demonstrated close agreement with noninvasive strain estimation technique targets. Interestingly, our model predicted increased posterior leaflet tethering after URA in two recurrent patients, which is the likely driver of long-term MV repair failure. In summary, the present pipeline was able to predict postoperative outcomes from pre-operative clinical data alone. This approach can thus lay the foundation for optimal tailored surgical planning for more durable repair, as well as development of mitral valve digital twins.
Collapse
Affiliation(s)
- Hao Liu
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712-1229
| | - Natalie T. Simonian
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712-1229
| | - Alison M. Pouch
- Departments of Radiology and Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Paul A. Iaizzo
- Visible Heart Laboratories, Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Joseph H. Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert C. Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Michael S. Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712-1229
| |
Collapse
|
3
|
Wu W, Ching S, Sabin P, Laurence DW, Maas SA, Lasso A, Weiss JA, Jolley MA. The effects of leaflet material properties on the simulated function of regurgitant mitral valves. J Mech Behav Biomed Mater 2023; 142:105858. [PMID: 37099920 PMCID: PMC10199327 DOI: 10.1016/j.jmbbm.2023.105858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Advances in three-dimensional imaging provide the ability to construct and analyze finite element (FE) models to evaluate the biomechanical behavior and function of atrioventricular valves. However, while obtaining patient-specific valve geometry is now possible, non-invasive measurement of patient-specific leaflet material properties remains nearly impossible. Both valve geometry and tissue properties play a significant role in governing valve dynamics, leading to the central question of whether clinically relevant insights can be attained from FE analysis of atrioventricular valves without precise knowledge of tissue properties. As such we investigated (1) the influence of tissue extensibility and (2) the effects of constitutive model parameters and leaflet thickness on simulated valve function and mechanics. We compared metrics of valve function (e.g., leaflet coaptation and regurgitant orifice area) and mechanics (e.g., stress and strain) across one normal and three regurgitant mitral valve (MV) models with common mechanisms of regurgitation (annular dilation, leaflet prolapse, leaflet tethering) of both moderate and severe degree. We developed a novel fully-automated approach to accurately quantify regurgitant orifice areas of complex valve geometries. We found that the relative ordering of the mechanical and functional metrics was maintained across a group of valves using material properties up to 15% softer than the representative adult mitral constitutive model. Our findings suggest that FE simulations can be used to qualitatively compare how differences and alterations in valve structure affect relative atrioventricular valve function even in populations where material properties are not precisely known.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Stephen Ching
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Patricia Sabin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Devin W Laurence
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Steve A Maas
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, UT, USA
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON, Canada
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, UT, USA
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA.
| |
Collapse
|
4
|
Wu W, Ching S, Sabin P, Laurence DW, Maas SA, Lasso A, Weiss JA, Jolley MA. The Effects of leaflet material properties on the simulated function of regurgitant mitral valves. ARXIV 2023:arXiv:2302.04939v2. [PMID: 36798457 PMCID: PMC9934730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Advances in three-dimensional imaging provide the ability to construct and analyze finite element (FE) models to evaluate the biomechanical behavior and function of atrioventricular valves. However, while obtaining patient-specific valve geometry is now possible, non-invasive measurement of patient-specific leaflet material properties remains nearly impossible. Both valve geometry and tissue properties play a significant role in governing valve dynamics, leading to the central question of whether clinically relevant insights can be attained from FE analysis of atrioventricular valves without precise knowledge of tissue properties. As such we investigated 1) the influence of tissue extensibility and 2) the effects of constitutive model parameters and leaflet thickness on simulated valve function and mechanics. We compared metrics of valve function (e.g., leaflet coaptation and regurgitant orifice area) and mechanics (e.g., stress and strain) across one normal and three regurgitant mitral valve (MV) models with common mechanisms of regurgitation (annular dilation, leaflet prolapse, leaflet tethering) of both moderate and severe degree. We developed a novel fully-automated approach to accurately quantify regurgitant orifice areas of complex valve geometries. We found that the relative ordering of the mechanical and functional metrics was maintained across a group of valves using material properties up to 15% softer than the representative adult mitral constitutive model. Our findings suggest that FE simulations can be used to qualitatively compare how differences and alterations in valve structure affect relative atrioventricular valve function even in populations where material properties are not precisely known.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Stephen Ching
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Patricia Sabin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Devin W Laurence
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Steve A Maas
- Department of Biomedical Engineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
5
|
Rego BV, Khalighi AH, Gorman JH, Gorman RC, Sacks MS. Simulation of Mitral Valve Plasticity in Response to Myocardial Infarction. Ann Biomed Eng 2023; 51:71-87. [PMID: 36030332 DOI: 10.1007/s10439-022-03043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023]
Abstract
Left ventricular myocardial infarction (MI) has broad and debilitating effects on cardiac function. In many cases, MI leads to ischemic mitral regurgitation (IMR), a condition characterized by incompetency of the mitral valve (MV). IMR has many deleterious effects as well as a high mortality rate. While various clinical treatments for IMR exist, success of these procedures remains limited, in large part because IMR dramatically alters the geometry and function of the MV in ways that are currently not well understood. Previous investigations of post-MI MV remodeling have elucidated that MV tissues have a significant ability to undergo a form of permanent inelastic deformations in the first phase of the post-MI period. These changes appear to be attributable to the altered loading and boundary conditions on the MV itself, as opposed to an independent pathophysiological process. Mechanistically, these results suggest that the MV mostly responds passively to MI during the first 8 weeks post-MI by undergoing a permanent deformation. In the present study, we developed the first computational model of this post-MI MV remodeling process, which we term "mitral valve plasticity." Integrating methodologies and insights from previous studies of in vivo ovine MV function, image-based patient-specific model development, and post-MI MV adaptation, we constructed a representative geometric model of a pre-MI MV. We then performed finite element simulations of the entire MV apparatus under time-dependent boundary conditions and accounting for changes to material properties equivalent to those observed 0-8 weeks post-MI. Our results suggest that during this initial period of adaptation, the MV response to MI can be accurately modeled using a soft tissue plasticity approach, similar to permanent set frameworks that have been applied previously in the context of exogenously crosslinked tissues.
Collapse
Affiliation(s)
- Bruno V Rego
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Amir H Khalighi
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
6
|
Rego BV, Khalighi AH, Lai EK, Gorman RC, Gorman JH, Sacks MS. In vivo assessment of mitral valve leaflet remodelling following myocardial infarction. Sci Rep 2022; 12:18012. [PMID: 36289435 PMCID: PMC9606267 DOI: 10.1038/s41598-022-22790-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
Each year, more than 40,000 people undergo mitral valve (MV) repair surgery domestically to treat regurgitation caused by myocardial infarction (MI). Although continual MV tissue remodelling following repair is believed to be a major contributor to regurgitation recurrence, the effects of the post-MI state on MV remodelling remain poorly understood. This lack of understanding limits our ability to predict the remodelling of the MV both post-MI and post-surgery to facilitate surgical planning. As a necessary first step, the present study was undertaken to noninvasively quantify the effects of MI on MV remodelling in terms of leaflet geometry and deformation. MI was induced in eight adult Dorset sheep, and real-time three-dimensional echocardiographic (rt-3DE) scans were collected pre-MI as well as at 0, 4, and 8 weeks post-MI. A previously validated image-based morphing pipeline was used to register corresponding open- and closed-state scans and extract local in-plane strains throughout the leaflet surface at systole. We determined that MI induced permanent changes in leaflet dimensions in the diastolic configuration, which increased with time to 4 weeks, then stabilised. MI substantially affected the systolic shape of the MV, and the range of stretch experienced by the MV leaflet at peak systole was substantially reduced when referred to the current time-point. Interestingly, when we referred the leaflet strains to the pre-MI configuration, the systolic strains remained very similar throughout the post-MI period. Overall, we observed that post-MI ventricular remodeling induced permanent changes in the MV leaflet shape. This predominantly affected the MV's diastolic configuration, leading in turn to a significant decrease in the range of stretch experienced by the leaflet when referenced to the current diastolic configuration. These findings are consistent with our previous work that demonstrated increased plastic (i.e. non-recoverable) leaflet deformations post-MI, that was completely accounted for by the associated changes in collagen fiber structure. Moreover, we demonstrated through noninvasive methods that the state of the MV leaflet can elucidate the progression and extent of MV adaptation following MI and is thus highly relevant to the design of current and novel patient specific minimally invasive surgical repair strategies.
Collapse
Affiliation(s)
- Bruno V Rego
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Amir H Khalighi
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Eric K Lai
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
7
|
Wu W, Ching S, Maas SA, Lasso A, Sabin P, Weiss JA, Jolley MA. A Computational Framework for Atrioventricular Valve Modeling Using Open-Source Software. J Biomech Eng 2022; 144:101012. [PMID: 35510823 PMCID: PMC9254695 DOI: 10.1115/1.4054485] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Indexed: 11/08/2022]
Abstract
Atrioventricular valve regurgitation is a significant cause of morbidity and mortality in patients with acquired and congenital cardiac valve disease. Image-derived computational modeling of atrioventricular valves has advanced substantially over the last decade and holds particular promise to inform valve repair in small and heterogeneous populations, which are less likely to be optimized through empiric clinical application. While an abundance of computational biomechanics studies has investigated mitral and tricuspid valve disease in adults, few studies have investigated its application to vulnerable pediatric and congenital heart populations. Further, to date, investigators have primarily relied upon a series of commercial applications that are neither designed for image-derived modeling of cardiac valves nor freely available to facilitate transparent and reproducible valve science. To address this deficiency, we aimed to build an open-source computational framework for the image-derived biomechanical analysis of atrioventricular valves. In the present work, we integrated an open-source valve modeling platform, SlicerHeart, and an open-source biomechanics finite element modeling software, FEBio, to facilitate image-derived atrioventricular valve model creation and finite element analysis. We present a detailed verification and sensitivity analysis to demonstrate the fidelity of this modeling in application to three-dimensional echocardiography-derived pediatric mitral and tricuspid valve models. Our analyses achieved an excellent agreement with those reported in the literature. As such, this evolving computational framework offers a promising initial foundation for future development and investigation of valve mechanics, in particular collaborative efforts targeting the development of improved repairs for children with congenital heart disease.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Stephen Ching
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Steve A Maas
- Department of Biomedical Engineering, Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Patricia Sabin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
8
|
Toma M, Singh-Gryzbon S, Frankini E, Wei Z(A, Yoganathan AP. Clinical Impact of Computational Heart Valve Models. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3302. [PMID: 35591636 PMCID: PMC9101262 DOI: 10.3390/ma15093302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022]
Abstract
This paper provides a review of engineering applications and computational methods used to analyze the dynamics of heart valve closures in healthy and diseased states. Computational methods are a cost-effective tool that can be used to evaluate the flow parameters of heart valves. Valve repair and replacement have long-term stability and biocompatibility issues, highlighting the need for a more robust method for resolving valvular disease. For example, while fluid-structure interaction analyses are still scarcely utilized to study aortic valves, computational fluid dynamics is used to assess the effect of different aortic valve morphologies on velocity profiles, flow patterns, helicity, wall shear stress, and oscillatory shear index in the thoracic aorta. It has been analyzed that computational flow dynamic analyses can be integrated with other methods to create a superior, more compatible method of understanding risk and compatibility.
Collapse
Affiliation(s)
- Milan Toma
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA;
| | - Shelly Singh-Gryzbon
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.-G.); (A.P.Y.)
| | - Elisabeth Frankini
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA;
| | - Zhenglun (Alan) Wei
- Department of Biomedical Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Ajit P. Yoganathan
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.-G.); (A.P.Y.)
| |
Collapse
|
9
|
Biomechanical-Structural Correlation of Chordae tendineae in Animal Models: A Pilot Study. Animals (Basel) 2021; 11:ani11061678. [PMID: 34199922 PMCID: PMC8230186 DOI: 10.3390/ani11061678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The Chordae tendineae are part of the atrioventricular apparatus. They are mainly responsible for the mechanical functions of heart valves. Degenerative mitral valve disease is the most common heart disease in dogs and is responsible for about 75% of cases of heart failure. One of the complications of this disease is Chordae tendineae rupture. It is clinically relevant to better understand the biomechanical and structural properties of CT in order to begin further studies about biomarkers suggesting an episode of CT rupture. Such an episode leads to acute pulmonary oedema and worsens the clinical status of the patient. Information about the biomechanical and structural properties of healthy CT and CT affected by the degenerative process are essential in understanding how CT behave in an in vivo environment. Abstract The mitral valve apparatus is a complex structure consisting of the mitral ring, valve leaflets, papillary muscles and Chordae tendineae (CT). The latter are mainly responsible for the mechanical functions of the valve. Our study included investigations of the biomechanical and structural properties of CT collected from canine and porcine hearts, as there are no studies about these properties of canine CT. We performed a static uniaxial tensile test on CT samples and a histopathological analysis in order to examine their microstructure. The results were analyzed to clarify whether the changes in mechanical persistence of Chordae tendineae are combined with the alterations in their structure. This study offers clinical insight for future research, allowing for an understanding of the process of Chordae tendineae rupture that happens during degenerative mitral valve disease—the most common heart disease in dogs.
Collapse
|
10
|
Panicheva D, Villard PF, Hammer PE, Perrin D, Berger MO. Automatic extraction of the mitral valve chordae geometry for biomechanical simulation. Int J Comput Assist Radiol Surg 2021; 16:709-720. [PMID: 33978895 DOI: 10.1007/s11548-021-02368-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Mitral valve computational models are widely studied in the literature. They can be used for preoperative planning or anatomical understanding. Manual extraction of the valve geometry on medical images is tedious and requires special training, while automatic segmentation is still an open problem. METHODS We propose here a fully automatic pipeline to extract the valve chordae architecture compatible with a computational model. First, an initial segmentation is obtained by sub-mesh topology analysis and RANSAC-like model-fitting procedure. Then, the chordal structure is optimized with respect to objective functions based on mechanical, anatomical, and image-based considerations. RESULTS The approach has been validated on 5 micro-CT scans with a graph-based metric and has shown an [Formula: see text] accuracy rate. The method has also been tested within a structural simulation of the mitral valve closed state. CONCLUSION Our results show that the chordae architecture resulting from our algorithm can give results similar to experienced users while providing an equivalent biomechanical simulation.
Collapse
Affiliation(s)
| | - Pierre-Frédéric Villard
- CNRS, Inria, LORIA, Université de Lorraine, Nancy, France. .,Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA.
| | | | - Douglas Perrin
- Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
11
|
Toma M, Einstein DR, Kohli K, Caroll SL, Bloodworth CH, Cochran RP, Kunzelman KS, Yoganathan AP. Effect of Edge-to-Edge Mitral Valve Repair on Chordal Strain: Fluid-Structure Interaction Simulations. BIOLOGY 2020; 9:biology9070173. [PMID: 32708356 PMCID: PMC7407795 DOI: 10.3390/biology9070173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Edge-to-edge repair for mitral valve regurgitation is being increasingly performed in high-surgical risk patients using minimally invasive mitral clipping devices. Known procedural complications include chordal rupture and mitral leaflet perforation. Hence, it is important to quantitatively evaluate the effect of edge-to-edge repair on chordal integrity. in this study, we employ a computational mitral valve model to simulate functional mitral regurgitation (FMR) by creating papillary muscle displacement. Edge-to-edge repair is then modeled by simulated coaptation of the mid portion of the mitral leaflets. in the setting of simulated FMR, edge-to-edge repair was shown to sustain low regurgitant orifice area, until a two fold increase in the inter-papillary muscle distance as compared to the normal mitral valve. Strain in the chordae was evaluated near the papillary muscles and the leaflets. Following edge-to-edge repair, strain near the papillary muscles did not significantly change relative to the unrepaired valve, while strain near the leaflets increased significantly relative to the unrepaired valve. These data demonstrate the potential for computational simulations to aid in the pre-procedural evaluation of possible complications such as chordal rupture and leaflet perforation following percutaneous edge-to-edge repair.
Collapse
Affiliation(s)
- Milan Toma
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury Campus, Northern Boulevard, Old Westbury, NY 11568-8000, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Technology Enterprise Park, 387 Technology Circle, Atlanta, GA 30313-2412, USA; (K.K.); (S.L.C.); (C.H.B.IV); (A.P.Y.)
- Correspondence:
| | - Daniel R. Einstein
- Department of Mechanical Engineering, St. Martin’s University, 5000 Abbey Way SE, Lacey, WA 98503, USA;
| | - Keshav Kohli
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Technology Enterprise Park, 387 Technology Circle, Atlanta, GA 30313-2412, USA; (K.K.); (S.L.C.); (C.H.B.IV); (A.P.Y.)
| | - Sheridan L. Caroll
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Technology Enterprise Park, 387 Technology Circle, Atlanta, GA 30313-2412, USA; (K.K.); (S.L.C.); (C.H.B.IV); (A.P.Y.)
| | - Charles H. Bloodworth
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Technology Enterprise Park, 387 Technology Circle, Atlanta, GA 30313-2412, USA; (K.K.); (S.L.C.); (C.H.B.IV); (A.P.Y.)
| | - Richard P. Cochran
- Department of Mechanical Engineering, University of Maine, 219 Boardman Hall, Orono, ME 04469-5711, USA; (R.P.C.); (K.S.K.)
| | - Karyn S. Kunzelman
- Department of Mechanical Engineering, University of Maine, 219 Boardman Hall, Orono, ME 04469-5711, USA; (R.P.C.); (K.S.K.)
| | - Ajit P. Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Technology Enterprise Park, 387 Technology Circle, Atlanta, GA 30313-2412, USA; (K.K.); (S.L.C.); (C.H.B.IV); (A.P.Y.)
| |
Collapse
|
12
|
Alleau T, Lanquetin L, Salsac AV. Use of a parametric finite element model of the mitral valve to assess healthy and pathological valve behaviors. Comput Methods Biomech Biomed Engin 2020. [DOI: 10.1080/10255842.2020.1713457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- T. Alleau
- Biomechanics and Bioengineering Laboratory (UMR 7338), Université de Technologie de Compiègne - CNRS, Alliance Sorbonne Université, Compiègne, France
- Segula Matra Automotive, Trappes, France
| | | | - A.-V. Salsac
- Biomechanics and Bioengineering Laboratory (UMR 7338), Université de Technologie de Compiègne - CNRS, Alliance Sorbonne Université, Compiègne, France
| |
Collapse
|
13
|
Howsmon DP, Rego BV, Castillero E, Ayoub S, Khalighi AH, Gorman RC, Gorman JH, Ferrari G, Sacks MS. Mitral valve leaflet response to ischaemic mitral regurgitation: from gene expression to tissue remodelling. J R Soc Interface 2020; 17:20200098. [PMID: 32370692 PMCID: PMC7276554 DOI: 10.1098/rsif.2020.0098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Ischaemic mitral regurgitation (IMR), a frequent complication following myocardial infarction (MI), leads to higher mortality and poor clinical prognosis if untreated. Accumulating evidence suggests that mitral valve (MV) leaflets actively remodel post MI, and this remodelling increases both the severity of IMR and the occurrence of MV repair failures. However, the mechanisms of extracellular matrix maintenance and modulation by MV interstitial cells (MVICs) and their impact on MV leaflet tissue integrity and repair failure remain largely unknown. Herein, we sought to elucidate the multiscale behaviour of IMR-induced MV remodelling using an established ovine model. Leaflet tissue at eight weeks post MI exhibited significant permanent plastic radial deformation, eliminating mechanical anisotropy, accompanied by altered leaflet composition. Interestingly, no changes in effective collagen fibre modulus were observed, with MVICs slightly rounder, at eight weeks post MI. RNA sequencing indicated that YAP-induced genes were elevated at four weeks post MI, indicating elevated mechanotransduction. Genes related to extracellular matrix organization were downregulated at four weeks post MI when IMR occurred. Transcriptomic changes returned to baseline by eight weeks post MI. This multiscale study suggests that IMR induces plastic deformation of the MV with no functional damage to the collagen fibres, providing crucial information for computational simulations of the MV in IMR.
Collapse
Affiliation(s)
- Daniel P. Howsmon
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Bruno V. Rego
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Estibaliz Castillero
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Salma Ayoub
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Amir H. Khalighi
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Robert C. Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H. Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giovanni Ferrari
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael S. Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
14
|
Oliveira D, Srinivasan J, Espino D, Buchan K, Dawson D, Shepherd D. Geometric description for the anatomy of the mitral valve: A review. J Anat 2020; 237:209-224. [PMID: 32242929 DOI: 10.1111/joa.13196] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
The mitral valve is a complex anatomical structure whose physiological functioning relies on the biomechanical properties and structural integrity of its components. Their compromise can lead to mitral valve dysfunction, associated with morbidity and mortality. Therefore, a review on the morphometry of the mitral valve is crucial, more specifically on the importance of valve dimensions and shape for its function. This review initially provides a brief background on the anatomy and physiology of the mitral valve, followed by an analysis of the morphological information available. A characterisation of mathematical descriptions of several parts of the valve is performed and the impact of different dimensions and shape changes in disease is then outlined. Finally, a section regarding future directions and recommendations for the use of morphometric information in clinical analysis of the mitral valve is presented.
Collapse
Affiliation(s)
- Diana Oliveira
- Department of Mechanical Engineering, University of Birmingham, Birmingham, UK
| | | | - Daniel Espino
- Department of Mechanical Engineering, University of Birmingham, Birmingham, UK
| | - Keith Buchan
- Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Dana Dawson
- Cardiology Research Facility, University of Aberdeen and Aberdeen Royal Infirmary, Aberdeen, UK
| | - Duncan Shepherd
- Department of Mechanical Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
15
|
Ross CJ, Zheng J, Ma L, Wu Y, Lee CH. Mechanics and Microstructure of the Atrioventricular Heart Valve Chordae Tendineae: A Review. Bioengineering (Basel) 2020; 7:E25. [PMID: 32178262 PMCID: PMC7148526 DOI: 10.3390/bioengineering7010025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
The atrioventricular heart valves (AHVs) are responsible for directing unidirectional blood flow through the heart by properly opening and closing the valve leaflets, which are supported in their function by the chordae tendineae and the papillary muscles. Specifically, the chordae tendineae are critical to distributing forces during systolic closure from the leaflets to the papillary muscles, preventing leaflet prolapse and consequent regurgitation. Current therapies for chordae failure have issues of disease recurrence or suboptimal treatment outcomes. To improve those therapies, researchers have sought to better understand the mechanics and microstructure of the chordae tendineae of the AHVs. The intricate structures of the chordae tendineae have become of increasing interest in recent literature, and there are several key findings that have not been comprehensively summarized in one review. Therefore, in this review paper, we will provide a summary of the current state of biomechanical and microstructural characterizations of the chordae tendineae, and also discuss perspectives for future studies that will aid in a better understanding of the tissue mechanics-microstructure linking of the AHVs' chordae tendineae, and thereby improve the therapeutics for heart valve diseases caused by chordae failures.
Collapse
Affiliation(s)
- Colton J. Ross
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA; (C.J.R.); (Y.W.)
| | - Junnan Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou 310058, China; (J.Z.); (L.M.)
| | - Liang Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou 310058, China; (J.Z.); (L.M.)
| | - Yi Wu
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA; (C.J.R.); (Y.W.)
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA; (C.J.R.); (Y.W.)
- Institute for Biomedical Engineering, Science and Technology (IBEST), The University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
16
|
Goode D, Dhaliwal R, Mohammadi H. Transcatheter Mitral Valve Replacement: State of the Art. Cardiovasc Eng Technol 2020; 11:229-253. [DOI: 10.1007/s13239-020-00460-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
|
17
|
Kaiser AD, McQueen DM, Peskin CS. Modeling the mitral valve. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3240. [PMID: 31330567 DOI: 10.1002/cnm.3240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/18/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
This work is concerned with modeling and simulation of the mitral valve, one of the four valves in the human heart. The valve is composed of leaflets, the free edges of which are supported by a system of chordae, which themselves are anchored to the papillary muscles inside the left ventricle. First, we examine valve anatomy and present the results of original dissections. These display the gross anatomy and information on fiber structure of the mitral valve. Next, we build a model valve following a design-based methodology, meaning that we derive the model geometry and the forces that are needed to support a given load and construct the model accordingly. We incorporate information from the dissections to specify the fiber topology of this model. We assume the valve achieves mechanical equilibrium while supporting a static pressure load. The solution to the resulting differential equations determines the pressurized configuration of the valve model. To complete the model, we then specify a constitutive law based on a stress-strain relation consistent with experimental data that achieves the necessary forces computed in previous steps. Finally, using the immersed boundary method, we simulate the model valve in fluid in a computer test chamber. The model opens easily and closes without leak when driven by physiological pressures over multiple beats. Further, its closure is robust to driving pressures that lack atrial systole or are much lower or higher than normal.
Collapse
Affiliation(s)
- Alexander D Kaiser
- Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, New York
| | - David M McQueen
- Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, New York
| | - Charles S Peskin
- Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, New York
| |
Collapse
|
18
|
Sacks M, Drach A, Lee CH, Khalighi A, Rego B, Zhang W, Ayoub S, Yoganathan A, Gorman RC, Gorman Iii JH. On the simulation of mitral valve function in health, disease, and treatment. J Biomech Eng 2019; 141:2731932. [PMID: 31004145 PMCID: PMC6611349 DOI: 10.1115/1.4043552] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/26/2019] [Indexed: 12/19/2022]
Abstract
The mitral valve (MV) is the heart valve that regulates blood ?ow between the left atrium and left ventricle (LV). In situations where the MV fails to fully cover the left atrioventricular ori?ce during systole, the resulting regurgitation causes pulmonary congestion, leading to heart failure and/or stroke. The causes of MV insuf?ciency can be either primary (e.g. myxomatous degeneration) where the valvular tissue is organically diseased, or secondary (typically inducded by ischemic cardiomyopathy) termed ischemic mitral regurgitation (IMR), is brought on by adverse LV remodeling. IMR is present in up to 40% of patients and more than doubles the probability of cardiovascular morbidity after 3.5 years. There is now agreement that adjunctive procedures are required to treat IMR caused by lea?et tethering. However, there is no consensus regarding the best procedure. Multicenter registries and randomized trials would be necessary to prove which procedure is superior. Given the number of proposed procedures and the complexity and duration of such studies, it is highly unlikely that IMR procedure optimization will be achieved by prospective clinical trials. There is thus an urgent need for cell and tissue physiologically based quantitative assessments of MV function to better design surgical solutions and associated therapies. Novel computational approaches directed towards optimized surgical repair procedures can substantially reduce the need for such trial-and-error approaches. We present the details of our MV modeling techniques, with an emphasis on what is known and investigated at various length scales.
Collapse
Affiliation(s)
- Michael Sacks
- aWillerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Andrew Drach
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Chung-Hao Lee
- Department of Mechanical and Aerospace Engineering, University of Oklahoma, Norman, OK
| | - Amir Khalighi
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Bruno Rego
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Will Zhang
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Salma Ayoub
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Ajit Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Joseph H Gorman Iii
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
19
|
Khalighi AH, Rego BV, Drach A, Gorman RC, Gorman JH, Sacks MS. Development of a Functionally Equivalent Model of the Mitral Valve Chordae Tendineae Through Topology Optimization. Ann Biomed Eng 2019; 47:60-74. [PMID: 30187238 PMCID: PMC6516770 DOI: 10.1007/s10439-018-02122-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
Abstract
Ischemic mitral regurgitation (IMR) is a currently prevalent disease in the US that is projected to become increasingly common as the aging population grows. In recent years, image-based simulations of mitral valve (MV) function have improved significantly, providing new tools to refine IMR treatment. However, clinical implementation of MV simulations has long been hindered as the in vivo MV chordae tendineae (MVCT) geometry cannot be captured with sufficient fidelity for computational modeling. In the current study, we addressed this challenge by developing a method to produce functionally equivalent MVCT models that can be built from the image-based MV leaflet geometry alone. We began our analysis using extant micron-resolution 3D imaging datasets to first build anatomically accurate MV models. We then systematically simplified the native MVCT structure to generate a series of synthetic models by consecutively removing key anatomic features, such as the thickness variations, branching patterns, and chordal origin distributions. In addition, through topology optimization, we identified the minimal structural complexity required to capture the native MVCT behavior. To assess the performance and predictive power of each synthetic model, we analyzed their performance by comparing the mismatch in simulated MV closed shape, as well as the strain and stress tensors, to ground-truth MV models. Interestingly, our results revealed a substantial redundancy in the anatomic structure of native chordal anatomy. We showed that the closing behavior of complete MV apparatus under normal, diseased, and surgically repaired scenarios can be faithfully replicated by a functionally equivalent MVCT model comprised of two representative papillary muscle heads, single strand chords, and a uniform insertion distribution with a density of 15 insertions/cm2. Hence, even though the complete sub-valvular structure is mostly missing in in vivo MV images, we believe our approach will allow for the development of patient-specific complete MV models for surgical repair planning.
Collapse
Affiliation(s)
- Amir H Khalighi
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Bruno V Rego
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Andrew Drach
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
20
|
Rego BV, Khalighi AH, Drach A, Lai EK, Pouch AM, Gorman RC, Gorman JH, Sacks MS. A noninvasive method for the determination of in vivo mitral valve leaflet strains. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3142. [PMID: 30133180 DOI: 10.1002/cnm.3142] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/21/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Assessment of mitral valve (MV) function is important in many diagnostic, prognostic, and surgical planning applications for treatment of MV disease. Yet, to date, there are no accepted noninvasive methods for determination of MV leaflet deformation, which is a critical metric of MV function. In this study, we present a novel, completely noninvasive computational method to estimate MV leaflet in-plane strains from clinical-quality real-time three-dimensional echocardiography (rt-3DE) images. The images were first segmented to produce meshed medial-surface leaflet geometries of the open and closed states. To establish material point correspondence between the two states, an image-based morphing pipeline was implemented within a finite element (FE) modeling framework in which MV closure was simulated by pressurizing the open-state geometry, and local corrective loads were applied to enforce the actual MV closed shape. This resulted in a complete map of local systolic leaflet membrane strains, obtained from the final FE mesh configuration. To validate the method, we utilized an extant in vitro database of fiducially labeled MVs, imaged in conditions mimicking both the healthy and diseased states. Our method estimated local anisotropic in vivo strains with less than 10% error and proved to be robust to changes in boundary conditions similar to those observed in ischemic MV disease. Next, we applied our methodology to ovine MVs imaged in vivo with rt-3DE and compared our results to previously published findings of in vivo MV strains in the same type of animal as measured using surgically sutured fiducial marker arrays. In regions encompassed by fiducial markers, we found no significant differences in circumferential(P = 0.240) or radial (P = 0.808) strain estimates between the marker-based measurements and our novel noninvasive method. This method can thus be used for model validation as well as for studies of MV disease and repair.
Collapse
Affiliation(s)
- Bruno V Rego
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Amir H Khalighi
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Andrew Drach
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Eric K Lai
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alison M Pouch
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Sacks
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
21
|
Dasi LP, Grande-Allen J, Kunzelman K, Kuhl E. The Pursuit of Engineering the Ideal Heart Valve Replacement or Repair: A Special Issue of the Annals of Biomedical Engineering. Ann Biomed Eng 2018; 45:307-309. [PMID: 28150054 DOI: 10.1007/s10439-017-1801-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Extraction of open-state mitral valve geometry from CT volumes. Int J Comput Assist Radiol Surg 2018; 13:1741-1754. [DOI: 10.1007/s11548-018-1831-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/23/2018] [Indexed: 11/25/2022]
|
23
|
Ayoub S, Tsai KC, Khalighi AH, Sacks MS. The Three-Dimensional Microenvironment of the Mitral Valve: Insights into the Effects of Physiological Loads. Cell Mol Bioeng 2018; 11:291-306. [PMID: 31719888 PMCID: PMC6816749 DOI: 10.1007/s12195-018-0529-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/14/2018] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION In the mitral valve (MV), numerous pathological factors, especially those resulting from changes in external loading, have been shown to affect MV structure and composition. Such changes are driven by the MV interstitial cell (MVIC) population via protein synthesis and enzymatic degradation of extracellular matrix (ECM) components. METHODS While cell phenotype, ECM composition and regulation, and tissue level changes in MVIC shape under stress have been studied, a detailed understanding of the three-dimensional (3D) microstructural mechanisms are lacking. As a first step in addressing this challenge, we applied focused ion beam scanning electron microscopy (FIB-SEM) to reveal novel details of the MV microenvironment in 3D. RESULTS We demonstrated that collagen is organized into large fibers consisting of an average of 605 ± 113 fibrils, with a mean diameter of 61.2 ± 9.8 nm. In contrast, elastin was organized into two distinct structural subtypes: (1) sheet-like lamellar elastin, and (2) circumferentially oriented elastin struts, based on both the aspect ratio and transmural tilt. MVICs were observed to have a large cytoplasmic volume, as evidenced by the large mean surface area to volume ratio 3.68 ± 0.35, which increased under physiological loading conditions to 4.98 ± 1.17. CONCLUSIONS Our findings suggest that each MVIC mechanically interacted only with the nearest 3-4 collagen fibers. This key observation suggests that in developing multiscale MV models, each MVIC can be considered a mechanically integral part of the local fiber ensemble and is unlikely to be influenced by more distant structures.
Collapse
Affiliation(s)
- Salma Ayoub
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, POB 5.236, 1 University Station C0200, Austin, TX 78712 USA
| | - Karen C. Tsai
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, POB 5.236, 1 University Station C0200, Austin, TX 78712 USA
| | - Amir H. Khalighi
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, POB 5.236, 1 University Station C0200, Austin, TX 78712 USA
| | - Michael S. Sacks
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, POB 5.236, 1 University Station C0200, Austin, TX 78712 USA
| |
Collapse
|
24
|
Zarei V, Zhang S, Winkelstein BA, Barocas VH. Tissue loading and microstructure regulate the deformation of embedded nerve fibres: predictions from single-scale and multiscale simulations. J R Soc Interface 2018; 14:rsif.2017.0326. [PMID: 28978743 DOI: 10.1098/rsif.2017.0326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022] Open
Abstract
Excessive deformation of nerve fibres (axons) in the spinal facet capsular ligaments (FCLs) can be a cause of pain. The axons are embedded in the fibrous extracellular matrix (ECM) of FCLs, so understanding how local fibre organization and micromechanics modulate their mechanical behaviour is essential. We constructed a computational discrete-fibre model of an axon embedded in a collagen fibre network attached to the axon by distinct fibre-axon connections. This model was used to relate the axonal deformation to the fibre alignment and collagen volume concentration of the surrounding network during transverse, axial and shear deformations. Our results showed that fibre alignment affects axonal deformation only during transverse and axial loading, but higher collagen volume concentration results in larger overall axonal strains for all loading cases. Furthermore, axial loading leads to the largest stretch of axonal microtubules and induces the largest forces on axon's surface in most cases. Comparison between this model and a multiscale continuum model for a representative case showed that although both models predicted similar averaged axonal strains, strain was more heterogeneous in the discrete-fibre model.
Collapse
Affiliation(s)
- Vahhab Zarei
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6321, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6321, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
25
|
Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJ, Sacks MS, Hsu MC. A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2938. [PMID: 29119728 PMCID: PMC5893448 DOI: 10.1002/cnm.2938] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/08/2017] [Accepted: 10/22/2017] [Indexed: 05/07/2023]
Abstract
Numerous studies have suggested that medical image derived computational mechanics models could be developed to reduce mortality and morbidity due to cardiovascular diseases by allowing for patient-specific surgical planning and customized medical device design. In this work, we present a novel framework for designing prosthetic heart valves using a parametric design platform and immersogeometric fluid-structure interaction (FSI) analysis. We parameterize the leaflet geometry using several key design parameters. This allows for generating various perturbations of the leaflet design for the patient-specific aortic root reconstructed from the medical image data. Each design is analyzed using our hybrid arbitrary Lagrangian-Eulerian/immersogeometric FSI methodology, which allows us to efficiently simulate the coupling of the deforming aortic root, the parametrically designed prosthetic valves, and the surrounding blood flow under physiological conditions. A parametric study is performed to investigate the influence of the geometry on heart valve performance, indicated by the effective orifice area and the coaptation area. Finally, the FSI simulation result of a design that balances effective orifice area and coaptation area reasonably well is compared with patient-specific phase contrast magnetic resonance imaging data to demonstrate the qualitative similarity of the flow patterns in the ascending aorta.
Collapse
Affiliation(s)
- Fei Xu
- Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA
| | - Simone Morganti
- Department of Electrical, Computer, and Biomedical Engineering, University of Pavia, via Ferrata 3, 27100, Pavia Italy
| | - Rana Zakerzadeh
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA
| | - David Kamensky
- Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0085 La Jolla, CA 92093, USA
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, 27100, Pavia, Italy
| | - Alessandro Reali
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, 27100, Pavia, Italy
| | - Thomas J.R. Hughes
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA
| | - Michael S. Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA
| |
Collapse
|
26
|
Kamensky D, Xu F, Lee CH, Yan J, Bazilevs Y, Hsu MC. A contact formulation based on a volumetric potential: Application to isogeometric simulations of atrioventricular valves. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2018; 330:522-546. [PMID: 29736092 PMCID: PMC5935269 DOI: 10.1016/j.cma.2017.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This work formulates frictionless contact between solid bodies in terms of a repulsive potential energy term and illustrates how numerical integration of the resulting forces is computationally similar to the "pinball algorithm" proposed and studied by Belytschko and collaborators in the 1990s. We thereby arrive at a numerical approach that has both the theoretical advantages of a potential-based formulation and the algorithmic simplicity, computational efficiency, and geometrical versatility of pinball contact. The singular nature of the contact potential requires a specialized nonlinear solver and an adaptive time stepping scheme to ensure reliable convergence of implicit dynamic calculations. We illustrate the effectiveness of this numerical method by simulating several benchmark problems and the structural mechanics of the right atrioventricular (tricuspid) heart valve. Atrioventricular valve closure involves contact between every combination of shell surfaces, edges of shells, and cables, but our formulation handles all contact scenarios in a unified manner. We take advantage of this versatility to demonstrate the effects of chordal rupture on tricuspid valve coaptation behavior.
Collapse
Affiliation(s)
- David Kamensky
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Corresponding author: (David Kamensky)
| | - Fei Xu
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Jinhui Yan
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yuri Bazilevs
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
27
|
Drach A, Khalighi AH, Sacks MS. A comprehensive pipeline for multi-resolution modeling of the mitral valve: Validation, computational efficiency, and predictive capability. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:10.1002/cnm.2921. [PMID: 28776326 PMCID: PMC5797517 DOI: 10.1002/cnm.2921] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 05/18/2023]
Abstract
Multiple studies have demonstrated that the pathological geometries unique to each patient can affect the durability of mitral valve (MV) repairs. While computational modeling of the MV is a promising approach to improve the surgical outcomes, the complex MV geometry precludes use of simplified models. Moreover, the lack of complete in vivo geometric information presents significant challenges in the development of patient-specific computational models. There is thus a need to determine the level of detail necessary for predictive MV models. To address this issue, we have developed a novel pipeline for building attribute-rich computational models of MV with varying fidelity directly from the in vitro imaging data. The approach combines high-resolution geometric information from loaded and unloaded states to achieve a high level of anatomic detail, followed by mapping and parametric embedding of tissue attributes to build a high-resolution, attribute-rich computational models. Subsequent lower resolution models were then developed and evaluated by comparing the displacements and surface strains to those extracted from the imaging data. We then identified the critical levels of fidelity for building predictive MV models in the dilated and repaired states. We demonstrated that a model with a feature size of about 5 mm and mesh size of about 1 mm was sufficient to predict the overall MV shape, stress, and strain distributions with high accuracy. However, we also noted that more detailed models were found to be needed to simulate microstructural events. We conclude that the developed pipeline enables sufficiently complex models for biomechanical simulations of MV in normal, dilated, repaired states.
Collapse
Affiliation(s)
- Andrew Drach
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Amir H Khalighi
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
28
|
An Object-Based Shale Permeability Model: Non-Darcy Gas Flow, Sorption, and Surface Diffusion Effects. Transp Porous Media 2018. [DOI: 10.1007/s11242-017-0992-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Khalighi AH, Drach A, Gorman RC, Gorman JH, Sacks MS. Multi-resolution geometric modeling of the mitral heart valve leaflets. Biomech Model Mechanobiol 2017; 17:351-366. [PMID: 28983742 DOI: 10.1007/s10237-017-0965-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
An essential element of cardiac function, the mitral valve (MV) ensures proper directional blood flow between the left heart chambers. Over the past two decades, computational simulations have made marked advancements toward providing powerful predictive tools to better understand valvular function and improve treatments for MV disease. However, challenges remain in the development of robust means for the quantification and representation of MV leaflet geometry. In this study, we present a novel modeling pipeline to quantitatively characterize and represent MV leaflet surface geometry. Our methodology utilized a two-part additive decomposition of the MV geometric features to decouple the macro-level general leaflet shape descriptors from the leaflet fine-scale features. First, the general shapes of five ovine MV leaflets were modeled using superquadric surfaces. Second, the finer-scale geometric details were captured, quantified, and reconstructed via a 2D Fourier analysis with an additional sparsity constraint. This spectral approach allowed us to easily control the level of geometric details in the reconstructed geometry. The results revealed that our methodology provided a robust and accurate approach to develop MV-specific models with an adjustable level of spatial resolution and geometric detail. Such fully customizable models provide the necessary means to perform computational simulations of the MV at a range of geometric accuracies in order to identify the level of complexity required to achieve predictive MV simulations.
Collapse
Affiliation(s)
- Amir H Khalighi
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Andrew Drach
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
30
|
Ayoub S, Lee CH, Driesbaugh KH, Anselmo W, Hughes CT, Ferrari G, Gorman RC, Gorman JH, Sacks MS. Regulation of valve interstitial cell homeostasis by mechanical deformation: implications for heart valve disease and surgical repair. J R Soc Interface 2017; 14:20170580. [PMID: 29046338 PMCID: PMC5665836 DOI: 10.1098/rsif.2017.0580] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/21/2017] [Indexed: 11/12/2022] Open
Abstract
Mechanical stress is one of the major aetiological factors underlying soft-tissue remodelling, especially for the mitral valve (MV). It has been hypothesized that altered MV tissue stress states lead to deviations from cellular homeostasis, resulting in subsequent cellular activation and extracellular matrix (ECM) remodelling. However, a quantitative link between alterations in the organ-level in vivo state and in vitro-based mechanobiology studies has yet to be made. We thus developed an integrated experimental-computational approach to elucidate MV tissue and interstitial cell responses to varying tissue strain levels. Comprehensive results at different length scales revealed that normal responses are observed only within a defined range of tissue deformations, whereas deformations outside of this range lead to hypo- and hyper-synthetic responses, evidenced by changes in α-smooth muscle actin, type I collagen, and other ECM and cell adhesion molecule regulation. We identified MV interstitial cell deformation as a key player in leaflet tissue homeostatic regulation and, as such, used it as the metric that makes the critical link between in vitro responses to simulated equivalent in vivo behaviour. Results indicated that cell responses have a delimited range of in vivo deformations that maintain a homeostatic response, suggesting that deviations from this range may lead to deleterious tissue remodelling and failure.
Collapse
Affiliation(s)
- Salma Ayoub
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES), Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Kathryn H Driesbaugh
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wanda Anselmo
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connor T Hughes
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES), Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Giovanni Ferrari
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES), Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
31
|
Stephens SE, Liachenko S, Ingels NB, Wenk JF, Jensen MO. High resolution imaging of the mitral valve in the natural state with 7 Tesla MRI. PLoS One 2017; 12:e0184042. [PMID: 28854273 PMCID: PMC5576658 DOI: 10.1371/journal.pone.0184042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/16/2017] [Indexed: 11/20/2022] Open
Abstract
Imaging techniques of the mitral valve have improved tremendously during the last decade, but challenges persist. The delicate changes in annulus shape and papillary muscle position throughout the cardiac cycle have significant impact on the stress distribution in the leaflets and chords, thus preservation of anatomically accurate positioning is critical. The aim of this study was to develop an in vitro method and apparatus for obtaining high-resolution 3D MRI images of porcine mitral valves in both the diastolic and systolic configurations with physiologically appropriate annular shape, papillary muscle positions and orientations, specific to the heart from which the valve was harvested. Positioning and mounting was achieved through novel, customized mounting hardware consisting of papillary muscle and annulus holders with geometries determined via pre-mortem ultrasonic intra-valve measurements. A semi-automatic process was developed and employed to tailor Computer Aided Design models of the holders used to mount the valve. All valve mounting hardware was 3D printed using a stereolithographic printer, and the material of all fasteners used were brass for MRI compatibility. The mounted valves were placed within a clear acrylic case, capable of holding a zero-pressure and pressurized liquid bath of a MRI-compatible fluid. Obtaining images from the valve submerged in liquid fluid mimics the natural environment surrounding the valve, avoiding artefacts due to tissue surface tension mismatch and gravitational impact on tissue shape when not neutrally buoyant. Fluid pressure was supplied by reservoirs held at differing elevations and monitored and controlled to within ±1mmHg to ensure that the valves remained steady. The valves were scanned in a 7 Tesla MRI system providing a voxel resolution of at least 80μm. The systematic approach produced 3D datasets of high quality which, when combined with physiologically accurate positioning by the apparatus, can serve as an important input for validated computational models.
Collapse
Affiliation(s)
- Sam E. Stephens
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Serguei Liachenko
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Neil B. Ingels
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Jonathan F. Wenk
- Department of Mechanical Engineering, University of Kentucky, Lexington, Kentucky, United States of America
| | - Morten O. Jensen
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|